organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Crystal structure of 1-[(2,2-di­methyl-1,3-dioxolan-4-yl)meth­yl]-2-(thia­zol-4-yl)-1H-benzimidazole

aMoroccan Foundation for Advanced Science, Innovation and Research (MASCIR), Rabat, Morocco, bLaboratoire de Chimie Organique Hétérocyclique URAC 21, Pôle de Compétence Pharmacochimie, Av. Ibn Battouta, BP 1014, Faculté des Sciences, Université Mohammed V de Rabat, Morocco, and cLaboratoire de Chimie du Solide Appliquée, Faculté des Sciences, Université Mohammed V de Rabat, Avenue Ibn Battouta, BP 1014, Rabat, Morocco
*Correspondence e-mail: h.gueddar@gmail.com

Edited by E. R. T. Tiekink, University of Malaya, Malaysia (Received 3 November 2015; accepted 3 November 2015; online 18 November 2015)

The benzimidazole ring in the title compound, C16H17N3O2S, is almost planar, with the greatest deviation from the mean plane being 0.032 (1) Å. The fused-ring system makes dihedral angles of 19.91 (7) and 24.51 (8)° with the best plane through each of the thia­zol-4-yl and 1,3-dioxolan-4-yl rings, respectively; the latter exhibits an envelope conformation with the methyl­ene C atom being the flap. Finally, the thia­zol-4-yl ring makes a dihedral angle of 33.85 (9)° with the 1,3-dioxolan-4-yl ring. In the crystal, mol­ecules are connected by a pair of C—H⋯π(imidazole) inter­actions to form centrosymmetric aggregates.

1. Related literature

For the use of the title compound as an anthelmintic, see: Brown et al. (1961[Brown, H. D., Matzuk, A. R., Ilves, I. R., Peterson, L. H., Harris, S. A., Sarett, L. H., Egerton, J. R., Yakstis, J. J., Campbell, W. C. & Cuckler, A. C. (1961). J. Am. Chem. Soc. 83, 1764-1765.]); Hennekeuser et al. (1969[Hennekeuser, H. H., Pabst, K., Poeplau, W. & Gerok, W. (1969). Tex. Rep. Biol. Med. 27, 581-586.]); as a food preservative and an agricultural fungicide, see: Arenas & Johnson (1994[Arenas, R. V. & Johnson, N. A. (1994). J. AOAC Int. 77, 710-713.]); for induction of aneuploidy and photogenotoxicity in bacteria and cultured human cells, see: Watanabe-Akanuma et al. (2005[Watanabe-Akanuma, M., Ohta, T. & Sasaki, Y. F. (2005). Toxicol. Lett. 158, 213-219.]); as an anti-angiogenic, see: Cha et al. (2012[Cha, H., Byrom, M., Mead, P., Ellington, A., Wallingford, J. & Marcotte, E. (2012). PLoS Biol. 10, e1001379.]); and as a ligand for transition metal ions, see: Gueddar et al. (2013[Gueddar, H., Bouhfid, R., Essassi, E. M., El Brahmi, N. & El Ammari, L. (2013). Acta Cryst. E69, m5-m6.]).

[Scheme 1]

2. Experimental

2.1. Crystal data

  • C16H17N3O2S

  • Mr = 315.38

  • Triclinic, [P \overline 1]

  • a = 9.3177 (5) Å

  • b = 9.3786 (6) Å

  • c = 9.5418 (6) Å

  • α = 78.739 (4)°

  • β = 78.777 (3)°

  • γ = 73.632 (3)°

  • V = 775.95 (8) Å3

  • Z = 2

  • Mo Kα radiation

  • μ = 0.22 mm−1

  • T = 296 K

  • 0.36 × 0.31 × 0.26 mm

2.2. Data collection

  • Bruker X8 APEX diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 2009[Bruker (2009). APEX2, SAINT-Plus and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]) Tmin = 0.700, Tmax = 0.747

  • 19810 measured reflections

  • 4740 independent reflections

  • 2804 reflections with I > 2σ(I)

  • Rint = 0.037

2.3. Refinement

  • R[F2 > 2σ(F2)] = 0.043

  • wR(F2) = 0.116

  • S = 1.03

  • 4740 reflections

  • 199 parameters

  • H-atom parameters constrained

  • Δρmax = 0.16 e Å−3

  • Δρmin = −0.32 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

Cg1 is the centroid of the N2/N3/C4/C5/C10 ring.

D—H⋯A D—H H⋯A DA D—H⋯A
C13—H13BCg1i 0.97 2.83 3.7543 (18) 160
Symmetry code: (i) -x+1, -y+1, -z+1.

Data collection: APEX2 (Bruker, 2009[Bruker (2009). APEX2, SAINT-Plus and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT-Plus (Bruker, 2009[Bruker (2009). APEX2, SAINT-Plus and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT-Plus; program(s) used to solve structure: SHELXS2014/ (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL2014 (Sheldrick, 2015[Sheldrick, G. M. (2015). Acta Cryst. C71, 3-8.]); molecular graphics: ORTEP-3 for Windows (Farrugia, 2012[Farrugia, L. J. (2012). J. Appl. Cryst. 45, 849-854.]); software used to prepare material for publication: PLATON (Spek, 2009[Spek, A. L. (2009). Acta Cryst. D65, 148-155.]) and publCIF (Westrip,2010[Westrip, S. P. (2010). J. Appl. Cryst. 43, 920-925.]).

Supporting information


Comment top

Thiabendazole [2-(4-thiazolyl)benzimidazole, TBZ], is used as a broad spectrum anthelmintic in various animals (Brown et al., 1961) and in humans (Hennekeuser et al., 1969). TBZ inhibits anaerobic respiration at the level of mitochondrial helminth-specific enzyme. This compound has also been used as a food preservative and an agricultural fungicide (Arenas and Johnson, 1994). Induction of aneuploidy and photogenotoxicity has been reported for TBZ in bacteria and cultured human cells (Watanabe-Akanuma et al., 2005). TBZ has recently been verified to be vascular disrupting agent and thus as a potential complementary therapeutic for use in combination with current anti-angiogenic therapeutics (Cha et al., 2012). TBZ is also an effective ligand to coordinate transition metal ions (Gueddar et al., 2013). The title compound is synthesized by action of TBZ on tosylated solketal under phase transfer catalysis conditions.

The molecule of the title compound is build up from fused five- and six-membered rings linked to a thiazol-4-yl cycle and, via one —CH2— link, to a 2,2-dimethyl-1,3-dioxolan-4-yl group as shown in Fig. 1. The benzimidazole ring is essentially planar with the maximum deviation from the mean plane being 0.032 (1)° at C4 and makes dihedral angles of 19.91 (7) and 24.51 (8)° with the mean plane through the thiazol-4-yl and the 3-dioxolan-4-yl rings, respectively. The dihedral angle between the thiazol-4-yl cycle and the 3-dioxolan-4-yl ring is of 33.85 (9)°. Furthermore, the five-membered ring (O1O2C12C13C14) adopts an envelope conformations on C13 as indicated by the total puckering amplitude Q2 = 0.381 (2) Å and spherical polar angle φ2 = 72.2 (2)°. In the crystal, the molecules are held together by C13–H13B···π interactions involving the imidazole ring.

Related literature top

For the use of the title compound as an anthelmintic, see: Brown et al. (1961); Hennekeuser et al. (1969); as a food preservative and an agricultural fungicide, see: Arenas & Johnson (1994); for induction of aneuploidy and photogenotoxicity in bacteria and cultured human cells, see: Watanabe-Akanuma et al. (2005); as an anti-angiogenic, see: Cha et al. (2012); and as a ligand for transition metal ions, see: Gueddar et al. (2013).

Experimental top

To a solution of thiabendazole (1 g, 5 × 10 -3 mol.) dissolved in DMF (20 ml) was added potassium carbonate (0.83 g, 6 × 10 -3 mol.), tetra-n-butylammonium bromide (0.13 g, 0.4 × 10 -3 mol) and tosylated solketal (2.79 g, 10 × 10 -3 mol). The mixture was heated for 48 h. After the completion of the reaction (as monitored by TLC), the inorganic material was filtered and the solvent was removed under reduced pressure. The residue obtained was recrystallized from ethanol to afford the title compound as colourless crystals.

Refinement top

The H atoms were located in a difference map and treated as riding with C—H = 0.93 Å (aromatic), C—H = 0.97 (methylene), C—H = 0.98 (methine) and C—H = 0.96 Å (methyl), and with Uiso(H) = 1.2 Ueq(aromatic, methine and methylene) and Uiso(H) = 1.5 Ueq(methyl). The reflections (0 1 0) and (1 0 0), which were affected by the beam-stop, were removed from the final cycles of refinement owing to poor agreement.

Structure description top

Thiabendazole [2-(4-thiazolyl)benzimidazole, TBZ], is used as a broad spectrum anthelmintic in various animals (Brown et al., 1961) and in humans (Hennekeuser et al., 1969). TBZ inhibits anaerobic respiration at the level of mitochondrial helminth-specific enzyme. This compound has also been used as a food preservative and an agricultural fungicide (Arenas and Johnson, 1994). Induction of aneuploidy and photogenotoxicity has been reported for TBZ in bacteria and cultured human cells (Watanabe-Akanuma et al., 2005). TBZ has recently been verified to be vascular disrupting agent and thus as a potential complementary therapeutic for use in combination with current anti-angiogenic therapeutics (Cha et al., 2012). TBZ is also an effective ligand to coordinate transition metal ions (Gueddar et al., 2013). The title compound is synthesized by action of TBZ on tosylated solketal under phase transfer catalysis conditions.

The molecule of the title compound is build up from fused five- and six-membered rings linked to a thiazol-4-yl cycle and, via one —CH2— link, to a 2,2-dimethyl-1,3-dioxolan-4-yl group as shown in Fig. 1. The benzimidazole ring is essentially planar with the maximum deviation from the mean plane being 0.032 (1)° at C4 and makes dihedral angles of 19.91 (7) and 24.51 (8)° with the mean plane through the thiazol-4-yl and the 3-dioxolan-4-yl rings, respectively. The dihedral angle between the thiazol-4-yl cycle and the 3-dioxolan-4-yl ring is of 33.85 (9)°. Furthermore, the five-membered ring (O1O2C12C13C14) adopts an envelope conformations on C13 as indicated by the total puckering amplitude Q2 = 0.381 (2) Å and spherical polar angle φ2 = 72.2 (2)°. In the crystal, the molecules are held together by C13–H13B···π interactions involving the imidazole ring.

For the use of the title compound as an anthelmintic, see: Brown et al. (1961); Hennekeuser et al. (1969); as a food preservative and an agricultural fungicide, see: Arenas & Johnson (1994); for induction of aneuploidy and photogenotoxicity in bacteria and cultured human cells, see: Watanabe-Akanuma et al. (2005); as an anti-angiogenic, see: Cha et al. (2012); and as a ligand for transition metal ions, see: Gueddar et al. (2013).

Computing details top

Data collection: APEX2 (Bruker, 2009); cell refinement: SAINT-Plus (Bruker, 2009); data reduction: SAINT-Plus (Bruker, 2009); program(s) used to solve structure: SHELXS2014/ (Sheldrick, 2008); program(s) used to refine structure: SHELXL2014 (Sheldrick, 2015); molecular graphics: ORTEP-3 for Windows (Farrugia, 2012); software used to prepare material for publication: PLATON (Spek, 2009) and publCIF (Westrip,2010).

Figures top
[Figure 1] Fig. 1. Molecular structure of the title compound with the atom-labelling scheme. Displacement ellipsoids are drawn at the 50% probability level. H atoms are represented as small circles.
1-[(2,2-Dimethyl-1,3-dioxolan-4-yl)methyl]-2-(thiazol-4-yl)-1H-benzimidazole top
Crystal data top
C16H17N3O2SZ = 2
Mr = 315.38F(000) = 332
Triclinic, P1Dx = 1.350 Mg m3
a = 9.3177 (5) ÅMo Kα radiation, λ = 0.71073 Å
b = 9.3786 (6) ÅCell parameters from 4740 reflections
c = 9.5418 (6) Åθ = 2.8–30.5°
α = 78.739 (4)°µ = 0.22 mm1
β = 78.777 (3)°T = 296 K
γ = 73.632 (3)°Block, colourless
V = 775.95 (8) Å30.36 × 0.31 × 0.26 mm
Data collection top
Bruker X8 APEX
diffractometer
4740 independent reflections
Radiation source: fine-focus sealed tube2804 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.037
φ and ω scansθmax = 30.5°, θmin = 2.8°
Absorption correction: multi-scan
(SADABS; Bruker, 2009)
h = 1313
Tmin = 0.700, Tmax = 0.747k = 1313
19810 measured reflectionsl = 1313
Refinement top
Refinement on F20 restraints
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.043H-atom parameters constrained
wR(F2) = 0.116 w = 1/[σ2(Fo2) + (0.0449P)2 + 0.0871P]
where P = (Fo2 + 2Fc2)/3
S = 1.03(Δ/σ)max < 0.001
4740 reflectionsΔρmax = 0.16 e Å3
199 parametersΔρmin = 0.32 e Å3
Crystal data top
C16H17N3O2Sγ = 73.632 (3)°
Mr = 315.38V = 775.95 (8) Å3
Triclinic, P1Z = 2
a = 9.3177 (5) ÅMo Kα radiation
b = 9.3786 (6) ŵ = 0.22 mm1
c = 9.5418 (6) ÅT = 296 K
α = 78.739 (4)°0.36 × 0.31 × 0.26 mm
β = 78.777 (3)°
Data collection top
Bruker X8 APEX
diffractometer
4740 independent reflections
Absorption correction: multi-scan
(SADABS; Bruker, 2009)
2804 reflections with I > 2σ(I)
Tmin = 0.700, Tmax = 0.747Rint = 0.037
19810 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0430 restraints
wR(F2) = 0.116H-atom parameters constrained
S = 1.03Δρmax = 0.16 e Å3
4740 reflectionsΔρmin = 0.32 e Å3
199 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
C10.9210 (2)0.0317 (2)0.68651 (19)0.0621 (5)
H11.01930.03860.63910.074*
C20.69556 (19)0.05253 (19)0.84926 (17)0.0567 (4)
H20.61880.07140.92300.068*
C30.67345 (17)0.04071 (16)0.72279 (15)0.0455 (3)
C40.52432 (17)0.11882 (16)0.68306 (15)0.0431 (3)
C50.28330 (18)0.20058 (17)0.69744 (17)0.0480 (4)
C60.12767 (19)0.2376 (2)0.7404 (2)0.0625 (5)
H60.08700.22270.83750.075*
C70.0354 (2)0.2967 (2)0.6362 (2)0.0700 (5)
H70.06900.32180.66360.084*
C80.0949 (2)0.3197 (2)0.4904 (2)0.0672 (5)
H80.02920.35980.42250.081*
C90.2485 (2)0.28454 (19)0.44413 (19)0.0569 (4)
H90.28830.29970.34670.068*
C100.34127 (17)0.22519 (16)0.55071 (16)0.0450 (3)
C110.60240 (18)0.16781 (16)0.40757 (15)0.0454 (3)
H11A0.55010.16120.33150.055*
H11B0.68430.07760.41790.055*
C120.66868 (18)0.30373 (17)0.36290 (16)0.0477 (4)
H120.71950.31500.43940.057*
C130.55626 (19)0.44806 (18)0.31814 (17)0.0535 (4)
H13A0.45950.45620.38020.064*
H13B0.59320.53480.31880.064*
C140.69603 (17)0.36581 (17)0.11179 (16)0.0488 (4)
C150.6876 (2)0.2593 (2)0.01678 (19)0.0673 (5)
H15A0.78770.21350.02700.101*
H15B0.62770.31340.05720.101*
H15C0.64200.18270.07380.101*
C160.7744 (2)0.4856 (2)0.0327 (2)0.0702 (5)
H16A0.87490.43890.00940.105*
H16B0.77930.54800.09930.105*
H16C0.71870.54590.04220.105*
N10.80427 (15)0.05273 (16)0.62983 (15)0.0575 (4)
N20.40020 (14)0.13467 (15)0.77840 (13)0.0487 (3)
N30.49717 (14)0.17320 (13)0.54286 (12)0.0428 (3)
O10.77265 (12)0.28446 (12)0.23223 (11)0.0532 (3)
O20.54583 (12)0.43257 (12)0.17557 (11)0.0528 (3)
S10.88238 (5)0.12939 (6)0.85352 (5)0.06612 (16)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
C10.0568 (10)0.0661 (12)0.0570 (10)0.0168 (9)0.0043 (8)0.0032 (9)
C20.0634 (10)0.0589 (10)0.0394 (8)0.0103 (8)0.0008 (7)0.0019 (7)
C30.0575 (9)0.0398 (8)0.0378 (8)0.0142 (7)0.0019 (7)0.0050 (6)
C40.0582 (9)0.0353 (7)0.0353 (7)0.0151 (6)0.0030 (6)0.0028 (6)
C50.0571 (9)0.0408 (8)0.0460 (8)0.0155 (7)0.0027 (7)0.0067 (7)
C60.0574 (10)0.0646 (11)0.0609 (11)0.0161 (8)0.0029 (8)0.0092 (9)
C70.0560 (10)0.0694 (13)0.0828 (14)0.0143 (9)0.0089 (10)0.0110 (11)
C80.0697 (12)0.0584 (11)0.0753 (13)0.0103 (9)0.0268 (10)0.0070 (9)
C90.0713 (11)0.0475 (9)0.0522 (10)0.0137 (8)0.0138 (8)0.0055 (7)
C100.0560 (9)0.0344 (7)0.0455 (8)0.0143 (6)0.0063 (7)0.0053 (6)
C110.0600 (9)0.0392 (8)0.0350 (7)0.0138 (7)0.0013 (6)0.0045 (6)
C120.0630 (9)0.0460 (9)0.0358 (7)0.0202 (7)0.0048 (7)0.0032 (6)
C130.0705 (10)0.0408 (8)0.0465 (9)0.0163 (8)0.0016 (8)0.0071 (7)
C140.0540 (9)0.0481 (9)0.0383 (8)0.0113 (7)0.0030 (7)0.0013 (7)
C150.0823 (13)0.0676 (12)0.0505 (10)0.0155 (10)0.0057 (9)0.0144 (9)
C160.0817 (13)0.0655 (12)0.0573 (11)0.0289 (10)0.0011 (9)0.0091 (9)
N10.0523 (8)0.0596 (9)0.0537 (8)0.0172 (7)0.0055 (6)0.0095 (7)
N20.0546 (7)0.0489 (7)0.0405 (7)0.0155 (6)0.0004 (6)0.0048 (6)
N30.0534 (7)0.0380 (7)0.0354 (6)0.0131 (5)0.0029 (5)0.0029 (5)
O10.0508 (6)0.0579 (7)0.0422 (6)0.0102 (5)0.0041 (5)0.0049 (5)
O20.0562 (6)0.0514 (6)0.0429 (6)0.0066 (5)0.0048 (5)0.0014 (5)
S10.0670 (3)0.0732 (3)0.0465 (3)0.0051 (2)0.0116 (2)0.0032 (2)
Geometric parameters (Å, º) top
C1—N11.295 (2)C10—N31.3879 (19)
C1—S11.7030 (18)C11—N31.4612 (18)
C1—H10.9300C11—C121.522 (2)
C2—C31.359 (2)C11—H11A0.9700
C2—S11.6913 (18)C11—H11B0.9700
C2—H20.9300C12—O11.4300 (17)
C3—N11.3794 (19)C12—C131.504 (2)
C3—C41.461 (2)C12—H120.9800
C4—N21.3167 (18)C13—O21.4205 (19)
C4—N31.3807 (18)C13—H13A0.9700
C5—N21.388 (2)C13—H13B0.9700
C5—C61.390 (2)C14—O21.4299 (18)
C5—C101.398 (2)C14—O11.4431 (18)
C6—C71.372 (3)C14—C151.501 (2)
C6—H60.9300C14—C161.510 (2)
C7—C81.393 (3)C15—H15A0.9600
C7—H70.9300C15—H15B0.9600
C8—C91.378 (3)C15—H15C0.9600
C8—H80.9300C16—H16A0.9600
C9—C101.393 (2)C16—H16B0.9600
C9—H90.9300C16—H16C0.9600
N1—C1—S1115.57 (13)O1—C12—C11108.49 (12)
N1—C1—H1122.2C13—C12—C11114.15 (13)
S1—C1—H1122.2O1—C12—H12110.6
C3—C2—S1110.39 (12)C13—C12—H12110.6
C3—C2—H2124.8C11—C12—H12110.6
S1—C2—H2124.8O2—C13—C12101.61 (12)
C2—C3—N1114.69 (14)O2—C13—H13A111.4
C2—C3—C4123.77 (14)C12—C13—H13A111.4
N1—C3—C4121.50 (13)O2—C13—H13B111.4
N2—C4—N3113.24 (13)C12—C13—H13B111.4
N2—C4—C3122.47 (13)H13A—C13—H13B109.3
N3—C4—C3124.13 (13)O2—C14—O1104.86 (11)
N2—C5—C6130.26 (15)O2—C14—C15108.45 (13)
N2—C5—C10110.23 (13)O1—C14—C15110.33 (13)
C6—C5—C10119.47 (16)O2—C14—C16110.57 (13)
C7—C6—C5118.54 (17)O1—C14—C16109.05 (13)
C7—C6—H6120.7C15—C14—C16113.24 (15)
C5—C6—H6120.7C14—C15—H15A109.5
C6—C7—C8121.29 (17)C14—C15—H15B109.5
C6—C7—H7119.4H15A—C15—H15B109.5
C8—C7—H7119.4C14—C15—H15C109.5
C9—C8—C7121.69 (18)H15A—C15—H15C109.5
C9—C8—H8119.2H15B—C15—H15C109.5
C7—C8—H8119.2C14—C16—H16A109.5
C8—C9—C10116.57 (17)C14—C16—H16B109.5
C8—C9—H9121.7H16A—C16—H16B109.5
C10—C9—H9121.7C14—C16—H16C109.5
N3—C10—C9131.86 (14)H16A—C16—H16C109.5
N3—C10—C5105.65 (13)H16B—C16—H16C109.5
C9—C10—C5122.43 (15)C1—N1—C3109.91 (14)
N3—C11—C12113.34 (12)C4—N2—C5104.91 (12)
N3—C11—H11A108.9C4—N3—C10105.96 (12)
C12—C11—H11A108.9C4—N3—C11129.77 (13)
N3—C11—H11B108.9C10—N3—C11124.02 (12)
C12—C11—H11B108.9C12—O1—C14108.64 (11)
H11A—C11—H11B107.7C13—O2—C14106.22 (12)
O1—C12—C13101.94 (12)C2—S1—C189.43 (8)
Hydrogen-bond geometry (Å, º) top
Cg1 is the centroid of the N2/N3/C4/C5/C10 ring.
D—H···AD—HH···AD···AD—H···A
C13—H13B···Cg1i0.972.833.7543 (18)160
Symmetry code: (i) x+1, y+1, z+1.
Hydrogen-bond geometry (Å, º) top
Cg1 is the centroid of the N2/N3/C4/C5/C10 ring.
D—H···AD—HH···AD···AD—H···A
C13—H13B···Cg1i0.972.833.7543 (18)160
Symmetry code: (i) x+1, y+1, z+1.
 

Acknowledgements

The authors thank the Unit of Support for Technical and Scientific Research (UATRS, CNRST) for the X-ray measurements, and the University Mohammed V, Rabat, Morocco, for financial support.

References

First citationArenas, R. V. & Johnson, N. A. (1994). J. AOAC Int. 77, 710–713.  CAS PubMed Web of Science Google Scholar
First citationBrown, H. D., Matzuk, A. R., Ilves, I. R., Peterson, L. H., Harris, S. A., Sarett, L. H., Egerton, J. R., Yakstis, J. J., Campbell, W. C. & Cuckler, A. C. (1961). J. Am. Chem. Soc. 83, 1764–1765.  CrossRef CAS Web of Science Google Scholar
First citationBruker (2009). APEX2, SAINT-Plus and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationCha, H., Byrom, M., Mead, P., Ellington, A., Wallingford, J. & Marcotte, E. (2012). PLoS Biol. 10, e1001379.  Web of Science CrossRef PubMed Google Scholar
First citationFarrugia, L. J. (2012). J. Appl. Cryst. 45, 849–854.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationGueddar, H., Bouhfid, R., Essassi, E. M., El Brahmi, N. & El Ammari, L. (2013). Acta Cryst. E69, m5–m6.  CSD CrossRef IUCr Journals Google Scholar
First citationHennekeuser, H. H., Pabst, K., Poeplau, W. & Gerok, W. (1969). Tex. Rep. Biol. Med. 27, 581–586.  PubMed Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSheldrick, G. M. (2015). Acta Cryst. C71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar
First citationSpek, A. L. (2009). Acta Cryst. D65, 148–155.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationWatanabe-Akanuma, M., Ohta, T. & Sasaki, Y. F. (2005). Toxicol. Lett. 158, 213–219.  Web of Science PubMed CAS Google Scholar
First citationWestrip, S. P. (2010). J. Appl. Cryst. 43, 920–925.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds