organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Crystal structure of 2-amino-4-(4-chloro­phen­yl)-1-(4-methyl­phen­yl)-5-oxo-1,4,5,6,7,8-hexa­hydro­quinoline-3-carbo­nitrile

aChemistry and Environmental Division, Manchester Metropolitan University, Manchester M1 5GD, England, bChemistry Department, Faculty of Science, Minia University, 61519 El-Minia, Egypt, cDepartment of Physics, Faculty of Sciences, Erciyes University, 38039 Kayseri, Turkey, dDepartment of Chemistry, Keene State College, 229 Main Street, Keene, NH 03435-2001, USA, eChemistry Department, Faculty of Science, Sohag University, 82524 Sohag, Egypt, and fKirkuk University, College of Science, Department of Chemistry, Kirkuk, Iraq
*Correspondence e-mail: shaabankamel@yahoo.com

Edited by E. R. T. Tiekink, University of Malaya, Malaysia (Received 9 November 2015; accepted 10 November 2015; online 14 November 2015)

In the title compound, C23H20ClN3O, each of the cyclo­hexene and 1,4-di­hydro­pyridine rings of the 1,4,5,6,7,8-hexa­hydro­quinoline ring system adopts a twisted-boat conformation. The dihedral angle between the two benzene rings is 11.52 (7)°. In the crystal, mol­ecules are linked through a pair of amino–nitrile N—H⋯N hydrogen bonds, forming inversion dimers. These assemble into a three-dimensional network via C—H⋯O and C—H⋯π inter­actions.

1. Related literature

For the synthesis and pharmaceutical applications of di­hydro­pyridines, see: Kumar & Maurya (2007[Kumar, A. & Maurya, R. A. (2007). Tetrahedron, 63, 1946-1952.]); Kendre et al. (2008[Kendre, D. B., Toche, R. B. & Jachak, M. N. (2008). J. Heterocycl. Chem. 45, 667-671.]); Heydari et al. (2009[Heydari, A., Khaksar, S., Tajbakhsh, M. & Bijanzadeh, H. R. (2009). J. Fluor. Chem. 130, 609-614.]).

[Scheme 1]

2. Experimental

2.1. Crystal data

  • C23H20ClN3O

  • Mr = 389.87

  • Monoclinic, P 21 /c

  • a = 8.7759 (3) Å

  • b = 10.6399 (3) Å

  • c = 20.7929 (7) Å

  • β = 93.842 (3)°

  • V = 1937.17 (11) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.22 mm−1

  • T = 293 K

  • 0.46 × 0.42 × 0.38 mm

2.2. Data collection

  • Agilent Xcalibur Eos Gemini diffractometer

  • Absorption correction: multi-scan (CrysAlis PRO; Agilent, 2014[Agilent (2014). CrysAlis PRO. Agilent Technologies Ltd, Yarnton, England.]) Tmin = 0.841, Tmax = 1.000

  • 15538 measured reflections

  • 6453 independent reflections

  • 4853 reflections with I > 2σ(I)

  • Rint = 0.027

2.3. Refinement

  • R[F2 > 2σ(F2)] = 0.053

  • wR(F2) = 0.144

  • S = 1.04

  • 6453 reflections

  • 254 parameters

  • H-atom parameters constrained

  • Δρmax = 0.50 e Å−3

  • Δρmin = −0.48 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

Cg3 and Cg4 are the centroids of the methyl- and chloro-benzene rings (C10–C15 and C18–C23), respectively.

D—H⋯A D—H H⋯A DA D—H⋯A
N2—H2N⋯N3i 0.91 2.17 3.013 (2) 153
C14—H14⋯O1ii 0.93 2.58 3.4577 (19) 156
C3—H3ACg4iii 0.97 2.93 3.7210 (16) 139
C16—H16BCg3iv 0.96 2.81 3.6464 (18) 146
Symmetry codes: (i) -x, -y+2, -z+1; (ii) x, y-1, z; (iii) x+1, y, z; (iv) -x+1, -y+1, -z+1.

Data collection: CrysAlis PRO (Agilent, 2014[Agilent (2014). CrysAlis PRO. Agilent Technologies Ltd, Yarnton, England.]); cell refinement: CrysAlis PRO; data reduction: CrysAlis PRO; program(s) used to solve structure: SHELXS2014 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL2014 (Sheldrick, 2015[Sheldrick, G. M. (2015). Acta Cryst. C71, 3-8.]); molecular graphics: ORTEP-3 for Windows (Farrugia, 2012[Farrugia, L. J. (2012). J. Appl. Cryst. 45, 849-854.]); software used to prepare material for publication: PLATON (Spek, 2009[Spek, A. L. (2009). Acta Cryst. D65, 148-155.]).

Supporting information


Comment top

Dihydropiridines (DHP's) are a significant class of heterocyclic molecules due to their important biological activities (Kumar & Maurya, 2007). Dihydropyridine drugs, such as nifedipine, nicardipine and amlodipine are well known as cardiovascular agents for the treatment of hypertension (Kendre et al., 2008), calcium channel modulators and for cardiovascular disease treatment (Heydari et al., 2009). In this context, we report here the synthesis and crystal structure of the title compound.

In the title compound (Fig. 1), the cyclohexene (C1–C6) and 1,4-dihydropyridine (N1/C5–C9) rings of the 1,4,5,6,7,8-hexahydroquinoline ring system (N1/C1–C9) each adopt a twisted-boat conformation (the puckering parameters are QT = 0.4813 (16) Å, θ = 123.31 (18)°, φ = 283.9 (2)° and QT = 0.2182 (14) Å, θ = 103.7 (4)°, φ = 353.5 (4)°, respectively). The dihedral angle between the methyl- and chloro-benzene rings is 11.52 (7)°.

In the crystal, a pair of N—H···N intermolecular hydrogen bonds connects two molecules by an R22(12) ring motif (Table 1), forming a centrosymmetric dimer (Fig. 2). Weak C—H···O and C—H···π interactions connect the dimers to each other, forming a three-dimensional network.

Related literature top

For the synthesis and pharmaceutical applications of dihydropyridines, see: Kumar & Maurya (2007); Kendre et al. (2008); Heydari et al. (2009).

Experimental top

To a solution of 1.3-cyclohexanedione (3.36 g, 0.03 mol) in 40 ml ethanol, p-toluidine (3.21 g, 0.03 mol) and catalytic a amount of triethylamine were added. The mixture was heated under reflux for 3 h. (4-Chlorobenzylidene)malononitrile (5.68 g, 0.03 mol) was added to the reaction mixture and refluxed for another 3 h. The separated solid was filtered off while hot, dried and crystallized from DMF as colourless crystals. Yield: 49.7%; m.p. 573 K, IR (λmax, cm-1): 3472, 3325 (NH2), 3209, 3032 (CHarom.), 2972–2879 (CHaliph.), 2177 (CN), 1631 (C=O); 1H-NMR (DMSO-d6), δ ppm: 7.39–7.29 (m, 8H, CHarom.), 5.32 (s, 2H, NH2, masked by D2O), 4.51 (s, 1H, CH), 2.4 (s, 3H, CH3), 2.23–2.19 (t, 2H, CH2—C=O), 1.93–1.81 (t, 2H, CH2—C=C), 1.67–1.62 (m, 2H, CH2-CH2-CH2); 13C-NMR (DMSO-d6), δ ppm: 195.45, 153.14, 151.70, 146.07, 139.86, 133.96, 131.26, 131.03, 130.10, 129.13, 128.79, 121.78, 112.72, 60.26, 36.45, 36.21, 28.23, 21.22, 21.06.

Refinement top

All H atoms were placed in calculated positions with N2—H1N = 0.90 Å, N2—H2N = 0.91 Å, and C—H = 0.93 - 1.04 Å, and refined as riding with Uiso(H) = 1.2 or 1.5Ueq(C, N).

Structure description top

Dihydropiridines (DHP's) are a significant class of heterocyclic molecules due to their important biological activities (Kumar & Maurya, 2007). Dihydropyridine drugs, such as nifedipine, nicardipine and amlodipine are well known as cardiovascular agents for the treatment of hypertension (Kendre et al., 2008), calcium channel modulators and for cardiovascular disease treatment (Heydari et al., 2009). In this context, we report here the synthesis and crystal structure of the title compound.

In the title compound (Fig. 1), the cyclohexene (C1–C6) and 1,4-dihydropyridine (N1/C5–C9) rings of the 1,4,5,6,7,8-hexahydroquinoline ring system (N1/C1–C9) each adopt a twisted-boat conformation (the puckering parameters are QT = 0.4813 (16) Å, θ = 123.31 (18)°, φ = 283.9 (2)° and QT = 0.2182 (14) Å, θ = 103.7 (4)°, φ = 353.5 (4)°, respectively). The dihedral angle between the methyl- and chloro-benzene rings is 11.52 (7)°.

In the crystal, a pair of N—H···N intermolecular hydrogen bonds connects two molecules by an R22(12) ring motif (Table 1), forming a centrosymmetric dimer (Fig. 2). Weak C—H···O and C—H···π interactions connect the dimers to each other, forming a three-dimensional network.

For the synthesis and pharmaceutical applications of dihydropyridines, see: Kumar & Maurya (2007); Kendre et al. (2008); Heydari et al. (2009).

Computing details top

Data collection: CrysAlis PRO (Agilent, 2014); cell refinement: CrysAlis PRO (Agilent, 2014); data reduction: CrysAlis PRO (Agilent, 2014); program(s) used to solve structure: SHELXS2014 (Sheldrick, 2008); program(s) used to refine structure: SHELXL2014 (Sheldrick, 2015); molecular graphics: ORTEP-3 for Windows (Farrugia, 2012); software used to prepare material for publication: PLATON (Spek, 2009).

Figures top
[Figure 1] Fig. 1. Molecular structure of the title compound with displacement ellipsoids drawn at the 30% probability level.
[Figure 2] Fig. 2. View of the dimers formed by N—H···N hydrogen bonds down the b axis.
2-Amino-4-(4-chlorophenyl)-1-(4-methylphenyl)-5-oxo-1,4,5,6,7,8-hexahydroquinoline-3-carbonitrile top
Crystal data top
C23H20ClN3OF(000) = 816
Mr = 389.87Dx = 1.337 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ybcCell parameters from 4336 reflections
a = 8.7759 (3) Åθ = 3.5–32.1°
b = 10.6399 (3) ŵ = 0.22 mm1
c = 20.7929 (7) ÅT = 293 K
β = 93.842 (3)°Irregular, colourless
V = 1937.17 (11) Å30.46 × 0.42 × 0.38 mm
Z = 4
Data collection top
Agilent Xcalibur Eos Gemini
diffractometer
6453 independent reflections
Radiation source: Enhance (Mo) X-ray Source4853 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.027
Detector resolution: 16.0416 pixels mm-1θmax = 32.8°, θmin = 3.5°
ω scansh = 1312
Absorption correction: multi-scan
(CrysAlis PRO; Agilent, 2014)
k = 1513
Tmin = 0.841, Tmax = 1.000l = 3129
15538 measured reflections
Refinement top
Refinement on F20 restraints
Least-squares matrix: fullHydrogen site location: mixed
R[F2 > 2σ(F2)] = 0.053H-atom parameters constrained
wR(F2) = 0.144 w = 1/[σ2(Fo2) + (0.0563P)2 + 0.8789P]
where P = (Fo2 + 2Fc2)/3
S = 1.04(Δ/σ)max < 0.001
6453 reflectionsΔρmax = 0.50 e Å3
254 parametersΔρmin = 0.48 e Å3
Crystal data top
C23H20ClN3OV = 1937.17 (11) Å3
Mr = 389.87Z = 4
Monoclinic, P21/cMo Kα radiation
a = 8.7759 (3) ŵ = 0.22 mm1
b = 10.6399 (3) ÅT = 293 K
c = 20.7929 (7) Å0.46 × 0.42 × 0.38 mm
β = 93.842 (3)°
Data collection top
Agilent Xcalibur Eos Gemini
diffractometer
6453 independent reflections
Absorption correction: multi-scan
(CrysAlis PRO; Agilent, 2014)
4853 reflections with I > 2σ(I)
Tmin = 0.841, Tmax = 1.000Rint = 0.027
15538 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0530 restraints
wR(F2) = 0.144H-atom parameters constrained
S = 1.04Δρmax = 0.50 e Å3
6453 reflectionsΔρmin = 0.48 e Å3
254 parameters
Special details top

Geometry. Bond distances, angles etc. have been calculated using the rounded fractional coordinates. All su's are estimated from the variances of the (full) variance-covariance matrix. The cell e.s.d.'s are taken into account in the estimation of distances, angles and torsion angles

Refinement. Refinement on F2 for ALL reflections except those flagged by the user for potential systematic errors. Weighted R-factors wR and all goodnesses of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The observed criterion of F2 > σ(F2) is used only for calculating -R-factor-obs etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R-factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Cl10.06881 (6)1.08244 (7)0.09288 (3)0.0623 (2)
O10.50713 (13)1.30415 (10)0.28910 (6)0.0326 (3)
N10.45035 (14)0.91350 (11)0.39374 (6)0.0244 (3)
N20.26036 (17)0.87555 (14)0.46421 (7)0.0396 (4)
N30.00227 (17)1.12750 (16)0.44726 (8)0.0423 (5)
C10.56260 (16)1.20335 (12)0.30796 (7)0.0232 (3)
C20.72897 (16)1.17417 (14)0.30258 (8)0.0276 (4)
C30.75310 (17)1.03530 (14)0.29019 (8)0.0291 (4)
C40.69031 (16)0.95720 (14)0.34366 (8)0.0282 (4)
C50.53218 (15)0.99782 (12)0.35801 (6)0.0213 (3)
C60.47011 (15)1.10911 (12)0.33829 (6)0.0206 (3)
C70.30491 (15)1.14205 (12)0.34566 (6)0.0212 (3)
C80.24453 (15)1.06023 (13)0.39764 (6)0.0221 (3)
C90.31330 (16)0.95091 (13)0.41841 (7)0.0236 (3)
C100.50999 (16)0.78952 (12)0.40891 (7)0.0223 (3)
C110.61730 (19)0.77207 (14)0.45979 (8)0.0315 (4)
C120.67482 (19)0.65278 (16)0.47317 (8)0.0340 (4)
C130.62493 (17)0.54973 (14)0.43663 (7)0.0268 (4)
C140.51702 (19)0.56892 (14)0.38571 (7)0.0296 (4)
C150.45943 (17)0.68829 (14)0.37163 (7)0.0270 (4)
C160.6846 (2)0.42010 (16)0.45269 (8)0.0369 (5)
C170.10810 (17)1.09671 (14)0.42500 (7)0.0267 (4)
C180.21047 (15)1.12918 (13)0.28167 (7)0.0215 (3)
C190.12277 (17)1.22793 (14)0.25608 (8)0.0290 (4)
C200.03681 (18)1.21482 (16)0.19772 (8)0.0351 (4)
C210.03801 (18)1.10148 (18)0.16578 (8)0.0341 (5)
C220.12380 (19)1.00150 (17)0.19015 (8)0.0334 (4)
C230.21025 (17)1.01654 (14)0.24800 (7)0.0284 (4)
H1N0.312600.805300.475500.0480*
H2A0.786201.198300.342200.0330*
H2B0.767201.222700.267600.0330*
H2N0.171300.895100.481900.0480*
H3A0.861301.018500.288100.0350*
H3B0.701901.012100.249100.0350*
H4A0.688200.869400.331000.0340*
H4B0.757600.965100.382400.0340*
H70.296601.235400.360000.0250*
H110.650900.840100.485000.0380*
H120.748000.641700.507200.0410*
H140.482700.500900.360600.0350*
H150.387300.700000.337300.0320*
H16A0.637500.360500.422900.0550*
H16B0.661200.398500.495800.0550*
H16C0.793300.418600.449600.0550*
H190.121401.303900.278200.0350*
H200.020701.281700.180500.0420*
H220.123700.925400.168200.0400*
H230.269200.949900.264500.0340*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Cl10.0483 (3)0.0933 (5)0.0424 (3)0.0171 (3)0.0178 (2)0.0039 (3)
O10.0312 (6)0.0215 (5)0.0457 (6)0.0005 (4)0.0073 (5)0.0058 (4)
N10.0234 (6)0.0192 (5)0.0318 (6)0.0035 (4)0.0106 (4)0.0033 (4)
N20.0389 (8)0.0354 (7)0.0476 (8)0.0117 (6)0.0251 (6)0.0171 (6)
N30.0319 (7)0.0531 (9)0.0439 (8)0.0113 (7)0.0168 (6)0.0056 (7)
C10.0228 (6)0.0203 (6)0.0267 (6)0.0028 (5)0.0036 (5)0.0022 (5)
C20.0213 (6)0.0253 (6)0.0370 (8)0.0037 (5)0.0069 (5)0.0027 (6)
C30.0231 (7)0.0277 (7)0.0377 (8)0.0004 (5)0.0121 (6)0.0016 (6)
C40.0222 (6)0.0250 (6)0.0383 (8)0.0032 (5)0.0095 (5)0.0040 (6)
C50.0206 (6)0.0200 (6)0.0238 (6)0.0014 (5)0.0058 (5)0.0011 (5)
C60.0190 (6)0.0192 (6)0.0242 (6)0.0001 (4)0.0050 (4)0.0012 (5)
C70.0199 (6)0.0179 (5)0.0264 (6)0.0012 (5)0.0068 (5)0.0016 (5)
C80.0210 (6)0.0237 (6)0.0224 (6)0.0007 (5)0.0065 (5)0.0017 (5)
C90.0229 (6)0.0235 (6)0.0253 (6)0.0004 (5)0.0084 (5)0.0001 (5)
C100.0235 (6)0.0197 (6)0.0242 (6)0.0023 (5)0.0063 (5)0.0025 (5)
C110.0362 (8)0.0255 (7)0.0319 (7)0.0001 (6)0.0049 (6)0.0045 (6)
C120.0364 (8)0.0326 (8)0.0315 (7)0.0062 (6)0.0081 (6)0.0014 (6)
C130.0302 (7)0.0257 (6)0.0249 (6)0.0060 (5)0.0054 (5)0.0042 (5)
C140.0371 (8)0.0230 (6)0.0282 (7)0.0024 (6)0.0007 (6)0.0032 (5)
C150.0296 (7)0.0259 (7)0.0250 (6)0.0034 (5)0.0016 (5)0.0003 (5)
C160.0449 (10)0.0304 (8)0.0357 (8)0.0127 (7)0.0049 (7)0.0060 (6)
C170.0242 (7)0.0304 (7)0.0260 (6)0.0031 (5)0.0054 (5)0.0021 (5)
C180.0184 (6)0.0213 (6)0.0255 (6)0.0017 (5)0.0063 (5)0.0028 (5)
C190.0257 (7)0.0232 (6)0.0385 (8)0.0037 (5)0.0059 (6)0.0060 (6)
C200.0265 (7)0.0384 (8)0.0406 (8)0.0081 (6)0.0030 (6)0.0150 (7)
C210.0234 (7)0.0500 (10)0.0287 (7)0.0041 (7)0.0007 (5)0.0050 (7)
C220.0323 (8)0.0378 (8)0.0298 (7)0.0057 (6)0.0006 (6)0.0057 (6)
C230.0307 (7)0.0267 (7)0.0277 (7)0.0074 (6)0.0004 (5)0.0005 (5)
Geometric parameters (Å, º) top
Cl1—C211.7399 (18)C14—C151.391 (2)
O1—C11.2310 (17)C18—C231.388 (2)
N1—C51.3943 (18)C18—C191.387 (2)
N1—C91.3967 (19)C19—C201.392 (2)
N1—C101.4462 (18)C20—C211.377 (3)
N2—C91.351 (2)C21—C221.380 (3)
N3—C171.149 (2)C22—C231.388 (2)
C1—C21.504 (2)C2—H2A0.9700
C1—C61.4596 (19)C2—H2B0.9700
C2—C31.517 (2)C3—H3A0.9700
N2—H2N0.9100C3—H3B0.9700
N2—H1N0.9000C4—H4A0.9700
C3—C41.521 (2)C4—H4B0.9700
C4—C51.5024 (19)C7—H71.0400
C5—C61.3554 (18)C11—H110.9300
C6—C71.5093 (19)C12—H120.9300
C7—C181.5259 (19)C14—H140.9300
C7—C81.5112 (18)C15—H150.9300
C8—C171.414 (2)C16—H16A0.9600
C8—C91.3670 (19)C16—H16B0.9600
C10—C151.383 (2)C16—H16C0.9600
C10—C111.381 (2)C19—H190.9300
C11—C121.387 (2)C20—H200.9300
C12—C131.388 (2)C22—H220.9300
C13—C161.505 (2)C23—H230.9300
C13—C141.388 (2)
C5—N1—C9119.95 (11)Cl1—C21—C20120.07 (14)
C5—N1—C10120.75 (12)C20—C21—C22121.31 (15)
C9—N1—C10119.20 (12)C21—C22—C23118.85 (16)
O1—C1—C2121.42 (13)C18—C23—C22121.27 (14)
O1—C1—C6121.11 (13)C1—C2—H2A109.00
C2—C1—C6117.45 (12)C1—C2—H2B109.00
C1—C2—C3111.15 (12)C3—C2—H2A109.00
C9—N2—H1N119.00C3—C2—H2B109.00
C9—N2—H2N120.00H2A—C2—H2B108.00
H1N—N2—H2N121.00C2—C3—H3A110.00
C2—C3—C4110.27 (13)C2—C3—H3B110.00
C3—C4—C5111.89 (12)C4—C3—H3A110.00
N1—C5—C6120.83 (12)C4—C3—H3B110.00
N1—C5—C4115.87 (12)H3A—C3—H3B108.00
C4—C5—C6123.31 (12)C3—C4—H4A109.00
C1—C6—C5120.47 (12)C3—C4—H4B109.00
C1—C6—C7116.75 (11)C5—C4—H4A109.00
C5—C6—C7122.78 (12)C5—C4—H4B109.00
C6—C7—C18111.10 (10)H4A—C4—H4B108.00
C8—C7—C18112.08 (11)C6—C7—H7110.00
C6—C7—C8108.91 (11)C8—C7—H7108.00
C7—C8—C17118.46 (12)C18—C7—H7107.00
C7—C8—C9123.20 (12)C10—C11—H11120.00
C9—C8—C17118.31 (13)C12—C11—H11120.00
N1—C9—N2115.79 (13)C11—C12—H12119.00
N1—C9—C8119.95 (13)C13—C12—H12119.00
N2—C9—C8124.22 (13)C13—C14—H14119.00
C11—C10—C15120.10 (13)C15—C14—H14120.00
N1—C10—C11120.53 (12)C10—C15—H15120.00
N1—C10—C15119.37 (13)C14—C15—H15120.00
C10—C11—C12119.80 (14)C13—C16—H16A109.00
C11—C12—C13121.05 (15)C13—C16—H16B109.00
C12—C13—C14118.40 (14)C13—C16—H16C109.00
C14—C13—C16120.92 (14)H16A—C16—H16B110.00
C12—C13—C16120.68 (14)H16A—C16—H16C109.00
C13—C14—C15120.99 (14)H16B—C16—H16C109.00
C10—C15—C14119.66 (13)C18—C19—H19120.00
N3—C17—C8179.36 (17)C20—C19—H19120.00
C7—C18—C19121.43 (13)C19—C20—H20120.00
C7—C18—C23119.98 (12)C21—C20—H20120.00
C19—C18—C23118.59 (14)C21—C22—H22121.00
C18—C19—C20120.84 (14)C23—C22—H22121.00
C19—C20—C21119.14 (15)C18—C23—H23119.00
Cl1—C21—C22118.62 (14)C22—C23—H23119.00
C5—N1—C10—C1181.13 (18)C6—C7—C8—C17162.97 (12)
C9—N1—C10—C1195.26 (17)C18—C7—C8—C9104.62 (15)
C5—N1—C10—C1598.38 (16)C18—C7—C8—C1773.69 (15)
C5—N1—C9—N2165.14 (13)C6—C7—C18—C2355.07 (16)
C10—N1—C9—N211.28 (19)C8—C7—C18—C19112.49 (15)
C5—N1—C9—C812.5 (2)C8—C7—C18—C2367.03 (16)
C10—N1—C9—C8171.05 (13)C6—C7—C18—C19125.41 (14)
C9—N1—C5—C4169.55 (13)C7—C8—C9—N13.4 (2)
C10—N1—C5—C46.82 (18)C17—C8—C9—N1178.31 (13)
C9—N1—C5—C610.23 (19)C17—C8—C9—N20.8 (2)
C10—N1—C5—C6173.41 (12)C7—C8—C9—N2179.15 (13)
C9—N1—C10—C1585.23 (17)N1—C10—C11—C12179.16 (14)
C6—C1—C2—C335.47 (18)C15—C10—C11—C120.4 (2)
O1—C1—C6—C5179.08 (13)N1—C10—C15—C14179.60 (13)
C2—C1—C6—C7177.66 (12)C11—C10—C15—C140.1 (2)
O1—C1—C2—C3146.41 (15)C10—C11—C12—C130.8 (2)
C2—C1—C6—C52.80 (19)C11—C12—C13—C140.7 (2)
O1—C1—C6—C70.5 (2)C11—C12—C13—C16178.22 (15)
C1—C2—C3—C457.68 (17)C12—C13—C14—C150.3 (2)
C2—C3—C4—C547.83 (16)C16—C13—C14—C15178.66 (14)
C3—C4—C5—C616.04 (19)C13—C14—C15—C100.1 (2)
C3—C4—C5—N1164.19 (12)C7—C18—C19—C20179.83 (14)
N1—C5—C6—C1172.36 (12)C23—C18—C19—C200.3 (2)
N1—C5—C6—C78.13 (19)C7—C18—C23—C22179.08 (14)
C4—C5—C6—C7172.11 (12)C19—C18—C23—C220.5 (2)
C4—C5—C6—C17.4 (2)C18—C19—C20—C210.9 (2)
C1—C6—C7—C8159.39 (11)C19—C20—C21—Cl1179.82 (13)
C1—C6—C7—C1876.69 (14)C19—C20—C21—C220.7 (2)
C5—C6—C7—C821.09 (17)Cl1—C21—C22—C23179.45 (12)
C5—C6—C7—C18102.84 (14)C20—C21—C22—C230.1 (2)
C6—C7—C8—C918.72 (17)C21—C22—C23—C180.6 (2)
Hydrogen-bond geometry (Å, º) top
Cg3 and Cg4 are the centroids of the methyl- and chloro-benzene rings (C10–C15 and C18–C23), respectively.
D—H···AD—HH···AD···AD—H···A
N2—H2N···N3i0.912.173.013 (2)153
C14—H14···O1ii0.932.583.4577 (19)156
C3—H3A···Cg4iii0.972.933.7210 (16)139
C16—H16B···Cg3iv0.962.813.6464 (18)146
Symmetry codes: (i) x, y+2, z+1; (ii) x, y1, z; (iii) x+1, y, z; (iv) x+1, y+1, z+1.
Hydrogen-bond geometry (Å, º) top
Cg3 and Cg4 are the centroids of the methyl- and chloro-benzene rings (C10–C15 and C18–C23), respectively.
D—H···AD—HH···AD···AD—H···A
N2—H2N···N3i0.912.173.013 (2)153
C14—H14···O1ii0.932.583.4577 (19)156
C3—H3A···Cg4iii0.972.933.7210 (16)139
C16—H16B···Cg3iv0.962.813.6464 (18)146
Symmetry codes: (i) x, y+2, z+1; (ii) x, y1, z; (iii) x+1, y, z; (iv) x+1, y+1, z+1.
 

Acknowledgements

JPJ acknowledges the NSF–MRI program (grant No. CHE-1039027) for funds to purchase the X-ray diffractometer.

References

First citationAgilent (2014). CrysAlis PRO. Agilent Technologies Ltd, Yarnton, England.  Google Scholar
First citationFarrugia, L. J. (2012). J. Appl. Cryst. 45, 849–854.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationHeydari, A., Khaksar, S., Tajbakhsh, M. & Bijanzadeh, H. R. (2009). J. Fluor. Chem. 130, 609–614.  Web of Science CrossRef CAS Google Scholar
First citationKendre, D. B., Toche, R. B. & Jachak, M. N. (2008). J. Heterocycl. Chem. 45, 667–671.  CrossRef CAS Google Scholar
First citationKumar, A. & Maurya, R. A. (2007). Tetrahedron, 63, 1946–1952.  Web of Science CrossRef CAS Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSheldrick, G. M. (2015). Acta Cryst. C71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar
First citationSpek, A. L. (2009). Acta Cryst. D65, 148–155.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds