organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Crystal structure of (Z)-ethyl 2-{5-[(2-benzyl­­idene-3-oxo-2,3-di­hydro­benzo[b][1,4]thia­zin-4-yl)meth­yl]-1H-1,2,3-triazol-1-yl}acetate

aLaboratoire de Chimie Organique Hétérocyclique URAC 21, Pôle de Compétence Pharmacochimie, Av. Ibn Battouta, BP 1014, Faculté des Sciences, Université Mohammed V, Rabat, Morocco, bLaboratoire de Chimie Organique Appliquée, Université Sidi Mohamed Ben Abdallah, Faculté des Sciences et Techniques, Route d'immouzzer, BP 2202, Fez, Morocco, and cDepartment of Chemistry, Tulane University, New Orleans, LA 70118, USA
*Correspondence e-mail: joelt@tulane.edu

Edited by E. R. T. Tiekink, University of Malaya, Malaysia (Received 24 November 2015; accepted 30 November 2015; online 6 December 2015)

The title compound, C22H20N4O3S, features two fused six-membered rings linked to a 1,2,3-triazole ring which is attached to an ethyl acetate group. The heterocycle in the benzo­thia­zine residue has an envelope conformation with the S atom being the flap. The conformation of the ethyl acetate side chain, which is directed to the same side of the mol­ecule as the C6 ring of the fused-ring system, may be partially established by a pair of weak intra­molecular C—H⋯O(carbon­yl) inter­actions. The three-dimensional packing is aided by inter­molecular C—H⋯O and C—H⋯N inter­actions.

1. Related literature

For the biological activity of 1,4-benzo­thia­zine derivatives, see: Goyal et al. (2013[Goyal, K., Gautam, N., Khandelwal, N. & Gautam, D. C. (2013). Nucleosides Nucleotides Nucleic Acids, 32, 81-97.]); Gupta et al. (2011[Gupta, R. & Gupta, A. (2011). Heteroletters, 1, 351-358.]); Gautam et al. (2013[Gautam, N. (2013). Heterocycl. Commun. 19, 37-42.]); Deshmukh & Mulik (2004[Deshmukh, M. B. & Mulik, A. R. (2004). E.-J. Chem. 1, 206-210.]); Kumar et al. (2010[Kumar, M., Sharma, K., Samarth, R. M. & Kumar, A. (2010). Eur. J. Med. Chem. 45, 4467-4472.]); Hans et al. (2008[Hans, D. & Gautam, N. (2008). Res. J. Biotech. pp. 161-163.]); Gao et al. (2005[Gao, L. & Hollingsworth, R. (2005). J. Org. Chem. 70, 9013-9016.]); Bakavoli et al. (2007[Bakavoli, M., Nikpour, M., Rahimizadeh, M., Saberi, M. R. & Sadeghian, H. (2007). Bioorg. Med. Chem. 15, 2120-2126.]). For applications of 1,4-benzo­thia­zine derivatives, see: Podsiadły et al. (2009[Podsiadły, R. (2009). J. Photochem. Photobiol. Chem. 202, 115-121.]); Hong et al. (2008[Hong, W., Wei, Z., Xi, H., Xu, W., Hu, W., Wang, Q. & Zhu, D. (2008). J. Mater. Chem. 18, 4814-4820.]). For structures of 1,4-benzo­thia­zine derivatives, see: Sebbar et al. (2014[Sebbar, N. K., Zerzouf, A., Essassi, E. M., Saadi, M. & El Ammari, L. (2014). Acta Cryst. E70, o160-o161.]).

[Scheme 1]

2. Experimental

2.1. Crystal data

  • C22H20N4O3S

  • Mr = 420.48

  • Monoclinic, P 21 /n

  • a = 9.9767 (6) Å

  • b = 8.7342 (5) Å

  • c = 23.1027 (14) Å

  • β = 94.508 (1)°

  • V = 2006.9 (2) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.19 mm−1

  • T = 150 K

  • 0.32 × 0.28 × 0.25 mm

2.2. Data collection

  • Bruker SMART APEX CCD diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 2015[Bruker (2015). APEX2, SADABS and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]) Tmin = 0.86, Tmax = 0.95

  • 37542 measured reflections

  • 5341 independent reflections

  • 4380 reflections with I > 2σ(I)

  • Rint = 0.039

2.3. Refinement

  • R[F2 > 2σ(F2)] = 0.043

  • wR(F2) = 0.117

  • S = 1.04

  • 5341 reflections

  • 272 parameters

  • H-atom parameters constrained

  • Δρmax = 0.42 e Å−3

  • Δρmin = −0.26 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
C2—H2⋯O2 0.95 2.55 3.4726 (18) 163
C16—H16B⋯O2 0.99 2.58 3.2981 (19) 129
C19—H19B⋯O1i 0.99 2.39 3.2547 (18) 146
C21—H21A⋯N4ii 0.99 2.57 3.526 (2) 162
C22—H22B⋯O2iii 0.98 2.59 3.521 (2) 159
Symmetry codes: (i) -x+1, -y+1, -z+1; (ii) x, y+1, z; (iii) [-x+{\script{3\over 2}}, y+{\script{1\over 2}}, -z+{\script{1\over 2}}].

Data collection: APEX2 (Bruker, 2015[Bruker (2015). APEX2, SADABS and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2015[Bruker (2015). APEX2, SADABS and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXT (Sheldrick, 2015a[Sheldrick, G. M. (2015a). Acta Cryst. A71, 3-8.]); program(s) used to refine structure: SHELXL (Sheldrick, 2015b[Sheldrick, G. M. (2015b). Acta Cryst. C71, 3-8.]); molecular graphics: DIAMOND (Brandenburg & Putz, 2012[Brandenburg, K. & Putz, H. (2012). DIAMOND. Crystal Impact GbR, Bonn, Germany.]); software used to prepare material for publication: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]).

Supporting information


Comment top

4H-1,4-Benzothiazines possess a wide spectrum of biological and pharmacological activities due to the presence of a fold along the nitrogen···sulfur axis which is considered to be one of the structural features responsible for their activities (Gupta et al., 2011). During the past two decades, we have found a growing interest in 1,4-benzothiazines. In fact, the 1,4-benzothiazines are the best known to possess biologically diverse activities (Goyal et al., 2013) such as antimicrobial, (Gautam et al., 2013) antifungal (Hans et al., 2008), antioxidant agents (Kumar et al., 2010), inhibitors of beta-ribosidases (Gao et al., 2005), potential vasodilators (Deshmukh et al., 2004) and as potent lipoxygenase inhibitors (Bakavoli et al., 2007). 1,4- Benzothiazines are the basis for novel dyes (Podsiadły et al., 2009) and behave as semiconductors (Hong et al., 2008).

As a continuation of our research devoted to the development of substituted 1,4-benzothiazine derivatives (Sebbar et al., 2014), we report the synthesis of a new 1,4-benzothiazine derivative which is built from two fused six-membered rings linked to a 1,2,3-triazole ring which is attached to an ethylacetate group.

The conformation of the side chain may be partially established by the weak, intramolecular C16—H16B···O2 and C2—H2···O2 interactions (Fig. 1 and Table 1). The six-membered heterocyclic ring has puckering parameters Q = 0.5154 (11) Å, θ = 108.31 (14)° and φ = 162.81 (17)°. The pendant phenyl ring (C10–C15) makes a dihedral angle of 53.26 (5)° with the ring C1–C6 while the dihedral angle between the ring C1–C6 and the triazolyl ring is 76.31 (5)°. The packing is aided by intermolecular C—H···O and C—H···N interactions (Figs 2 and Table 1).

Related literature top

For the biological activity of 1,4-benzothiazine derivatives, see: Goyal et al. (2013); Gupta et al. (2011); Gautam et al. (2013); Deshmukh & Mulik (2004); Kumar et al. (2010); Hans et al. (2008); Gao et al. (2005); Bakavoli et al. (2007). For applications of 1,4-benzothiazine derivatives, see: Podsiadły et al. (2009); Hong et al. (2008). For structures of 1,4-benzothiazine derivatives, see: Sebbar et al. (2014).

Experimental top

To a solution of 2-benzylidene-4-(prop-2-yn-1-yl)-2H-1,4-benzothiazin-3-one (0.2 g, 0.68 mmol) in ethanol (15 mL) was added ethyl azido-acetate (0.13 g, 1.03 mmol). The mixture was stirred under reflux for 24 h. After completion of the reaction (monitored by TLC), the solution was concentrated and the residue was purified by column chromatography on silica gel by using a mixture (hexane/ethyl acetate 9/1). Crystals were obtained when the solvent was allowed to evaporate. The solid product was purified by recrystallization from ethanol to afford yellow crystals in 14% yield.

Refinement top

Carbon-bound H-atoms were placed in calculated positions (C—H = 0.95 to 0.99 Å) and were included in the refinement in the riding model approximation with Uiso(H) = 1.2–1.5Ueq(C).

Structure description top

4H-1,4-Benzothiazines possess a wide spectrum of biological and pharmacological activities due to the presence of a fold along the nitrogen···sulfur axis which is considered to be one of the structural features responsible for their activities (Gupta et al., 2011). During the past two decades, we have found a growing interest in 1,4-benzothiazines. In fact, the 1,4-benzothiazines are the best known to possess biologically diverse activities (Goyal et al., 2013) such as antimicrobial, (Gautam et al., 2013) antifungal (Hans et al., 2008), antioxidant agents (Kumar et al., 2010), inhibitors of beta-ribosidases (Gao et al., 2005), potential vasodilators (Deshmukh et al., 2004) and as potent lipoxygenase inhibitors (Bakavoli et al., 2007). 1,4- Benzothiazines are the basis for novel dyes (Podsiadły et al., 2009) and behave as semiconductors (Hong et al., 2008).

As a continuation of our research devoted to the development of substituted 1,4-benzothiazine derivatives (Sebbar et al., 2014), we report the synthesis of a new 1,4-benzothiazine derivative which is built from two fused six-membered rings linked to a 1,2,3-triazole ring which is attached to an ethylacetate group.

The conformation of the side chain may be partially established by the weak, intramolecular C16—H16B···O2 and C2—H2···O2 interactions (Fig. 1 and Table 1). The six-membered heterocyclic ring has puckering parameters Q = 0.5154 (11) Å, θ = 108.31 (14)° and φ = 162.81 (17)°. The pendant phenyl ring (C10–C15) makes a dihedral angle of 53.26 (5)° with the ring C1–C6 while the dihedral angle between the ring C1–C6 and the triazolyl ring is 76.31 (5)°. The packing is aided by intermolecular C—H···O and C—H···N interactions (Figs 2 and Table 1).

For the biological activity of 1,4-benzothiazine derivatives, see: Goyal et al. (2013); Gupta et al. (2011); Gautam et al. (2013); Deshmukh & Mulik (2004); Kumar et al. (2010); Hans et al. (2008); Gao et al. (2005); Bakavoli et al. (2007). For applications of 1,4-benzothiazine derivatives, see: Podsiadły et al. (2009); Hong et al. (2008). For structures of 1,4-benzothiazine derivatives, see: Sebbar et al. (2014).

Computing details top

Data collection: APEX2 (Bruker, 2015); cell refinement: SAINT (Bruker, 2015); data reduction: SAINT (Bruker, 2015); program(s) used to solve structure: SHELXT (Sheldrick, 2015a); program(s) used to refine structure: SHELXL (Sheldrick, 2015b); molecular graphics: DIAMOND (Brandenburg & Putz, 2012); software used to prepare material for publication: SHELXTL (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. The title molecule showing the labeling scheme and 50% probability ellipsoids. Intramolecular C—H···O interactions are shown by dotted lines.
[Figure 2] Fig. 2. Packing viewed down the b axis. Intermolecular C—H···O interactions are shown by dotted lines.
(Z)-Ethyl 2-{5-[(2-benzylidene-3-oxo-2,3-dihydrobenzo[b][1,4]thiazin-4-yl)methyl]-1H-1,2,3-triazol-1-yl}acetate top
Crystal data top
C22H20N4O3SF(000) = 880
Mr = 420.48Dx = 1.392 Mg m3
Monoclinic, P21/nMo Kα radiation, λ = 0.71073 Å
a = 9.9767 (6) ÅCell parameters from 9992 reflections
b = 8.7342 (5) Åθ = 2.2–29.0°
c = 23.1027 (14) ŵ = 0.19 mm1
β = 94.508 (1)°T = 150 K
V = 2006.9 (2) Å3Block, colourless
Z = 40.32 × 0.28 × 0.25 mm
Data collection top
Bruker SMART APEX CCD
diffractometer
5341 independent reflections
Radiation source: fine-focus sealed tube4380 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.039
Detector resolution: 8.3333 pixels mm-1θmax = 29.1°, θmin = 1.8°
φ and ω scansh = 1313
Absorption correction: multi-scan
(SADABS; Bruker, 2015)
k = 1111
Tmin = 0.86, Tmax = 0.95l = 3031
37542 measured reflections
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.043Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.117H-atom parameters constrained
S = 1.04 w = 1/[σ2(Fo2) + (0.0606P)2 + 0.6062P]
where P = (Fo2 + 2Fc2)/3
5341 reflections(Δ/σ)max < 0.001
272 parametersΔρmax = 0.42 e Å3
0 restraintsΔρmin = 0.26 e Å3
Crystal data top
C22H20N4O3SV = 2006.9 (2) Å3
Mr = 420.48Z = 4
Monoclinic, P21/nMo Kα radiation
a = 9.9767 (6) ŵ = 0.19 mm1
b = 8.7342 (5) ÅT = 150 K
c = 23.1027 (14) Å0.32 × 0.28 × 0.25 mm
β = 94.508 (1)°
Data collection top
Bruker SMART APEX CCD
diffractometer
5341 independent reflections
Absorption correction: multi-scan
(SADABS; Bruker, 2015)
4380 reflections with I > 2σ(I)
Tmin = 0.86, Tmax = 0.95Rint = 0.039
37542 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0430 restraints
wR(F2) = 0.117H-atom parameters constrained
S = 1.04Δρmax = 0.42 e Å3
5341 reflectionsΔρmin = 0.26 e Å3
272 parameters
Special details top

Experimental. The diffraction data were obtained from 3 sets of 400 frames, each of width 0.5° in ω, colllected at φ = 0.00, 90.00 and 180.00° and 2 sets of 800 frames, each of width 0.45° in φ, collected at ω = –30.00 and 210.00°. The scan time was 8 sec/frame.

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > 2sigma(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger. H-atoms attached to carbon were placed in calculated positions (C—H = 0.95 - 0.99 Å). All were included as riding contributions with isotropic displacement parameters 1.2 - 1.5 times those of the attached atoms.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
S10.06354 (3)0.15135 (4)0.40087 (2)0.02889 (10)
O10.31909 (10)0.34881 (14)0.51171 (4)0.0355 (3)
O20.61888 (11)0.57371 (14)0.32065 (5)0.0404 (3)
O30.83615 (10)0.63206 (12)0.34309 (5)0.0307 (2)
N10.31595 (11)0.34444 (14)0.41352 (5)0.0262 (2)
N20.66451 (10)0.28821 (13)0.37357 (5)0.0243 (2)
N30.70889 (12)0.16441 (15)0.34542 (6)0.0326 (3)
N40.60856 (13)0.06776 (15)0.33911 (6)0.0374 (3)
C10.24452 (13)0.34916 (16)0.35742 (6)0.0254 (3)
C20.29275 (14)0.43188 (18)0.31212 (7)0.0322 (3)
H20.37370.48880.31840.039*
C30.22313 (15)0.4319 (2)0.25761 (7)0.0364 (3)
H30.25680.48950.22700.044*
C40.10540 (15)0.34906 (19)0.24722 (7)0.0350 (3)
H40.05900.34890.20970.042*
C50.05591 (14)0.26665 (17)0.29200 (6)0.0296 (3)
H50.02560.21080.28540.036*
C60.12545 (13)0.26549 (16)0.34678 (6)0.0250 (3)
C70.11667 (13)0.26130 (16)0.46180 (6)0.0256 (3)
C80.25729 (13)0.32240 (17)0.46472 (6)0.0265 (3)
C90.04663 (13)0.27766 (16)0.50890 (6)0.0275 (3)
H90.09360.33010.54030.033*
C100.08942 (13)0.22868 (16)0.52021 (6)0.0274 (3)
C110.16582 (15)0.11893 (19)0.48788 (7)0.0333 (3)
H110.12840.06720.45680.040*
C120.29624 (16)0.0855 (2)0.50125 (8)0.0413 (4)
H120.34790.01260.47860.050*
C130.35135 (16)0.1574 (2)0.54703 (9)0.0442 (4)
H130.44130.13590.55520.053*
C140.27500 (16)0.2608 (2)0.58095 (8)0.0422 (4)
H140.31130.30750.61340.051*
C150.14533 (15)0.29617 (18)0.56757 (7)0.0342 (3)
H150.09380.36750.59100.041*
C160.45934 (12)0.38457 (18)0.41794 (6)0.0279 (3)
H16A0.49440.38590.45920.033*
H16B0.47140.48790.40160.033*
C170.53491 (12)0.27008 (16)0.38550 (6)0.0247 (3)
C180.50109 (14)0.12925 (17)0.36318 (7)0.0309 (3)
H180.41570.08180.36430.037*
C190.75516 (12)0.41430 (16)0.38687 (6)0.0263 (3)
H19A0.84880.37930.38420.032*
H19B0.74620.44860.42720.032*
C200.72677 (13)0.54792 (17)0.34581 (6)0.0271 (3)
C210.82319 (18)0.7661 (2)0.30459 (8)0.0434 (4)
H21A0.77360.84890.32290.052*
H21B0.77350.73840.26730.052*
C220.96129 (19)0.8177 (2)0.29460 (9)0.0494 (5)
H22A1.00870.84710.33170.074*
H22B0.95640.90590.26830.074*
H22C1.01000.73410.27720.074*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
S10.02741 (17)0.03138 (19)0.02719 (18)0.00666 (13)0.00227 (13)0.00326 (13)
O10.0253 (5)0.0528 (7)0.0275 (5)0.0067 (4)0.0030 (4)0.0082 (5)
O20.0279 (5)0.0415 (6)0.0497 (7)0.0022 (5)0.0106 (5)0.0113 (5)
O30.0245 (5)0.0307 (5)0.0366 (6)0.0035 (4)0.0004 (4)0.0053 (4)
N10.0167 (5)0.0345 (6)0.0269 (6)0.0013 (4)0.0020 (4)0.0043 (5)
N20.0179 (5)0.0254 (6)0.0289 (6)0.0010 (4)0.0023 (4)0.0022 (4)
N30.0252 (6)0.0314 (7)0.0405 (7)0.0047 (5)0.0021 (5)0.0087 (5)
N40.0284 (6)0.0304 (7)0.0517 (8)0.0027 (5)0.0068 (5)0.0102 (6)
C10.0198 (6)0.0292 (7)0.0266 (7)0.0027 (5)0.0019 (5)0.0027 (5)
C20.0248 (6)0.0369 (8)0.0344 (8)0.0022 (6)0.0003 (5)0.0014 (6)
C30.0326 (7)0.0433 (9)0.0329 (8)0.0008 (6)0.0004 (6)0.0087 (7)
C40.0315 (7)0.0422 (9)0.0297 (7)0.0049 (6)0.0073 (6)0.0038 (6)
C50.0222 (6)0.0347 (8)0.0306 (7)0.0019 (5)0.0061 (5)0.0015 (6)
C60.0207 (6)0.0273 (7)0.0265 (6)0.0024 (5)0.0012 (5)0.0017 (5)
C70.0213 (6)0.0274 (7)0.0274 (7)0.0009 (5)0.0032 (5)0.0022 (5)
C80.0203 (6)0.0303 (7)0.0284 (7)0.0002 (5)0.0008 (5)0.0044 (5)
C90.0230 (6)0.0291 (7)0.0297 (7)0.0036 (5)0.0018 (5)0.0012 (5)
C100.0221 (6)0.0297 (7)0.0299 (7)0.0011 (5)0.0016 (5)0.0068 (6)
C110.0312 (7)0.0376 (8)0.0303 (7)0.0079 (6)0.0035 (6)0.0063 (6)
C120.0308 (7)0.0465 (9)0.0444 (9)0.0142 (7)0.0114 (7)0.0170 (8)
C130.0229 (7)0.0488 (10)0.0605 (11)0.0008 (6)0.0014 (7)0.0215 (9)
C140.0324 (8)0.0389 (9)0.0570 (11)0.0046 (7)0.0144 (7)0.0082 (8)
C150.0299 (7)0.0309 (8)0.0421 (8)0.0006 (6)0.0055 (6)0.0022 (6)
C160.0170 (6)0.0350 (7)0.0312 (7)0.0032 (5)0.0006 (5)0.0067 (6)
C170.0182 (6)0.0285 (7)0.0266 (6)0.0005 (5)0.0032 (5)0.0002 (5)
C180.0238 (6)0.0287 (7)0.0389 (8)0.0019 (5)0.0052 (6)0.0025 (6)
C190.0175 (5)0.0292 (7)0.0315 (7)0.0022 (5)0.0033 (5)0.0003 (5)
C200.0238 (6)0.0290 (7)0.0280 (7)0.0003 (5)0.0004 (5)0.0022 (5)
C210.0411 (9)0.0374 (9)0.0515 (10)0.0001 (7)0.0013 (7)0.0147 (8)
C220.0488 (10)0.0489 (10)0.0496 (10)0.0152 (8)0.0022 (8)0.0153 (9)
Geometric parameters (Å, º) top
S1—C61.7488 (15)C9—H90.9500
S1—C71.7513 (14)C10—C151.397 (2)
O1—C81.2275 (16)C10—C111.403 (2)
O2—C201.2037 (16)C11—C121.392 (2)
O3—C201.3212 (16)C11—H110.9500
O3—C211.4696 (19)C12—C131.380 (3)
N1—C81.3738 (18)C12—H120.9500
N1—C11.4297 (17)C13—C141.384 (3)
N1—C161.4686 (16)C13—H130.9500
N2—C171.3523 (16)C14—C151.388 (2)
N2—N31.3540 (17)C14—H140.9500
N2—C191.4427 (17)C15—H150.9500
N3—N41.3088 (18)C16—C171.4897 (19)
N4—C181.357 (2)C16—H16A0.9900
C1—C21.389 (2)C16—H16B0.9900
C1—C61.3999 (18)C17—C181.366 (2)
C2—C31.390 (2)C18—H180.9500
C2—H20.9500C19—C201.516 (2)
C3—C41.384 (2)C19—H19A0.9900
C3—H30.9500C19—H19B0.9900
C4—C51.383 (2)C21—C221.485 (2)
C4—H40.9500C21—H21A0.9900
C5—C61.3946 (18)C21—H21B0.9900
C5—H50.9500C22—H22A0.9800
C7—C91.346 (2)C22—H22B0.9800
C7—C81.4975 (18)C22—H22C0.9800
C9—C101.4660 (19)
C6—S1—C799.22 (7)C13—C12—H12119.7
C20—O3—C21115.99 (11)C11—C12—H12119.7
C8—N1—C1124.67 (11)C12—C13—C14119.71 (15)
C8—N1—C16116.88 (11)C12—C13—H13120.1
C1—N1—C16118.01 (11)C14—C13—H13120.1
C17—N2—N3111.00 (11)C13—C14—C15120.01 (17)
C17—N2—C19129.74 (12)C13—C14—H14120.0
N3—N2—C19119.26 (11)C15—C14—H14120.0
N4—N3—N2107.01 (11)C14—C15—C10121.12 (16)
N3—N4—C18108.73 (12)C14—C15—H15119.4
C2—C1—C6118.60 (13)C10—C15—H15119.4
C2—C1—N1121.38 (12)N1—C16—C17109.49 (11)
C6—C1—N1119.99 (12)N1—C16—H16A109.8
C1—C2—C3120.32 (14)C17—C16—H16A109.8
C1—C2—H2119.8N1—C16—H16B109.8
C3—C2—H2119.8C17—C16—H16B109.8
C4—C3—C2120.94 (15)H16A—C16—H16B108.2
C4—C3—H3119.5N2—C17—C18103.91 (12)
C2—C3—H3119.5N2—C17—C16123.63 (12)
C5—C4—C3119.36 (14)C18—C17—C16132.43 (12)
C5—C4—H4120.3N4—C18—C17109.36 (13)
C3—C4—H4120.3N4—C18—H18125.3
C4—C5—C6120.08 (13)C17—C18—H18125.3
C4—C5—H5120.0N2—C19—C20111.79 (11)
C6—C5—H5120.0N2—C19—H19A109.3
C5—C6—C1120.69 (13)C20—C19—H19A109.3
C5—C6—S1118.30 (11)N2—C19—H19B109.3
C1—C6—S1120.97 (10)C20—C19—H19B109.3
C9—C7—C8118.01 (12)H19A—C19—H19B107.9
C9—C7—S1124.36 (10)O2—C20—O3125.70 (14)
C8—C7—S1117.06 (10)O2—C20—C19124.20 (13)
O1—C8—N1121.12 (12)O3—C20—C19110.09 (11)
O1—C8—C7120.70 (13)O3—C21—C22107.30 (14)
N1—C8—C7118.17 (11)O3—C21—H21A110.3
C7—C9—C10131.28 (13)C22—C21—H21A110.3
C7—C9—H9114.4O3—C21—H21B110.3
C10—C9—H9114.4C22—C21—H21B110.3
C15—C10—C11118.13 (13)H21A—C21—H21B108.5
C15—C10—C9116.66 (13)C21—C22—H22A109.5
C11—C10—C9125.20 (14)C21—C22—H22B109.5
C12—C11—C10120.22 (16)H22A—C22—H22B109.5
C12—C11—H11119.9C21—C22—H22C109.5
C10—C11—H11119.9H22A—C22—H22C109.5
C13—C12—C11120.69 (16)H22B—C22—H22C109.5
C17—N2—N3—N40.23 (16)C8—C7—C9—C10178.60 (14)
C19—N2—N3—N4179.65 (12)S1—C7—C9—C107.6 (2)
N2—N3—N4—C180.15 (17)C7—C9—C10—C15164.25 (15)
C8—N1—C1—C2152.35 (14)C7—C9—C10—C1116.7 (3)
C16—N1—C1—C219.71 (19)C15—C10—C11—C123.4 (2)
C8—N1—C1—C629.6 (2)C9—C10—C11—C12177.55 (14)
C16—N1—C1—C6158.31 (13)C10—C11—C12—C131.3 (2)
C6—C1—C2—C30.5 (2)C11—C12—C13—C141.7 (2)
N1—C1—C2—C3178.50 (14)C12—C13—C14—C152.4 (3)
C1—C2—C3—C40.4 (2)C13—C14—C15—C100.2 (3)
C2—C3—C4—C50.7 (2)C11—C10—C15—C142.7 (2)
C3—C4—C5—C61.0 (2)C9—C10—C15—C14178.17 (14)
C4—C5—C6—C11.0 (2)C8—N1—C16—C17122.76 (13)
C4—C5—C6—S1176.62 (12)C1—N1—C16—C1764.56 (16)
C2—C1—C6—C50.7 (2)N3—N2—C17—C180.20 (15)
N1—C1—C6—C5178.82 (13)C19—N2—C17—C18179.55 (13)
C2—C1—C6—S1176.83 (11)N3—N2—C17—C16177.86 (13)
N1—C1—C6—S11.25 (18)C19—N2—C17—C161.5 (2)
C7—S1—C6—C5149.26 (11)N1—C16—C17—N2169.08 (12)
C7—S1—C6—C133.12 (13)N1—C16—C17—C1813.5 (2)
C6—S1—C7—C9144.28 (13)N3—N4—C18—C170.03 (18)
C6—S1—C7—C844.59 (12)N2—C17—C18—N40.11 (16)
C1—N1—C8—O1165.70 (14)C16—C17—C18—N4177.71 (15)
C16—N1—C8—O16.4 (2)C17—N2—C19—C2077.52 (18)
C1—N1—C8—C715.8 (2)N3—N2—C19—C20103.18 (14)
C16—N1—C8—C7172.03 (12)C21—O3—C20—O21.6 (2)
C9—C7—C8—O118.9 (2)C21—O3—C20—C19179.90 (13)
S1—C7—C8—O1152.77 (12)N2—C19—C20—O226.0 (2)
C9—C7—C8—N1162.59 (13)N2—C19—C20—O3155.45 (12)
S1—C7—C8—N125.70 (17)C20—O3—C21—C22164.23 (15)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C2—H2···O20.952.553.4726 (18)163
C16—H16B···O20.992.583.2981 (19)129
C19—H19B···O1i0.992.393.2547 (18)146
C21—H21A···N4ii0.992.573.526 (2)162
C22—H22B···O2iii0.982.593.521 (2)159
Symmetry codes: (i) x+1, y+1, z+1; (ii) x, y+1, z; (iii) x+3/2, y+1/2, z+1/2.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C2—H2···O20.952.553.4726 (18)163
C16—H16B···O20.992.583.2981 (19)129
C19—H19B···O1i0.992.393.2547 (18)146
C21—H21A···N4ii0.992.573.526 (2)162
C22—H22B···O2iii0.982.593.521 (2)159
Symmetry codes: (i) x+1, y+1, z+1; (ii) x, y+1, z; (iii) x+3/2, y+1/2, z+1/2.
 

Footnotes

Correspondence e-mail: younes.ouzidan@usmba.ac.ma.

Acknowledgements

JTM thanks Tulane University for support of the Tulane Crystallography Laboratory.

References

First citationBakavoli, M., Nikpour, M., Rahimizadeh, M., Saberi, M. R. & Sadeghian, H. (2007). Bioorg. Med. Chem. 15, 2120–2126.  Web of Science CrossRef PubMed CAS Google Scholar
First citationBrandenburg, K. & Putz, H. (2012). DIAMOND. Crystal Impact GbR, Bonn, Germany.  Google Scholar
First citationBruker (2015). APEX2, SADABS and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationDeshmukh, M. B. & Mulik, A. R. (2004). E.-J. Chem. 1, 206–210.  CrossRef CAS Google Scholar
First citationGao, L. & Hollingsworth, R. (2005). J. Org. Chem. 70, 9013–9016.  Web of Science CSD CrossRef PubMed CAS Google Scholar
First citationGautam, N. (2013). Heterocycl. Commun. 19, 37–42.  CAS Google Scholar
First citationGoyal, K., Gautam, N., Khandelwal, N. & Gautam, D. C. (2013). Nucleosides Nucleotides Nucleic Acids, 32, 81–97.  Web of Science CrossRef CAS PubMed Google Scholar
First citationGupta, R. & Gupta, A. (2011). Heteroletters, 1, 351–358.  Google Scholar
First citationHans, D. & Gautam, N. (2008). Res. J. Biotech. pp. 161–163.  Google Scholar
First citationHong, W., Wei, Z., Xi, H., Xu, W., Hu, W., Wang, Q. & Zhu, D. (2008). J. Mater. Chem. 18, 4814–4820.  Web of Science CSD CrossRef CAS Google Scholar
First citationKumar, M., Sharma, K., Samarth, R. M. & Kumar, A. (2010). Eur. J. Med. Chem. 45, 4467–4472.  Web of Science CrossRef CAS PubMed Google Scholar
First citationPodsiadły, R. (2009). J. Photochem. Photobiol. Chem. 202, 115–121.  Google Scholar
First citationSebbar, N. K., Zerzouf, A., Essassi, E. M., Saadi, M. & El Ammari, L. (2014). Acta Cryst. E70, o160–o161.  CSD CrossRef CAS IUCr Journals Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSheldrick, G. M. (2015a). Acta Cryst. A71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar
First citationSheldrick, G. M. (2015b). Acta Cryst. C71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds