organic compounds
N-(1-acetyl-3-chloro-1H-indazol-6-yl)-4-methoxybenzenesulfonamide
ofaLaboratoire de Chimie Organique et Analytique, Université Sultan Moulay Slimane, Faculté des Sciences et Techniques, Béni-Mellal, BP 523, Morocco, and bLaboratoire de Chimie du Solide Appliquée, Faculté des Sciences, Université Mohammed V, Avenue Ibn Battouta, BP 1014, Rabat, Morocco
*Correspondence e-mail: yhakmaoui1@gmail.com
In the title compound, C16H14ClN3O4S, the six-membered ring of the indazole group is connected to a sulfonamide group. The indazole system is essentially planar, with the greatest deviation from the mean plane being 0.007 (2) Å. The dihedral angle between the two six-membered rings is 74.99 (9)°. The exhibits inversion dimers in which molecules are linked by pairs of N—H⋯O and C—H⋯O hydrogen bonds.
Keywords: crystal structure; hydrogen bonding; sulfonamide.
CCDC reference: 1434410
1. Related literature
For biological activities of indazole derivatives, see: Gaikwad et al. (2015); Jennings & Tennant (2007). For related derivatives, see: Abbassi et al. (2012, 2014); Bouissane et al. (2006).
2. Experimental
2.1. Crystal data
|
2.3. Refinement
|
|
Data collection: APEX2 (Bruker, 2009); cell SAINT (Bruker, 2009); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL2014 (Sheldrick, 2015); molecular graphics: ORTEPIII (Burnett & Johnson, 1996) and ORTEP-3 for Windows (Farrugia, 2012); software used to prepare material for publication: publCIF (Westrip, 2010).
Supporting information
CCDC reference: 1434410
https://doi.org/10.1107/S2056989015020605/tk5402sup1.cif
contains datablock I. DOI:Structure factors: contains datablock I. DOI: https://doi.org/10.1107/S2056989015020605/tk5402Isup2.hkl
Supporting information file. DOI: https://doi.org/10.1107/S2056989015020605/tk5402Isup3.cml
A mixture of 3-chloro-6-nitroindazole (1.22 mmol) and anhydrous SnCl2 (1.1 g, 6.1 mmol) in absolute ethanol (25 ml) was heated at 333 K for 4 h. After reduction, the starting material reacted, and the solution was allowed to cool down. The pH was made slightly basic (pH 7–8) by the addition of 5% aqueous potassium bicarbonate before extraction with ethyl acetate. The organic phase was washed with brine and dried over magnesium sulfate. The solvent was removed to afford the amine, which was immediately dissolved in pyridine (5 ml) and then reacted with 4-methoxybenzenesulfonyl chloride (1.25 mmol) at room temperature for 24 h. After the reaction mixture was concentrated in vacuo, the resulting residue was purified by flash
(eluted with ethyl acetate: hexane 1:9). The title compound was recrystallized from acetone (yield: 64%, m.p.: 388 K).H atoms were located in a difference map and treated as riding with C–H = 0.93–0.96 Å and N–H = 0.86 Å, and with with Uiso(H) = 1.2 Ueq for aromatic–H and N–H and Uiso(H) = 1.5 Ueq for methyl–H.
The indazole core is recognized to be a highly effective pharmacophore in medicinal chemistry as well as being the core of important nitrogen-containing heterocycles that show a broad range of biological activities (Gaikwad et al., 2015; Jennings & Tennant, 2007). Previously, our scientific team has pursued the research into derivatives of indazoles with the potential anticancer activity. We have synthesized and characterized indazoles bearing sulfonamide moieties. Some of them exert pharmacologically interesting antiproliferative/apoptotic activity against human and murine cell lines (Abbassi et al., 2012; Abbassi et al., 2014; Bouissane et al., 2006).
The two fused five- and six-membered rings (N2,N3, C1–C7) of the indazole part of the molecule are almost planar, with a maximum deviation of 0.007 (2) Å at atom C1 (Fig. 1) and makes a dihedral angle of 74.99 (9)° with the mean plan trough the 4-methoxy-substituted benzene ring. The chloride atom and the sulfonamide group linked to the indazole ring are nearly coplanar with the largest deviation from the mean plane being 0.070 (2) Å at atom O1. The
exhibits inversion dimers in which molecules are linked by pairs of C15—H15C···O2 and N1—H1···O1 hydrogen bonds as shown in Fig. 2 and Table 1.For biological activities of indazole derivatives, see: Gaikwad et al. (2015); Jennings & Tennant (2007). For related derivatives, see: Abbassi et al. (2012, 2014); Bouissane et al. (2006).
Data collection: APEX2 (Bruker, 2009); cell
SAINT (Bruker, 2009); data reduction: SAINT (Bruker, 2009); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL2014 (Sheldrick, 2015); molecular graphics: ORTEPIII (Burnett & Johnson, 1996) and ORTEP-3 for Windows (Farrugia, 2012); software used to prepare material for publication: publCIF (Westrip, 2010).C16H14ClN3O4S | Dx = 1.499 Mg m−3 |
Mr = 379.81 | Melting point: 388 K |
Monoclinic, P21/c | Mo Kα radiation, λ = 0.71073 Å |
a = 13.9664 (6) Å | Cell parameters from 4461 reflections |
b = 6.4300 (3) Å | θ = 3.0–29.0° |
c = 19.6155 (9) Å | µ = 0.38 mm−1 |
β = 107.227 (1)° | T = 296 K |
V = 1682.52 (13) Å3 | Block, colourless |
Z = 4 | 0.31 × 0.27 × 0.21 mm |
F(000) = 784 |
Bruker X8 APEX diffractometer | 4461 independent reflections |
Radiation source: fine-focus sealed tube | 3423 reflections with I > 2σ(I) |
Graphite monochromator | Rint = 0.032 |
φ and ω scans | θmax = 29.0°, θmin = 3.0° |
Absorption correction: multi-scan (SADABS; Bruker, 2009) | h = −15→19 |
Tmin = 0.654, Tmax = 0.747 | k = −8→8 |
33806 measured reflections | l = −26→26 |
Refinement on F2 | 0 restraints |
Least-squares matrix: full | Hydrogen site location: inferred from neighbouring sites |
R[F2 > 2σ(F2)] = 0.042 | H-atom parameters constrained |
wR(F2) = 0.130 | w = 1/[σ2(Fo2) + (0.0695P)2 + 0.2697P] where P = (Fo2 + 2Fc2)/3 |
S = 1.09 | (Δ/σ)max = 0.001 |
4461 reflections | Δρmax = 0.34 e Å−3 |
227 parameters | Δρmin = −0.35 e Å−3 |
C16H14ClN3O4S | V = 1682.52 (13) Å3 |
Mr = 379.81 | Z = 4 |
Monoclinic, P21/c | Mo Kα radiation |
a = 13.9664 (6) Å | µ = 0.38 mm−1 |
b = 6.4300 (3) Å | T = 296 K |
c = 19.6155 (9) Å | 0.31 × 0.27 × 0.21 mm |
β = 107.227 (1)° |
Bruker X8 APEX diffractometer | 4461 independent reflections |
Absorption correction: multi-scan (SADABS; Bruker, 2009) | 3423 reflections with I > 2σ(I) |
Tmin = 0.654, Tmax = 0.747 | Rint = 0.032 |
33806 measured reflections |
R[F2 > 2σ(F2)] = 0.042 | 0 restraints |
wR(F2) = 0.130 | H-atom parameters constrained |
S = 1.09 | Δρmax = 0.34 e Å−3 |
4461 reflections | Δρmin = −0.35 e Å−3 |
227 parameters |
Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes. |
x | y | z | Uiso*/Ueq | ||
C1 | 0.91669 (11) | 0.2704 (2) | 0.37321 (8) | 0.0452 (3) | |
C2 | 0.89374 (16) | 0.1193 (3) | 0.41556 (10) | 0.0617 (5) | |
H2 | 0.9006 | −0.0205 | 0.4058 | 0.074* | |
C3 | 0.86020 (16) | 0.1769 (3) | 0.47309 (10) | 0.0602 (5) | |
H3 | 0.8448 | 0.0755 | 0.5020 | 0.072* | |
C4 | 0.85003 (11) | 0.3830 (2) | 0.48700 (8) | 0.0408 (3) | |
C5 | 0.87624 (15) | 0.5333 (3) | 0.44499 (10) | 0.0550 (4) | |
H5 | 0.8712 | 0.6734 | 0.4551 | 0.066* | |
C6 | 0.90957 (15) | 0.4760 (3) | 0.38864 (10) | 0.0557 (4) | |
H6 | 0.9274 | 0.5773 | 0.3608 | 0.067* | |
C7 | 0.61586 (12) | 0.4460 (3) | 0.47134 (9) | 0.0473 (4) | |
C8 | 0.53586 (11) | 0.3118 (3) | 0.44493 (8) | 0.0441 (3) | |
H8 | 0.5300 | 0.1886 | 0.4682 | 0.053* | |
C9 | 0.46477 (11) | 0.3708 (2) | 0.38180 (8) | 0.0446 (3) | |
C10 | 0.47468 (13) | 0.5525 (3) | 0.34520 (9) | 0.0516 (4) | |
C11 | 0.55490 (14) | 0.6856 (3) | 0.37318 (12) | 0.0617 (5) | |
H11 | 0.5613 | 0.8077 | 0.3495 | 0.074* | |
C12 | 0.62455 (14) | 0.6340 (3) | 0.43640 (11) | 0.0601 (4) | |
H12 | 0.6779 | 0.7234 | 0.4564 | 0.072* | |
C13 | 0.39023 (14) | 0.5496 (3) | 0.28361 (10) | 0.0573 (4) | |
C14 | 0.32896 (13) | 0.0995 (3) | 0.35643 (9) | 0.0507 (4) | |
C15 | 0.22920 (16) | 0.0485 (3) | 0.30602 (11) | 0.0669 (5) | |
H15A | 0.2340 | 0.0443 | 0.2582 | 0.100* | |
H15B | 0.1816 | 0.1529 | 0.3092 | 0.100* | |
H15C | 0.2076 | −0.0846 | 0.3181 | 0.100* | |
C16 | 0.95084 (18) | 0.0198 (3) | 0.29354 (11) | 0.0681 (5) | |
H16A | 0.9737 | 0.0148 | 0.2520 | 0.102* | |
H16B | 0.9962 | −0.0572 | 0.3315 | 0.102* | |
H16C | 0.8851 | −0.0402 | 0.2826 | 0.102* | |
N1 | 0.68799 (10) | 0.3907 (3) | 0.53612 (7) | 0.0528 (3) | |
H1 | 0.6685 | 0.3165 | 0.5660 | 0.063* | |
N2 | 0.37631 (11) | 0.2767 (2) | 0.34114 (7) | 0.0500 (3) | |
N3 | 0.33132 (12) | 0.3908 (3) | 0.27965 (8) | 0.0582 (4) | |
O1 | 0.37051 (10) | −0.0002 (2) | 0.40987 (7) | 0.0588 (3) | |
O2 | 0.85332 (9) | 0.3360 (2) | 0.61953 (6) | 0.0641 (4) | |
O3 | 0.81333 (11) | 0.6802 (2) | 0.56320 (8) | 0.0681 (4) | |
O4 | 0.94732 (10) | 0.2289 (2) | 0.31491 (7) | 0.0593 (3) | |
S1 | 0.80653 (3) | 0.45883 (7) | 0.55819 (2) | 0.04892 (14) | |
Cl1 | 0.36508 (5) | 0.72884 (10) | 0.21588 (3) | 0.0859 (2) |
U11 | U22 | U33 | U12 | U13 | U23 | |
C1 | 0.0407 (8) | 0.0515 (8) | 0.0423 (8) | −0.0026 (6) | 0.0104 (6) | 0.0070 (6) |
C2 | 0.0916 (14) | 0.0368 (8) | 0.0669 (11) | 0.0011 (8) | 0.0390 (10) | 0.0044 (7) |
C3 | 0.0858 (14) | 0.0418 (8) | 0.0645 (11) | −0.0039 (8) | 0.0400 (10) | 0.0088 (7) |
C4 | 0.0355 (7) | 0.0432 (7) | 0.0427 (7) | −0.0029 (6) | 0.0101 (6) | 0.0004 (6) |
C5 | 0.0692 (11) | 0.0384 (8) | 0.0621 (10) | −0.0086 (7) | 0.0265 (9) | 0.0016 (7) |
C6 | 0.0703 (11) | 0.0455 (8) | 0.0564 (10) | −0.0113 (8) | 0.0268 (9) | 0.0078 (7) |
C7 | 0.0397 (8) | 0.0540 (9) | 0.0529 (9) | 0.0037 (6) | 0.0209 (7) | −0.0007 (7) |
C8 | 0.0424 (8) | 0.0491 (8) | 0.0444 (8) | 0.0034 (6) | 0.0183 (6) | 0.0020 (6) |
C9 | 0.0413 (8) | 0.0500 (8) | 0.0473 (8) | 0.0052 (6) | 0.0203 (6) | 0.0007 (6) |
C10 | 0.0481 (9) | 0.0563 (9) | 0.0561 (9) | 0.0108 (7) | 0.0242 (8) | 0.0105 (7) |
C11 | 0.0542 (10) | 0.0554 (10) | 0.0804 (13) | 0.0032 (8) | 0.0271 (9) | 0.0182 (9) |
C12 | 0.0471 (9) | 0.0587 (10) | 0.0758 (12) | −0.0038 (8) | 0.0202 (9) | 0.0073 (9) |
C13 | 0.0558 (10) | 0.0662 (11) | 0.0544 (9) | 0.0142 (8) | 0.0231 (8) | 0.0173 (8) |
C14 | 0.0497 (9) | 0.0546 (9) | 0.0463 (8) | 0.0004 (7) | 0.0118 (7) | −0.0034 (7) |
C15 | 0.0639 (12) | 0.0710 (12) | 0.0545 (10) | −0.0106 (9) | 0.0002 (9) | −0.0021 (9) |
C16 | 0.0777 (13) | 0.0725 (12) | 0.0595 (11) | 0.0117 (10) | 0.0288 (10) | −0.0048 (9) |
N1 | 0.0420 (7) | 0.0696 (9) | 0.0487 (7) | −0.0057 (6) | 0.0165 (6) | 0.0042 (6) |
N2 | 0.0498 (7) | 0.0563 (8) | 0.0420 (7) | 0.0026 (6) | 0.0107 (6) | 0.0055 (6) |
N3 | 0.0568 (9) | 0.0696 (10) | 0.0468 (8) | 0.0097 (7) | 0.0132 (7) | 0.0115 (7) |
O1 | 0.0532 (7) | 0.0599 (7) | 0.0572 (7) | −0.0037 (6) | 0.0068 (6) | 0.0094 (6) |
O2 | 0.0522 (7) | 0.0939 (10) | 0.0416 (6) | −0.0115 (7) | 0.0070 (5) | 0.0031 (6) |
O3 | 0.0687 (8) | 0.0608 (8) | 0.0779 (9) | −0.0131 (6) | 0.0264 (7) | −0.0248 (7) |
O4 | 0.0719 (8) | 0.0625 (7) | 0.0502 (7) | −0.0038 (6) | 0.0286 (6) | 0.0018 (5) |
S1 | 0.0440 (2) | 0.0576 (3) | 0.0458 (2) | −0.00842 (17) | 0.01419 (17) | −0.00832 (17) |
Cl1 | 0.0821 (4) | 0.0971 (4) | 0.0790 (4) | 0.0150 (3) | 0.0247 (3) | 0.0444 (3) |
C1—O4 | 1.361 (2) | C11—C12 | 1.371 (3) |
C1—C6 | 1.366 (2) | C11—H11 | 0.9300 |
C1—C2 | 1.376 (2) | C12—H12 | 0.9300 |
C2—C3 | 1.394 (3) | C13—N3 | 1.299 (3) |
C2—H2 | 0.9300 | C13—Cl1 | 1.7146 (18) |
C3—C4 | 1.369 (2) | C14—O1 | 1.219 (2) |
C3—H3 | 0.9300 | C14—N2 | 1.394 (2) |
C4—C5 | 1.388 (2) | C14—C15 | 1.487 (2) |
C4—S1 | 1.7490 (16) | C15—H15A | 0.9600 |
C5—C6 | 1.371 (3) | C15—H15B | 0.9600 |
C5—H5 | 0.9300 | C15—H15C | 0.9600 |
C6—H6 | 0.9300 | C16—O4 | 1.414 (2) |
C7—C8 | 1.385 (2) | C16—H16A | 0.9600 |
C7—C12 | 1.413 (2) | C16—H16B | 0.9600 |
C7—N1 | 1.413 (2) | C16—H16C | 0.9600 |
C8—C9 | 1.391 (2) | N1—S1 | 1.6419 (14) |
C8—H8 | 0.9300 | N1—H1 | 0.8600 |
C9—N2 | 1.395 (2) | N2—N3 | 1.3924 (19) |
C9—C10 | 1.399 (2) | O2—S1 | 1.4257 (14) |
C10—C11 | 1.388 (3) | O3—S1 | 1.4279 (14) |
C10—C13 | 1.417 (3) | ||
O4—C1—C6 | 115.95 (14) | C11—C12—H12 | 119.8 |
O4—C1—C2 | 123.80 (16) | C7—C12—H12 | 119.8 |
C6—C1—C2 | 120.25 (16) | N3—C13—C10 | 114.44 (15) |
C1—C2—C3 | 119.71 (16) | N3—C13—Cl1 | 120.08 (15) |
C1—C2—H2 | 120.1 | C10—C13—Cl1 | 125.44 (15) |
C3—C2—H2 | 120.1 | O1—C14—N2 | 118.65 (15) |
C4—C3—C2 | 119.87 (15) | O1—C14—C15 | 124.73 (17) |
C4—C3—H3 | 120.1 | N2—C14—C15 | 116.61 (15) |
C2—C3—H3 | 120.1 | C14—C15—H15A | 109.5 |
C3—C4—C5 | 119.64 (15) | C14—C15—H15B | 109.5 |
C3—C4—S1 | 120.68 (12) | H15A—C15—H15B | 109.5 |
C5—C4—S1 | 119.68 (13) | C14—C15—H15C | 109.5 |
C6—C5—C4 | 120.27 (16) | H15A—C15—H15C | 109.5 |
C6—C5—H5 | 119.9 | H15B—C15—H15C | 109.5 |
C4—C5—H5 | 119.9 | O4—C16—H16A | 109.5 |
C1—C6—C5 | 120.20 (15) | O4—C16—H16B | 109.5 |
C1—C6—H6 | 119.9 | H16A—C16—H16B | 109.5 |
C5—C6—H6 | 119.9 | O4—C16—H16C | 109.5 |
C8—C7—C12 | 121.82 (16) | H16A—C16—H16C | 109.5 |
C8—C7—N1 | 117.46 (15) | H16B—C16—H16C | 109.5 |
C12—C7—N1 | 120.70 (16) | C7—N1—S1 | 124.38 (12) |
C7—C8—C9 | 116.57 (15) | C7—N1—H1 | 117.8 |
C7—C8—H8 | 121.7 | S1—N1—H1 | 117.8 |
C9—C8—H8 | 121.7 | N3—N2—C14 | 119.73 (14) |
C8—C9—N2 | 131.97 (15) | N3—N2—C9 | 111.28 (14) |
C8—C9—C10 | 122.10 (16) | C14—N2—C9 | 128.90 (13) |
N2—C9—C10 | 105.92 (14) | C13—N3—N2 | 104.30 (15) |
C11—C10—C9 | 120.21 (16) | C1—O4—C16 | 118.88 (14) |
C11—C10—C13 | 135.73 (17) | O2—S1—O3 | 119.31 (9) |
C9—C10—C13 | 104.05 (16) | O2—S1—N1 | 104.43 (8) |
C12—C11—C10 | 118.81 (17) | O3—S1—N1 | 108.98 (9) |
C12—C11—H11 | 120.6 | O2—S1—C4 | 109.79 (8) |
C10—C11—H11 | 120.6 | O3—S1—C4 | 107.52 (8) |
C11—C12—C7 | 120.40 (17) | N1—S1—C4 | 106.07 (7) |
D—H···A | D—H | H···A | D···A | D—H···A |
N1—H1···O1i | 0.86 | 2.19 | 2.934 (2) | 144 |
C15—H15C···O2i | 0.96 | 2.33 | 3.251 (3) | 159 |
Symmetry code: (i) −x+1, −y, −z+1. |
D—H···A | D—H | H···A | D···A | D—H···A |
N1—H1···O1i | 0.86 | 2.19 | 2.934 (2) | 144 |
C15—H15C···O2i | 0.96 | 2.33 | 3.251 (3) | 159 |
Symmetry code: (i) −x+1, −y, −z+1. |
Acknowledgements
The authors thank the Unit of Support for Technical and Scientific Research (UATRS, CNRST) for the X-ray measurements and the University Sultan Moulay Slimane, Beni-Mellal, Morocco, for financial support.
References
Abbassi, N., Chicha, H., Rakib, E. M., Hannioui, A., Alaoui, M., Hajjaji, A., Geffken, D., Aiello, C., Gangemi, R., Rosano, C. & Viale, M. (2012). Eur. J. Med. Chem. 57, 240–249. Web of Science CrossRef CAS PubMed Google Scholar
Abbassi, N., Rakib, E. M., Chicha, H., Bouissane, L., Hannioui, A., Aiello, C., Gangemi, R., Castagnola, P., Rosano, C. & Viale, M. (2014). Arch. Pharm. Chem. Life Sci. 347, 423–431. Web of Science CrossRef CAS Google Scholar
Bouissane, L., El Kazzouli, S., Léonce, S., Pfeiffer, B., Rakib, M. E., Khouili, M. & Guillaumet, G. (2006). Bioorg. Med. Chem. 14, 1078–1088. Web of Science CrossRef PubMed CAS Google Scholar
Bruker (2009). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA. Google Scholar
Burnett, M. N. & Johnson, C. K. (1996). ORTEPIII. Report ORNL-6895. Oak Ridge National Laboratory, Tennessee, USA. Google Scholar
Farrugia, L. J. (2012). J. Appl. Cryst. 45, 849–854. Web of Science CrossRef CAS IUCr Journals Google Scholar
Gaikwad, D. D., Chapolikar, A. D., Devkate, C. G., Warad, K. D., Tayade, A. P., Pawar, R. P. & Domb, A. J. (2015). Eur. J. Med. Chem. 90, 707–731. Web of Science CrossRef CAS PubMed Google Scholar
Jennings, A. & Tennant, M. (2007). J. Chem. Inf. Model. 47, 1829–1838. Web of Science CrossRef PubMed CAS Google Scholar
Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. Web of Science CrossRef CAS IUCr Journals Google Scholar
Sheldrick, G. M. (2015). Acta Cryst. C71, 3–8. Web of Science CrossRef IUCr Journals Google Scholar
Westrip, S. P. (2010). J. Appl. Cryst. 43, 920–925. Web of Science CrossRef CAS IUCr Journals Google Scholar
This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.
The indazole core is recognized to be a highly effective pharmacophore in medicinal chemistry as well as being the core of important nitrogen-containing heterocycles that show a broad range of biological activities (Gaikwad et al., 2015; Jennings & Tennant, 2007). Previously, our scientific team has pursued the research into derivatives of indazoles with the potential anticancer activity. We have synthesized and characterized indazoles bearing sulfonamide moieties. Some of them exert pharmacologically interesting antiproliferative/apoptotic activity against human and murine cell lines (Abbassi et al., 2012; Abbassi et al., 2014; Bouissane et al., 2006).
The two fused five- and six-membered rings (N2,N3, C1–C7) of the indazole part of the molecule are almost planar, with a maximum deviation of 0.007 (2) Å at atom C1 (Fig. 1) and makes a dihedral angle of 74.99 (9)° with the mean plan trough the 4-methoxy-substituted benzene ring. The chloride atom and the sulfonamide group linked to the indazole ring are nearly coplanar with the largest deviation from the mean plane being 0.070 (2) Å at atom O1. The crystal structure exhibits inversion dimers in which molecules are linked by pairs of C15—H15C···O2 and N1—H1···O1 hydrogen bonds as shown in Fig. 2 and Table 1.