organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Crystal structure of N-(1-acetyl-3-chloro-1H-indazol-6-yl)-4-meth­­oxy­benzene­sulfonamide

aLaboratoire de Chimie Organique et Analytique, Université Sultan Moulay Slimane, Faculté des Sciences et Techniques, Béni-Mellal, BP 523, Morocco, and bLaboratoire de Chimie du Solide Appliquée, Faculté des Sciences, Université Mohammed V, Avenue Ibn Battouta, BP 1014, Rabat, Morocco
*Correspondence e-mail: yhakmaoui1@gmail.com

Edited by E. R. T. Tiekink, University of Malaya, Malaysia (Received 25 October 2015; accepted 30 October 2015; online 4 November 2015)

In the title compound, C16H14ClN3O4S, the six-membered ring of the indazole group is connected to a sulfonamide group. The indazole system is essentially planar, with the greatest deviation from the mean plane being 0.007 (2) Å. The dihedral angle between the two six-membered rings is 74.99 (9)°. The crystal structure exhibits inversion dimers in which mol­ecules are linked by pairs of N—H⋯O and C—H⋯O hydrogen bonds.

1. Related literature

For biological activities of indazole derivatives, see: Gaikwad et al. (2015[Gaikwad, D. D., Chapolikar, A. D., Devkate, C. G., Warad, K. D., Tayade, A. P., Pawar, R. P. & Domb, A. J. (2015). Eur. J. Med. Chem. 90, 707-731.]); Jennings & Tennant (2007[Jennings, A. & Tennant, M. (2007). J. Chem. Inf. Model. 47, 1829-1838.]). For related derivatives, see: Abbassi et al. (2012[Abbassi, N., Chicha, H., Rakib, E. M., Hannioui, A., Alaoui, M., Hajjaji, A., Geffken, D., Aiello, C., Gangemi, R., Rosano, C. & Viale, M. (2012). Eur. J. Med. Chem. 57, 240-249.], 2014[Abbassi, N., Rakib, E. M., Chicha, H., Bouissane, L., Hannioui, A., Aiello, C., Gangemi, R., Castagnola, P., Rosano, C. & Viale, M. (2014). Arch. Pharm. Chem. Life Sci. 347, 423-431.]); Bouissane et al. (2006[Bouissane, L., El Kazzouli, S., Léonce, S., Pfeiffer, B., Rakib, M. E., Khouili, M. & Guillaumet, G. (2006). Bioorg. Med. Chem. 14, 1078-1088.]).

[Scheme 1]

2. Experimental

2.1. Crystal data

  • C16H14ClN3O4S

  • Mr = 379.81

  • Monoclinic, P 21 /c

  • a = 13.9664 (6) Å

  • b = 6.4300 (3) Å

  • c = 19.6155 (9) Å

  • β = 107.227 (1)°

  • V = 1682.52 (13) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.38 mm−1

  • T = 296 K

  • 0.31 × 0.27 × 0.21 mm

2.2. Data collection

  • Bruker X8 APEX diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 2009[Bruker (2009). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]) Tmin = 0.654, Tmax = 0.747

  • 33806 measured reflections

  • 4461 independent reflections

  • 3423 reflections with I > 2σ(I)

  • Rint = 0.032

2.3. Refinement

  • R[F2 > 2σ(F2)] = 0.042

  • wR(F2) = 0.130

  • S = 1.09

  • 4461 reflections

  • 227 parameters

  • H-atom parameters constrained

  • Δρmax = 0.34 e Å−3

  • Δρmin = −0.35 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
N1—H1⋯O1i 0.86 2.19 2.934 (2) 144
C15—H15C⋯O2i 0.96 2.33 3.251 (3) 159
Symmetry code: (i) -x+1, -y, -z+1.

Data collection: APEX2 (Bruker, 2009[Bruker (2009). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2009[Bruker (2009). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL2014 (Sheldrick, 2015[Sheldrick, G. M. (2015). Acta Cryst. C71, 3-8.]); molecular graphics: ORTEPIII (Burnett & Johnson, 1996[Burnett, M. N. & Johnson, C. K. (1996). ORTEPIII. Report ORNL-6895. Oak Ridge National Laboratory, Tennessee, USA.]) and ORTEP-3 for Windows (Farrugia, 2012[Farrugia, L. J. (2012). J. Appl. Cryst. 45, 849-854.]); software used to prepare material for publication: publCIF (Westrip, 2010[Westrip, S. P. (2010). J. Appl. Cryst. 43, 920-925.]).

Supporting information


Comment top

The indazole core is recognized to be a highly effective pharmacophore in medicinal chemistry as well as being the core of important nitrogen-containing heterocycles that show a broad range of biological activities (Gaikwad et al., 2015; Jennings & Tennant, 2007). Previously, our scientific team has pursued the research into derivatives of indazoles with the potential anticancer activity. We have synthesized and characterized indazoles bearing sulfonamide moieties. Some of them exert pharmacologically interesting antiproliferative/apoptotic activity against human and murine cell lines (Abbassi et al., 2012; Abbassi et al., 2014; Bouissane et al., 2006).

The two fused five- and six-membered rings (N2,N3, C1–C7) of the indazole part of the molecule are almost planar, with a maximum deviation of 0.007 (2) Å at atom C1 (Fig. 1) and makes a dihedral angle of 74.99 (9)° with the mean plan trough the 4-methoxy-substituted benzene ring. The chloride atom and the sulfonamide group linked to the indazole ring are nearly coplanar with the largest deviation from the mean plane being 0.070 (2) Å at atom O1. The crystal structure exhibits inversion dimers in which molecules are linked by pairs of C15—H15C···O2 and N1—H1···O1 hydrogen bonds as shown in Fig. 2 and Table 1.

Related literature top

For biological activities of indazole derivatives, see: Gaikwad et al. (2015); Jennings & Tennant (2007). For related derivatives, see: Abbassi et al. (2012, 2014); Bouissane et al. (2006).

Experimental top

A mixture of 3-chloro-6-nitroindazole (1.22 mmol) and anhydrous SnCl2 (1.1 g, 6.1 mmol) in absolute ethanol (25 ml) was heated at 333 K for 4 h. After reduction, the starting material reacted, and the solution was allowed to cool down. The pH was made slightly basic (pH 7–8) by the addition of 5% aqueous potassium bicarbonate before extraction with ethyl acetate. The organic phase was washed with brine and dried over magnesium sulfate. The solvent was removed to afford the amine, which was immediately dissolved in pyridine (5 ml) and then reacted with 4-methoxybenzenesulfonyl chloride (1.25 mmol) at room temperature for 24 h. After the reaction mixture was concentrated in vacuo, the resulting residue was purified by flash chromatography (eluted with ethyl acetate: hexane 1:9). The title compound was recrystallized from acetone (yield: 64%, m.p.: 388 K).

Refinement top

H atoms were located in a difference map and treated as riding with C–H = 0.93–0.96 Å and N–H = 0.86 Å, and with with Uiso(H) = 1.2 Ueq for aromatic–H and N–H and Uiso(H) = 1.5 Ueq for methyl–H.

Structure description top

The indazole core is recognized to be a highly effective pharmacophore in medicinal chemistry as well as being the core of important nitrogen-containing heterocycles that show a broad range of biological activities (Gaikwad et al., 2015; Jennings & Tennant, 2007). Previously, our scientific team has pursued the research into derivatives of indazoles with the potential anticancer activity. We have synthesized and characterized indazoles bearing sulfonamide moieties. Some of them exert pharmacologically interesting antiproliferative/apoptotic activity against human and murine cell lines (Abbassi et al., 2012; Abbassi et al., 2014; Bouissane et al., 2006).

The two fused five- and six-membered rings (N2,N3, C1–C7) of the indazole part of the molecule are almost planar, with a maximum deviation of 0.007 (2) Å at atom C1 (Fig. 1) and makes a dihedral angle of 74.99 (9)° with the mean plan trough the 4-methoxy-substituted benzene ring. The chloride atom and the sulfonamide group linked to the indazole ring are nearly coplanar with the largest deviation from the mean plane being 0.070 (2) Å at atom O1. The crystal structure exhibits inversion dimers in which molecules are linked by pairs of C15—H15C···O2 and N1—H1···O1 hydrogen bonds as shown in Fig. 2 and Table 1.

For biological activities of indazole derivatives, see: Gaikwad et al. (2015); Jennings & Tennant (2007). For related derivatives, see: Abbassi et al. (2012, 2014); Bouissane et al. (2006).

Computing details top

Data collection: APEX2 (Bruker, 2009); cell refinement: SAINT (Bruker, 2009); data reduction: SAINT (Bruker, 2009); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL2014 (Sheldrick, 2015); molecular graphics: ORTEPIII (Burnett & Johnson, 1996) and ORTEP-3 for Windows (Farrugia, 2012); software used to prepare material for publication: publCIF (Westrip, 2010).

Figures top
[Figure 1] Fig. 1. Plot of the molecule of the title compound with the atom-labelling scheme. Displacement ellipsoids are drawn at the 50% probability level. H atoms are represented as small circles.
[Figure 2] Fig. 2. Partial plot of the molecular packing in the title compound, showing inversion dimers of molecules linked through N1—H1···O1 (dashed lines) and C15—H15C···O2 hydrogen bonds.
N-(1-Acetyl-3-chloro-1H-indazol-6-yl)-4-methoxybenzenesulfonamide top
Crystal data top
C16H14ClN3O4SDx = 1.499 Mg m3
Mr = 379.81Melting point: 388 K
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
a = 13.9664 (6) ÅCell parameters from 4461 reflections
b = 6.4300 (3) Åθ = 3.0–29.0°
c = 19.6155 (9) ŵ = 0.38 mm1
β = 107.227 (1)°T = 296 K
V = 1682.52 (13) Å3Block, colourless
Z = 40.31 × 0.27 × 0.21 mm
F(000) = 784
Data collection top
Bruker X8 APEX
diffractometer
4461 independent reflections
Radiation source: fine-focus sealed tube3423 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.032
φ and ω scansθmax = 29.0°, θmin = 3.0°
Absorption correction: multi-scan
(SADABS; Bruker, 2009)
h = 1519
Tmin = 0.654, Tmax = 0.747k = 88
33806 measured reflectionsl = 2626
Refinement top
Refinement on F20 restraints
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.042H-atom parameters constrained
wR(F2) = 0.130 w = 1/[σ2(Fo2) + (0.0695P)2 + 0.2697P]
where P = (Fo2 + 2Fc2)/3
S = 1.09(Δ/σ)max = 0.001
4461 reflectionsΔρmax = 0.34 e Å3
227 parametersΔρmin = 0.35 e Å3
Crystal data top
C16H14ClN3O4SV = 1682.52 (13) Å3
Mr = 379.81Z = 4
Monoclinic, P21/cMo Kα radiation
a = 13.9664 (6) ŵ = 0.38 mm1
b = 6.4300 (3) ÅT = 296 K
c = 19.6155 (9) Å0.31 × 0.27 × 0.21 mm
β = 107.227 (1)°
Data collection top
Bruker X8 APEX
diffractometer
4461 independent reflections
Absorption correction: multi-scan
(SADABS; Bruker, 2009)
3423 reflections with I > 2σ(I)
Tmin = 0.654, Tmax = 0.747Rint = 0.032
33806 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0420 restraints
wR(F2) = 0.130H-atom parameters constrained
S = 1.09Δρmax = 0.34 e Å3
4461 reflectionsΔρmin = 0.35 e Å3
227 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
C10.91669 (11)0.2704 (2)0.37321 (8)0.0452 (3)
C20.89374 (16)0.1193 (3)0.41556 (10)0.0617 (5)
H20.90060.02050.40580.074*
C30.86020 (16)0.1769 (3)0.47309 (10)0.0602 (5)
H30.84480.07550.50200.072*
C40.85003 (11)0.3830 (2)0.48700 (8)0.0408 (3)
C50.87624 (15)0.5333 (3)0.44499 (10)0.0550 (4)
H50.87120.67340.45510.066*
C60.90957 (15)0.4760 (3)0.38864 (10)0.0557 (4)
H60.92740.57730.36080.067*
C70.61586 (12)0.4460 (3)0.47134 (9)0.0473 (4)
C80.53586 (11)0.3118 (3)0.44493 (8)0.0441 (3)
H80.53000.18860.46820.053*
C90.46477 (11)0.3708 (2)0.38180 (8)0.0446 (3)
C100.47468 (13)0.5525 (3)0.34520 (9)0.0516 (4)
C110.55490 (14)0.6856 (3)0.37318 (12)0.0617 (5)
H110.56130.80770.34950.074*
C120.62455 (14)0.6340 (3)0.43640 (11)0.0601 (4)
H120.67790.72340.45640.072*
C130.39023 (14)0.5496 (3)0.28361 (10)0.0573 (4)
C140.32896 (13)0.0995 (3)0.35643 (9)0.0507 (4)
C150.22920 (16)0.0485 (3)0.30602 (11)0.0669 (5)
H15A0.23400.04430.25820.100*
H15B0.18160.15290.30920.100*
H15C0.20760.08460.31810.100*
C160.95084 (18)0.0198 (3)0.29354 (11)0.0681 (5)
H16A0.97370.01480.25200.102*
H16B0.99620.05720.33150.102*
H16C0.88510.04020.28260.102*
N10.68799 (10)0.3907 (3)0.53612 (7)0.0528 (3)
H10.66850.31650.56600.063*
N20.37631 (11)0.2767 (2)0.34114 (7)0.0500 (3)
N30.33132 (12)0.3908 (3)0.27965 (8)0.0582 (4)
O10.37051 (10)0.0002 (2)0.40987 (7)0.0588 (3)
O20.85332 (9)0.3360 (2)0.61953 (6)0.0641 (4)
O30.81333 (11)0.6802 (2)0.56320 (8)0.0681 (4)
O40.94732 (10)0.2289 (2)0.31491 (7)0.0593 (3)
S10.80653 (3)0.45883 (7)0.55819 (2)0.04892 (14)
Cl10.36508 (5)0.72884 (10)0.21588 (3)0.0859 (2)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
C10.0407 (8)0.0515 (8)0.0423 (8)0.0026 (6)0.0104 (6)0.0070 (6)
C20.0916 (14)0.0368 (8)0.0669 (11)0.0011 (8)0.0390 (10)0.0044 (7)
C30.0858 (14)0.0418 (8)0.0645 (11)0.0039 (8)0.0400 (10)0.0088 (7)
C40.0355 (7)0.0432 (7)0.0427 (7)0.0029 (6)0.0101 (6)0.0004 (6)
C50.0692 (11)0.0384 (8)0.0621 (10)0.0086 (7)0.0265 (9)0.0016 (7)
C60.0703 (11)0.0455 (8)0.0564 (10)0.0113 (8)0.0268 (9)0.0078 (7)
C70.0397 (8)0.0540 (9)0.0529 (9)0.0037 (6)0.0209 (7)0.0007 (7)
C80.0424 (8)0.0491 (8)0.0444 (8)0.0034 (6)0.0183 (6)0.0020 (6)
C90.0413 (8)0.0500 (8)0.0473 (8)0.0052 (6)0.0203 (6)0.0007 (6)
C100.0481 (9)0.0563 (9)0.0561 (9)0.0108 (7)0.0242 (8)0.0105 (7)
C110.0542 (10)0.0554 (10)0.0804 (13)0.0032 (8)0.0271 (9)0.0182 (9)
C120.0471 (9)0.0587 (10)0.0758 (12)0.0038 (8)0.0202 (9)0.0073 (9)
C130.0558 (10)0.0662 (11)0.0544 (9)0.0142 (8)0.0231 (8)0.0173 (8)
C140.0497 (9)0.0546 (9)0.0463 (8)0.0004 (7)0.0118 (7)0.0034 (7)
C150.0639 (12)0.0710 (12)0.0545 (10)0.0106 (9)0.0002 (9)0.0021 (9)
C160.0777 (13)0.0725 (12)0.0595 (11)0.0117 (10)0.0288 (10)0.0048 (9)
N10.0420 (7)0.0696 (9)0.0487 (7)0.0057 (6)0.0165 (6)0.0042 (6)
N20.0498 (7)0.0563 (8)0.0420 (7)0.0026 (6)0.0107 (6)0.0055 (6)
N30.0568 (9)0.0696 (10)0.0468 (8)0.0097 (7)0.0132 (7)0.0115 (7)
O10.0532 (7)0.0599 (7)0.0572 (7)0.0037 (6)0.0068 (6)0.0094 (6)
O20.0522 (7)0.0939 (10)0.0416 (6)0.0115 (7)0.0070 (5)0.0031 (6)
O30.0687 (8)0.0608 (8)0.0779 (9)0.0131 (6)0.0264 (7)0.0248 (7)
O40.0719 (8)0.0625 (7)0.0502 (7)0.0038 (6)0.0286 (6)0.0018 (5)
S10.0440 (2)0.0576 (3)0.0458 (2)0.00842 (17)0.01419 (17)0.00832 (17)
Cl10.0821 (4)0.0971 (4)0.0790 (4)0.0150 (3)0.0247 (3)0.0444 (3)
Geometric parameters (Å, º) top
C1—O41.361 (2)C11—C121.371 (3)
C1—C61.366 (2)C11—H110.9300
C1—C21.376 (2)C12—H120.9300
C2—C31.394 (3)C13—N31.299 (3)
C2—H20.9300C13—Cl11.7146 (18)
C3—C41.369 (2)C14—O11.219 (2)
C3—H30.9300C14—N21.394 (2)
C4—C51.388 (2)C14—C151.487 (2)
C4—S11.7490 (16)C15—H15A0.9600
C5—C61.371 (3)C15—H15B0.9600
C5—H50.9300C15—H15C0.9600
C6—H60.9300C16—O41.414 (2)
C7—C81.385 (2)C16—H16A0.9600
C7—C121.413 (2)C16—H16B0.9600
C7—N11.413 (2)C16—H16C0.9600
C8—C91.391 (2)N1—S11.6419 (14)
C8—H80.9300N1—H10.8600
C9—N21.395 (2)N2—N31.3924 (19)
C9—C101.399 (2)O2—S11.4257 (14)
C10—C111.388 (3)O3—S11.4279 (14)
C10—C131.417 (3)
O4—C1—C6115.95 (14)C11—C12—H12119.8
O4—C1—C2123.80 (16)C7—C12—H12119.8
C6—C1—C2120.25 (16)N3—C13—C10114.44 (15)
C1—C2—C3119.71 (16)N3—C13—Cl1120.08 (15)
C1—C2—H2120.1C10—C13—Cl1125.44 (15)
C3—C2—H2120.1O1—C14—N2118.65 (15)
C4—C3—C2119.87 (15)O1—C14—C15124.73 (17)
C4—C3—H3120.1N2—C14—C15116.61 (15)
C2—C3—H3120.1C14—C15—H15A109.5
C3—C4—C5119.64 (15)C14—C15—H15B109.5
C3—C4—S1120.68 (12)H15A—C15—H15B109.5
C5—C4—S1119.68 (13)C14—C15—H15C109.5
C6—C5—C4120.27 (16)H15A—C15—H15C109.5
C6—C5—H5119.9H15B—C15—H15C109.5
C4—C5—H5119.9O4—C16—H16A109.5
C1—C6—C5120.20 (15)O4—C16—H16B109.5
C1—C6—H6119.9H16A—C16—H16B109.5
C5—C6—H6119.9O4—C16—H16C109.5
C8—C7—C12121.82 (16)H16A—C16—H16C109.5
C8—C7—N1117.46 (15)H16B—C16—H16C109.5
C12—C7—N1120.70 (16)C7—N1—S1124.38 (12)
C7—C8—C9116.57 (15)C7—N1—H1117.8
C7—C8—H8121.7S1—N1—H1117.8
C9—C8—H8121.7N3—N2—C14119.73 (14)
C8—C9—N2131.97 (15)N3—N2—C9111.28 (14)
C8—C9—C10122.10 (16)C14—N2—C9128.90 (13)
N2—C9—C10105.92 (14)C13—N3—N2104.30 (15)
C11—C10—C9120.21 (16)C1—O4—C16118.88 (14)
C11—C10—C13135.73 (17)O2—S1—O3119.31 (9)
C9—C10—C13104.05 (16)O2—S1—N1104.43 (8)
C12—C11—C10118.81 (17)O3—S1—N1108.98 (9)
C12—C11—H11120.6O2—S1—C4109.79 (8)
C10—C11—H11120.6O3—S1—C4107.52 (8)
C11—C12—C7120.40 (17)N1—S1—C4106.07 (7)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1···O1i0.862.192.934 (2)144
C15—H15C···O2i0.962.333.251 (3)159
Symmetry code: (i) x+1, y, z+1.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1···O1i0.862.192.934 (2)144
C15—H15C···O2i0.962.333.251 (3)159
Symmetry code: (i) x+1, y, z+1.
 

Acknowledgements

The authors thank the Unit of Support for Technical and Scientific Research (UATRS, CNRST) for the X-ray measurements and the University Sultan Moulay Slimane, Beni-Mellal, Morocco, for financial support.

References

First citationAbbassi, N., Chicha, H., Rakib, E. M., Hannioui, A., Alaoui, M., Hajjaji, A., Geffken, D., Aiello, C., Gangemi, R., Rosano, C. & Viale, M. (2012). Eur. J. Med. Chem. 57, 240–249.  Web of Science CrossRef CAS PubMed Google Scholar
First citationAbbassi, N., Rakib, E. M., Chicha, H., Bouissane, L., Hannioui, A., Aiello, C., Gangemi, R., Castagnola, P., Rosano, C. & Viale, M. (2014). Arch. Pharm. Chem. Life Sci. 347, 423–431.  Web of Science CrossRef CAS Google Scholar
First citationBouissane, L., El Kazzouli, S., Léonce, S., Pfeiffer, B., Rakib, M. E., Khouili, M. & Guillaumet, G. (2006). Bioorg. Med. Chem. 14, 1078–1088.  Web of Science CrossRef PubMed CAS Google Scholar
First citationBruker (2009). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationBurnett, M. N. & Johnson, C. K. (1996). ORTEPIII. Report ORNL-6895. Oak Ridge National Laboratory, Tennessee, USA.  Google Scholar
First citationFarrugia, L. J. (2012). J. Appl. Cryst. 45, 849–854.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationGaikwad, D. D., Chapolikar, A. D., Devkate, C. G., Warad, K. D., Tayade, A. P., Pawar, R. P. & Domb, A. J. (2015). Eur. J. Med. Chem. 90, 707–731.  Web of Science CrossRef CAS PubMed Google Scholar
First citationJennings, A. & Tennant, M. (2007). J. Chem. Inf. Model. 47, 1829–1838.  Web of Science CrossRef PubMed CAS Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSheldrick, G. M. (2015). Acta Cryst. C71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar
First citationWestrip, S. P. (2010). J. Appl. Cryst. 43, 920–925.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds