metal-organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Crystal structure of tris­­(N-methyl­salicylaldiminato-κ2N,O)vanadium(III)

aInstitut für Anorganische Chemie, Christian-Albrechts-Universität zu Kiel, Max-Eyth-Strasse 2, 24118 Kiel, Germany
*Correspondence e-mail: jhilbert@ac.uni-kiel.de

Edited by E. R. T. Tiekink, University of Malaya, Malaysia (Received 11 November 2015; accepted 12 November 2015; online 18 November 2015)

The structure of the title complex, [V(C8H8NO)3], comprises neutral and discrete complexes, in which the VIII cation is coordinated by three anionic N-methyl­alicylaldiminate ligands within a slightly distorted mer-N3O3 octa­hedral geometry. In the crystal structure, the mol­ecules are linked via C—H⋯O hydrogen bonds into supra­molecular chains that extend along the c axis.

1. Related literature

For structures of discrete complexes of Mo and V with N-methyl­saldicylaldiminate as the ligand, see: Davies & Gatehouse (1974[Davies, J. E. & Gatehouse, B. M. (1974). J. Chem. Soc. Dalton Trans. pp. 184-187.]); Cornman et al. (1997[Cornman, C. R., Geiser-Bush, K. M., Rowley, S. P. & Boyle, P. D. (1997). CrystEngComm, 36, 6401-6408.]). For the synthesis of the starting material, see: Bonadies & Carrano (1986[Bonadies, J. A. & Carrano, C. J. (1986). J. Am. Chem. Soc. 108, 4088-4095.]).

[Scheme 1]

2. Experimental

2.1. Crystal data

  • [V(C8H8NO)3]

  • Mr = 453.40

  • Monoclinic, P 21 /c

  • a = 7.7414 (3) Å

  • b = 26.0018 (7) Å

  • c = 11.1004 (4) Å

  • β = 103.265 (3)°

  • V = 2174.79 (13) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.49 mm−1

  • T = 170 K

  • 0.24 × 0.14 × 0.06 mm

2.2. Data collection

  • STOE IPDS-1 diffractometer

  • Absorption correction: numerical (X-SHAPE and X-RED32; Stoe, 2008[Stoe (2008). X-AREA, X-RED32 and X-SHAPE. Stoe & Cie, Darmstadt, Germany.]) Tmin = 0.919, Tmax = 0.974

  • 18648 measured reflections

  • 4741 independent reflections

  • 4054 reflections with I > 2σ(I)

  • Rint = 0.030

2.3. Refinement

  • R[F2 > 2σ(F2)] = 0.040

  • wR(F2) = 0.102

  • S = 1.07

  • 4741 reflections

  • 283 parameters

  • H-atom parameters constrained

  • Δρmax = 0.30 e Å−3

  • Δρmin = −0.42 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
C27—H27⋯O21i 0.95 2.56 3.431 (2) 153
Symmetry code: (i) [x, -y+{\script{1\over 2}}, z+{\script{1\over 2}}].

Data collection: X-AREA (Stoe, 2008[Stoe (2008). X-AREA, X-RED32 and X-SHAPE. Stoe & Cie, Darmstadt, Germany.]); cell refinement: X-AREA; data reduction: X-AREA; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL2014 (Sheldrick, 2015[Sheldrick, G. M. (2015). Acta Cryst. A71, 3-8.]); molecular graphics: XP in SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]) and DIAMOND (Brandenburg, 1999[Brandenburg, K. (1999). DIAMOND. Crystal Impact GbR, Bonn, Germany.]); software used to prepare material for publication: publCIF (Westrip, 2010[Westrip, S. P. (2010). J. Appl. Cryst. 43, 920-925.]).

Supporting information


Synthesis and crystallization top

Most of the chemicals are commercially available: Sn (Fluka, 99.9%), S (Alfa Aesar, 99.5%), and methyl­amine (abcr, 40% aqueous solution). (N,N'-Disalicyl­idene­ethyl­enedi­amine)­oxovanadium(IV) was prepared following the procedure of Bonadies & Carrano (1986): (N,N'-disalicyl­idene­ethyl­enedi­amine)­oxovanadium (IV) (83.8 mg, 0.25 mmol ), Sn (29.7 mg, 0.25 mmol) and S (24.1 mg, 0.75 mmol) were reacted in a glass tube (inner volume 11 mL) with methyl­amine (1.5 mL) and H2O (0.5 mL) under solvothermal conditions at 120 °C for 24 h. Afterwards, the solid residue was filtered off, washed with water and ethanol, and dried over silica gel. The product contains red blocks of the title complex and a small amount of brown blocks of bis­(N-methyl­saldicylaliminato)oxovanadium(IV) (Cornman et al. (1997)). Even if Sn and S are not contained in the final product, they are needed for product formation, as otherwise only (N,N'-disalicyl­idene­ethyl­enedi­amine)­oxovanadium(IV) is isolated.

Refinement top

The C—H H atoms were positioned with idealized geometry (methyl H atoms allowed to rotate but not to tip) and were refined isotropically with Ueq(H) = 1.2 Ueq(C) (1.5 for methyl H atoms) using a riding model with C—H = 0.95 Å for aromatic H atoms and 0.98 Å for methyl H atoms.

Related literature top

For structures of discrete complexes of Mo and V with N-methylsaldicylaldiminate as the ligand, see: Davies & Gatehouse (1974); Cornman et al. (1997). For the synthesis of the starting material, see: Bonadies & Carrano (1986).

Structure description top

For structures of discrete complexes of Mo and V with N-methylsaldicylaldiminate as the ligand, see: Davies & Gatehouse (1974); Cornman et al. (1997). For the synthesis of the starting material, see: Bonadies & Carrano (1986).

Synthesis and crystallization top

Most of the chemicals are commercially available: Sn (Fluka, 99.9%), S (Alfa Aesar, 99.5%), and methyl­amine (abcr, 40% aqueous solution). (N,N'-Disalicyl­idene­ethyl­enedi­amine)­oxovanadium(IV) was prepared following the procedure of Bonadies & Carrano (1986): (N,N'-disalicyl­idene­ethyl­enedi­amine)­oxovanadium (IV) (83.8 mg, 0.25 mmol ), Sn (29.7 mg, 0.25 mmol) and S (24.1 mg, 0.75 mmol) were reacted in a glass tube (inner volume 11 mL) with methyl­amine (1.5 mL) and H2O (0.5 mL) under solvothermal conditions at 120 °C for 24 h. Afterwards, the solid residue was filtered off, washed with water and ethanol, and dried over silica gel. The product contains red blocks of the title complex and a small amount of brown blocks of bis­(N-methyl­saldicylaliminato)oxovanadium(IV) (Cornman et al. (1997)). Even if Sn and S are not contained in the final product, they are needed for product formation, as otherwise only (N,N'-disalicyl­idene­ethyl­enedi­amine)­oxovanadium(IV) is isolated.

Refinement details top

The C—H H atoms were positioned with idealized geometry (methyl H atoms allowed to rotate but not to tip) and were refined isotropically with Ueq(H) = 1.2 Ueq(C) (1.5 for methyl H atoms) using a riding model with C—H = 0.95 Å for aromatic H atoms and 0.98 Å for methyl H atoms.

Computing details top

Data collection: X-AREA (Stoe, 2008); cell refinement: X-AREA (Stoe, 2008); data reduction: X-AREA (Stoe, 2008); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL2014 (Sheldrick, 2015); molecular graphics: XP in SHELXTL (Sheldrick, 2008) and DIAMOND (Brandenburg, 1999); software used to prepare material for publication: publCIF (Westrip, 2010).

Figures top
[Figure 1] Fig. 1. The molecular structure of the title complex with atom labelling. Displacement ellipsoids are drawn at the 50% probability level.
[Figure 2] Fig. 2. Unit cell contents of the crystal structure of the title complex viewed in projection down the a axis with hydrogen bonds shown as dashed lines. For clarity, all H atoms except those that participates in hydrogen bonding are omitted.
Tris(N-methylsalicylaldiminato-κ2N,O)vanadium(III) top
Crystal data top
[V(C8H8NO)3]F(000) = 944
Mr = 453.40Dx = 1.385 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
a = 7.7414 (3) ÅCell parameters from 18648 reflections
b = 26.0018 (7) Åθ = 1.6–27.0°
c = 11.1004 (4) ŵ = 0.49 mm1
β = 103.265 (3)°T = 170 K
V = 2174.79 (13) Å3Block, red
Z = 40.24 × 0.14 × 0.06 mm
Data collection top
STOE IPDS-1
diffractometer
4054 reflections with I > 2σ(I)
Radiation source: fine-focus sealed tubeRint = 0.030
φ–scansθmax = 27.0°, θmin = 1.6°
Absorption correction: numerical
(X-SHAPE and X-RED32; Stoe, 2008)
h = 99
Tmin = 0.919, Tmax = 0.974k = 3033
18648 measured reflectionsl = 1414
4741 independent reflections
Refinement top
Refinement on F20 restraints
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.040H-atom parameters constrained
wR(F2) = 0.102 w = 1/[σ2(Fo2) + (0.0523P)2 + 0.6659P]
where P = (Fo2 + 2Fc2)/3
S = 1.07(Δ/σ)max = 0.001
4741 reflectionsΔρmax = 0.30 e Å3
283 parametersΔρmin = 0.42 e Å3
Crystal data top
[V(C8H8NO)3]V = 2174.79 (13) Å3
Mr = 453.40Z = 4
Monoclinic, P21/cMo Kα radiation
a = 7.7414 (3) ŵ = 0.49 mm1
b = 26.0018 (7) ÅT = 170 K
c = 11.1004 (4) Å0.24 × 0.14 × 0.06 mm
β = 103.265 (3)°
Data collection top
STOE IPDS-1
diffractometer
4741 independent reflections
Absorption correction: numerical
(X-SHAPE and X-RED32; Stoe, 2008)
4054 reflections with I > 2σ(I)
Tmin = 0.919, Tmax = 0.974Rint = 0.030
18648 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0400 restraints
wR(F2) = 0.102H-atom parameters constrained
S = 1.07Δρmax = 0.30 e Å3
4741 reflectionsΔρmin = 0.42 e Å3
283 parameters
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
V10.60947 (4)0.34777 (2)0.43424 (3)0.03210 (10)
O10.58715 (17)0.39024 (5)0.28969 (12)0.0400 (3)
C10.6728 (2)0.39169 (7)0.19994 (17)0.0375 (4)
C20.8151 (3)0.35824 (8)0.19485 (18)0.0390 (4)
C30.8995 (3)0.36297 (9)0.0951 (2)0.0497 (5)
H30.99640.34100.09190.060*
C40.8448 (3)0.39846 (10)0.0029 (2)0.0578 (6)
H40.90300.40100.06340.069*
C50.7033 (3)0.43068 (10)0.0075 (2)0.0550 (6)
H50.66460.45520.05640.066*
C60.6186 (3)0.42752 (9)0.10360 (19)0.0466 (5)
H60.52210.44990.10490.056*
C70.8789 (2)0.31882 (8)0.28513 (17)0.0384 (4)
H70.97660.29890.27330.046*
N10.81716 (19)0.30777 (6)0.38049 (14)0.0351 (3)
C80.9074 (3)0.26689 (8)0.46168 (18)0.0423 (4)
H8A0.95450.28080.54480.064*
H8B1.00530.25330.42870.064*
H8C0.82310.23920.46590.064*
O110.78967 (17)0.38679 (5)0.54398 (12)0.0397 (3)
C110.7839 (3)0.42940 (8)0.60833 (18)0.0402 (4)
C120.6228 (3)0.45333 (8)0.61828 (18)0.0416 (4)
C130.6290 (3)0.49804 (9)0.6899 (2)0.0510 (5)
H130.52110.51430.69520.061*
C140.7869 (4)0.51892 (9)0.7524 (2)0.0580 (6)
H140.78820.54900.80120.070*
C150.9450 (4)0.49555 (10)0.7434 (2)0.0587 (6)
H151.05490.50990.78630.070*
C160.9439 (3)0.45159 (9)0.6727 (2)0.0501 (5)
H161.05330.43620.66760.060*
C170.4494 (3)0.43340 (8)0.56016 (18)0.0430 (4)
H170.34990.45190.57400.052*
N110.4164 (2)0.39324 (6)0.49186 (15)0.0378 (3)
C180.2295 (2)0.37888 (9)0.4467 (2)0.0494 (5)
H18A0.20200.37620.35620.074*
H18B0.15380.40510.47150.074*
H18C0.20790.34560.48220.074*
O210.42824 (16)0.30065 (5)0.34205 (11)0.0370 (3)
C210.3734 (2)0.25415 (7)0.35945 (16)0.0328 (4)
C220.4208 (2)0.22876 (7)0.47477 (17)0.0352 (4)
C230.3555 (3)0.17928 (8)0.4881 (2)0.0446 (5)
H230.38490.16300.56680.054*
C240.2496 (3)0.15367 (9)0.3894 (2)0.0499 (5)
H240.20980.11970.39900.060*
C250.2023 (3)0.17858 (8)0.2756 (2)0.0439 (5)
H250.12930.16130.20700.053*
C260.2596 (2)0.22787 (8)0.26080 (18)0.0376 (4)
H260.22190.24450.18300.045*
C270.5263 (2)0.25346 (7)0.58385 (16)0.0349 (4)
H270.54120.23520.65970.042*
N210.60191 (18)0.29761 (6)0.58834 (13)0.0342 (3)
C280.6848 (3)0.31610 (9)0.71350 (17)0.0426 (4)
H28A0.63310.34930.72760.064*
H28B0.81280.32010.72150.064*
H28C0.66370.29120.77480.064*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
V10.03170 (16)0.03642 (17)0.02820 (16)0.00124 (12)0.00694 (11)0.00003 (12)
O10.0416 (7)0.0421 (7)0.0386 (7)0.0028 (6)0.0140 (5)0.0045 (6)
C10.0413 (9)0.0401 (10)0.0313 (9)0.0078 (8)0.0092 (7)0.0013 (8)
C20.0401 (9)0.0438 (11)0.0339 (9)0.0078 (8)0.0101 (7)0.0057 (8)
C30.0530 (12)0.0571 (13)0.0436 (11)0.0077 (10)0.0207 (9)0.0064 (10)
C40.0709 (15)0.0681 (15)0.0409 (12)0.0128 (12)0.0264 (11)0.0010 (11)
C50.0711 (14)0.0583 (14)0.0364 (11)0.0081 (11)0.0141 (10)0.0083 (10)
C60.0543 (11)0.0454 (11)0.0398 (10)0.0047 (9)0.0105 (9)0.0034 (9)
C70.0324 (8)0.0467 (11)0.0369 (10)0.0013 (8)0.0098 (7)0.0075 (8)
N10.0322 (7)0.0392 (8)0.0325 (8)0.0001 (6)0.0045 (6)0.0042 (7)
C80.0383 (9)0.0494 (11)0.0373 (10)0.0086 (8)0.0044 (8)0.0007 (9)
O110.0380 (7)0.0424 (7)0.0389 (7)0.0036 (5)0.0095 (5)0.0066 (6)
C110.0474 (10)0.0388 (10)0.0341 (9)0.0077 (8)0.0084 (8)0.0013 (8)
C120.0548 (11)0.0368 (10)0.0343 (9)0.0009 (8)0.0121 (8)0.0004 (8)
C130.0704 (14)0.0423 (11)0.0411 (11)0.0029 (10)0.0145 (10)0.0016 (9)
C140.0837 (17)0.0436 (12)0.0470 (12)0.0106 (11)0.0156 (11)0.0081 (10)
C150.0691 (15)0.0558 (14)0.0484 (12)0.0224 (12)0.0075 (11)0.0072 (11)
C160.0520 (11)0.0516 (12)0.0459 (11)0.0129 (10)0.0095 (9)0.0056 (10)
C170.0460 (10)0.0461 (11)0.0393 (10)0.0074 (8)0.0148 (8)0.0021 (9)
N110.0366 (8)0.0424 (9)0.0356 (8)0.0021 (6)0.0105 (6)0.0010 (7)
C180.0337 (9)0.0605 (13)0.0550 (13)0.0018 (9)0.0120 (9)0.0024 (11)
O210.0391 (6)0.0404 (7)0.0296 (6)0.0041 (5)0.0041 (5)0.0024 (5)
C210.0287 (8)0.0365 (9)0.0333 (9)0.0011 (7)0.0076 (6)0.0002 (7)
C220.0317 (8)0.0394 (10)0.0345 (9)0.0025 (7)0.0074 (7)0.0020 (8)
C230.0429 (10)0.0417 (11)0.0477 (11)0.0003 (8)0.0073 (8)0.0075 (9)
C240.0461 (11)0.0408 (11)0.0605 (13)0.0048 (9)0.0074 (10)0.0008 (10)
C250.0375 (9)0.0464 (11)0.0463 (11)0.0026 (8)0.0062 (8)0.0075 (9)
C260.0325 (8)0.0456 (11)0.0342 (9)0.0005 (7)0.0066 (7)0.0038 (8)
C270.0311 (8)0.0431 (10)0.0305 (8)0.0038 (7)0.0070 (6)0.0070 (8)
N210.0318 (7)0.0427 (9)0.0271 (7)0.0009 (6)0.0045 (6)0.0015 (6)
C280.0430 (10)0.0553 (12)0.0271 (9)0.0048 (9)0.0032 (7)0.0012 (9)
Geometric parameters (Å, º) top
V1—O111.9183 (13)C13—H130.9500
V1—O11.9227 (14)C14—C151.390 (4)
V1—O211.9641 (13)C14—H140.9500
V1—N12.1126 (15)C15—C161.386 (3)
V1—N112.1163 (16)C15—H150.9500
V1—N212.1625 (15)C16—H160.9500
O1—C11.318 (2)C17—N111.281 (3)
C1—C61.408 (3)C17—H170.9500
C1—C21.415 (3)N11—C181.467 (2)
C2—C31.414 (3)C18—H18A0.9800
C2—C71.439 (3)C18—H18B0.9800
C3—C41.371 (3)C18—H18C0.9800
C3—H30.9500O21—C211.310 (2)
C4—C51.389 (4)C21—C221.412 (3)
C4—H40.9500C21—C261.414 (2)
C5—C61.376 (3)C22—C231.402 (3)
C5—H50.9500C22—C271.447 (3)
C6—H60.9500C23—C241.379 (3)
C7—N11.290 (2)C23—H230.9500
C7—H70.9500C24—C251.392 (3)
N1—C81.463 (2)C24—H240.9500
C8—H8A0.9800C25—C261.379 (3)
C8—H8B0.9800C25—H250.9500
C8—H8C0.9800C26—H260.9500
O11—C111.325 (2)C27—N211.284 (2)
C11—C161.404 (3)C27—H270.9500
C11—C121.420 (3)N21—C281.471 (2)
C12—C131.403 (3)C28—H28A0.9800
C12—C171.446 (3)C28—H28B0.9800
C13—C141.371 (3)C28—H28C0.9800
O11—V1—O198.00 (6)C14—C13—H13119.2
O11—V1—O21171.59 (6)C12—C13—H13119.2
O1—V1—O2190.39 (6)C13—C14—C15119.2 (2)
O11—V1—N187.14 (6)C13—C14—H14120.4
O1—V1—N188.60 (6)C15—C14—H14120.4
O21—V1—N192.56 (6)C16—C15—C14120.7 (2)
O11—V1—N1188.49 (6)C16—C15—H15119.7
O1—V1—N1189.82 (6)C14—C15—H15119.7
O21—V1—N1192.09 (6)C15—C16—C11121.1 (2)
N1—V1—N11175.10 (6)C15—C16—H16119.4
O11—V1—N2187.96 (6)C11—C16—H16119.4
O1—V1—N21173.21 (6)N11—C17—C12126.48 (19)
O21—V1—N2183.70 (5)N11—C17—H17116.8
N1—V1—N2194.99 (6)C12—C17—H17116.8
N11—V1—N2187.06 (6)C17—N11—C18117.16 (17)
C1—O1—V1133.07 (12)C17—N11—V1125.15 (13)
O1—C1—C6118.64 (18)C18—N11—V1117.65 (13)
O1—C1—C2122.96 (17)N11—C18—H18A109.5
C6—C1—C2118.39 (18)N11—C18—H18B109.5
C3—C2—C1118.79 (19)H18A—C18—H18B109.5
C3—C2—C7117.42 (19)N11—C18—H18C109.5
C1—C2—C7123.78 (17)H18A—C18—H18C109.5
C4—C3—C2121.6 (2)H18B—C18—H18C109.5
C4—C3—H3119.2C21—O21—V1135.69 (11)
C2—C3—H3119.2O21—C21—C22122.67 (16)
C3—C4—C5119.3 (2)O21—C21—C26119.81 (16)
C3—C4—H4120.3C22—C21—C26117.52 (17)
C5—C4—H4120.3C23—C22—C21119.98 (17)
C6—C5—C4120.8 (2)C23—C22—C27117.86 (17)
C6—C5—H5119.6C21—C22—C27122.03 (17)
C4—C5—H5119.6C24—C23—C22121.5 (2)
C5—C6—C1121.1 (2)C24—C23—H23119.3
C5—C6—H6119.5C22—C23—H23119.3
C1—C6—H6119.5C23—C24—C25118.7 (2)
N1—C7—C2126.67 (18)C23—C24—H24120.6
N1—C7—H7116.7C25—C24—H24120.6
C2—C7—H7116.7C26—C25—C24121.06 (19)
C7—N1—C8116.91 (16)C26—C25—H25119.5
C7—N1—V1124.86 (13)C24—C25—H25119.5
C8—N1—V1118.07 (12)C25—C26—C21121.15 (18)
N1—C8—H8A109.5C25—C26—H26119.4
N1—C8—H8B109.5C21—C26—H26119.4
H8A—C8—H8B109.5N21—C27—C22126.46 (17)
N1—C8—H8C109.5N21—C27—H27116.8
H8A—C8—H8C109.5C22—C27—H27116.8
H8B—C8—H8C109.5C27—N21—C28115.14 (16)
C11—O11—V1132.48 (12)C27—N21—V1127.10 (12)
O11—C11—C16118.88 (19)C28—N21—V1117.71 (12)
O11—C11—C12123.17 (17)N21—C28—H28A109.5
C16—C11—C12117.93 (19)N21—C28—H28B109.5
C13—C12—C11119.37 (19)H28A—C28—H28B109.5
C13—C12—C17117.2 (2)N21—C28—H28C109.5
C11—C12—C17123.40 (18)H28A—C28—H28C109.5
C14—C13—C12121.7 (2)H28B—C28—H28C109.5
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C27—H27···O21i0.952.563.431 (2)153
Symmetry code: (i) x, y+1/2, z+1/2.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C27—H27···O21i0.952.563.431 (2)153
Symmetry code: (i) x, y+1/2, z+1/2.
 

Acknowledgements

This work was supported by the State of Schleswig-Holstein.

References

First citationBonadies, J. A. & Carrano, C. J. (1986). J. Am. Chem. Soc. 108, 4088–4095.  CrossRef CAS Web of Science Google Scholar
First citationBrandenburg, K. (1999). DIAMOND. Crystal Impact GbR, Bonn, Germany.  Google Scholar
First citationCornman, C. R., Geiser–Bush, K. M., Rowley, S. P. & Boyle, P. D. (1997). CrystEngComm, 36, 6401–6408.  CAS Google Scholar
First citationDavies, J. E. & Gatehouse, B. M. (1974). J. Chem. Soc. Dalton Trans. pp. 184–187.  CSD CrossRef CAS Web of Science Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSheldrick, G. M. (2015). Acta Cryst. A71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar
First citationStoe (2008). X-AREA, X-RED32 and X-SHAPE. Stoe & Cie, Darmstadt, Germany.  Google Scholar
First citationWestrip, S. P. (2010). J. Appl. Cryst. 43, 920–925.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds