organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Crystal structure of 5-[4-(di­methyl­amino)­phen­yl]-3-(4-methyl­phen­yl)-4,5-di­hydro-1H-pyrazole-1-carbaldehyde

aSchool of Chemical Sciences, Universiti Sains Malaysia, 11800 Pulau Pinang, Malaysia, and bDepartment of PG Studies in Chemistry, Alva's College, Moodbidri, Karnataka 574 227, India
*Correspondence e-mail: farook@usm.my

Edited by E. R. T. Tiekink, University of Malaya, Malaysia (Received 1 December 2015; accepted 4 December 2015; online 9 December 2015)

The title compound, C19H21N3O, comprises a central pyrazole ring which is N-connected to an aldehyde group and C-connected twice to substituted benzene rings. The pyrazole ring is twisted on the C—C single bond, and the least-squares plane through this ring forms dihedral angles of 82.44 (5) and 4.52 (5)° with the (di­methyl­amino)­benzene and p-tolyl rings, respectively. In the crystal, weak C—H⋯O hydrogen bonds link mol­ecules into supra­molecular tubes along the b axis.

1. Related literature

For pharmacological properties of pyrazole derivatives, see: Sarojini et al. (2010[Sarojini, B. K., Vidyagayatri, M., Darshanraj, C. G., Bharath, B. R. & Manjunatha, H. (2010). Lett. Drug. Des. Discov. 7, 214-224.]); Samshuddin et al. (2012[Samshuddin, S., Narayana, B., Sarojini, B. K., Khan, M. T. H., Yathirajan, H. S., Raj, C. G. D. & Raghavendra, R. (2012). Med. Chem. Res. 21, 2012-2022.]). For their industrial applications, see: Wiley et al. (1958[Wiley, R. H., Jarboe, C. H., Hayes, F. N., Hansbury, E., Nielsen, J. T., Callahan, P. X. & Sellars, M. (1958). J. Org. Chem. 23, 732-738.]); Lu et al. (1999[Lu, Z. Y., Zhu, W. G., Jiang, Q. & Xie, M. G. (1999). Chin. Chem. Lett. 10, 679-682.]). For related structures, see Fun et al. (2010[Fun, H.-K., Hemamalini, M., Samshuddin, S., Narayana, B. & Yathirajan, H. S. (2010). Acta Cryst. E66, o582-o583.]); Baktır et al. (2011[Baktır, Z., Akkurt, M., Samshuddin, S., Narayana, B. & Yathirajan, H. S. (2011). Acta Cryst. E67, o1292-o1293.]).

[Scheme 1]

2. Experimental

2.1. Crystal data

  • C19H21N3O

  • Mr = 307.39

  • Monoclinic, C 2/c

  • a = 21.9524 (15) Å

  • b = 6.2511 (4) Å

  • c = 24.1521 (16) Å

  • β = 106.3069 (9)°

  • V = 3181.0 (4) Å3

  • Z = 8

  • Mo Kα radiation

  • μ = 0.08 mm−1

  • T = 100 K

  • 0.45 × 0.26 × 0.15 mm

2.2. Data collection

  • Bruker APEX DUO CCD area-detector diffractometer

  • Absorption correction: multi-scan (SADABS; Sheldrick, 1996[Sheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.]) Tmin = 0.921, Tmax = 0.962

  • 27492 measured reflections

  • 4750 independent reflections

  • 4090 reflections with I > 2σ(I)

  • Rint = 0.028

2.3. Refinement

  • R[F2 > 2σ(F2)] = 0.043

  • wR(F2) = 0.122

  • S = 1.04

  • 4750 reflections

  • 211 parameters

  • H-atom parameters constrained

  • Δρmax = 0.37 e Å−3

  • Δρmin = −0.22 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
C1—H1A⋯O1i 0.95 2.52 3.4175 (12) 158
C19—H19A⋯O1ii 0.98 2.45 3.3902 (15) 161
Symmetry codes: (i) x, y-1, z; (ii) [-x+{\script{1\over 2}}, y-{\script{1\over 2}}, -z+{\script{1\over 2}}].

Data collection: APEX2 (Bruker, 2014[Bruker (2014). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2014[Bruker (2014). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXS2013 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL2014 (Sheldrick, 2015[Sheldrick, G. M. (2015). Acta Cryst. C71, 3-8.]); molecular graphics: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); software used to prepare material for publication: PLATON (Spek, 2009[Spek, A. L. (2009). Acta Cryst. D65, 148-155.]).

Supporting information


Introduction top

Pyrazolyl derivatives are well-known for their versatile pharmacological activities (Sarojini et al., 2010; Samshuddin et al., 2012). In addition, many 1,3,5-tri­aryl-2-pyrazolyls have a variety of industrial applications such as functioning as scintillation solutes (Wiley et al., 1958) and fluorescent agents (Lu et al., 1999). The crystal structures of some pyrazolyls containing a N-alkyl chain viz., 3,5-bis­(4-fluoro­phenyl)-4,5-di­hydro-1H-pyrazole-1-carbaldehyde (Baktır et al., 2011) and 1-[3,5-bis­(4-fluoro­phenyl)-4,5-di­hydro-1H-pyrazol-1-yl]ethanone (Fun et al., 2010) have been reported. In view of the importance of pyrazolines, the title compound (I) was prepared and its crystal structure reported.

Supra­molecular features top

The asymmetric unit of (I) consists of a single crystallographic independent molecule as shown in Fig. 1. The pyrazoline ring (N1/N2/C7/C8/C9) is twisted about the C8—C7 bond [Q2 = 0.0964 (10) Å and φ2 = 133.5 (6)°] with maximum deviations of 0.057 (1) and -0.053 (1) Å from its mean plane for atoms C7 and C8, respectively. The methyl-substituted phenyl ring (C10–C15) and di­methyl­amino-substituted phenyl ring (C1–C6) make dihedral angles of 4.52 (5) and 82.44 (5)°, respectively, with the pyrazoline ring. In crystal, molecules are connected by weak C—H···O hydrogen bonds into one-dimensional spiral-like chains (Fig. 2), propagating along the crystallographic b-axis.

Synthesis and crystallization top

A mixture of (2E)-3-[4-(di­methyl­amino)­phenyl]-1-(4-methyl­phenyl)­prop-2-en-1-one (2.65 g, 0.01 mol) and hydrazine hydrate (1 ml) in 30 ml formic acid was refluxed for 6 h. The reaction mixture was cooled and poured into 250 ml ice-cold water. The precipitate formed was collected by filtration and purified by recrystallization from ethanol. Single crystals were grown from ethyl acetate by slow evaporation (m.p 473–476 K; yield: 68%).

Refinement top

The carbon-bound H-atoms were placed in calculated positions (C—H = 0.95–1.00 Å) and were included in the refinement in the riding model approximation, with Uiso(H) set to 1.2–1.5Uequiv(C) A rotating group model was applied to methyl groups.

Related literature top

For pharmacological properties of pyrazole derivatives, see: Sarojini et al. (2010); Samshuddin et al. (2012). For their industrial applications, see: Wiley et al. (1958); Lu et al. (1999). For related structures, see Fun et al. (2010); Baktır et al. (2011).

Structure description top

Pyrazolyl derivatives are well-known for their versatile pharmacological activities (Sarojini et al., 2010; Samshuddin et al., 2012). In addition, many 1,3,5-tri­aryl-2-pyrazolyls have a variety of industrial applications such as functioning as scintillation solutes (Wiley et al., 1958) and fluorescent agents (Lu et al., 1999). The crystal structures of some pyrazolyls containing a N-alkyl chain viz., 3,5-bis­(4-fluoro­phenyl)-4,5-di­hydro-1H-pyrazole-1-carbaldehyde (Baktır et al., 2011) and 1-[3,5-bis­(4-fluoro­phenyl)-4,5-di­hydro-1H-pyrazol-1-yl]ethanone (Fun et al., 2010) have been reported. In view of the importance of pyrazolines, the title compound (I) was prepared and its crystal structure reported.

The asymmetric unit of (I) consists of a single crystallographic independent molecule as shown in Fig. 1. The pyrazoline ring (N1/N2/C7/C8/C9) is twisted about the C8—C7 bond [Q2 = 0.0964 (10) Å and φ2 = 133.5 (6)°] with maximum deviations of 0.057 (1) and -0.053 (1) Å from its mean plane for atoms C7 and C8, respectively. The methyl-substituted phenyl ring (C10–C15) and di­methyl­amino-substituted phenyl ring (C1–C6) make dihedral angles of 4.52 (5) and 82.44 (5)°, respectively, with the pyrazoline ring. In crystal, molecules are connected by weak C—H···O hydrogen bonds into one-dimensional spiral-like chains (Fig. 2), propagating along the crystallographic b-axis.

For pharmacological properties of pyrazole derivatives, see: Sarojini et al. (2010); Samshuddin et al. (2012). For their industrial applications, see: Wiley et al. (1958); Lu et al. (1999). For related structures, see Fun et al. (2010); Baktır et al. (2011).

Synthesis and crystallization top

A mixture of (2E)-3-[4-(di­methyl­amino)­phenyl]-1-(4-methyl­phenyl)­prop-2-en-1-one (2.65 g, 0.01 mol) and hydrazine hydrate (1 ml) in 30 ml formic acid was refluxed for 6 h. The reaction mixture was cooled and poured into 250 ml ice-cold water. The precipitate formed was collected by filtration and purified by recrystallization from ethanol. Single crystals were grown from ethyl acetate by slow evaporation (m.p 473–476 K; yield: 68%).

Refinement details top

The carbon-bound H-atoms were placed in calculated positions (C—H = 0.95–1.00 Å) and were included in the refinement in the riding model approximation, with Uiso(H) set to 1.2–1.5Uequiv(C) A rotating group model was applied to methyl groups.

Computing details top

Data collection: APEX2 (Bruker, 2014); cell refinement: SAINT (Bruker, 2014); data reduction: SAINT (Bruker, 2014); program(s) used to solve structure: SHELXS2013 (Sheldrick, 2008); program(s) used to refine structure: SHELXL2014 (Sheldrick, 2015); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: PLATON (Spek, 2009).

Figures top
[Figure 1] Fig. 1. The molecular structure of (I), showing the atom labels and 50% probability displacement ellipsoids.
[Figure 2] Fig. 2. The crystal packing of (I), viewed along the b axis.
5-[4-(Dimethylamino)phenyl]-3-(4-methylphenyl)-4,5-dihydro-1H-pyrazole-1-carbaldehyde top
Crystal data top
C19H21N3OF(000) = 1312
Mr = 307.39Dx = 1.284 Mg m3
Monoclinic, C2/cMo Kα radiation, λ = 0.71073 Å
a = 21.9524 (15) ÅCell parameters from 9179 reflections
b = 6.2511 (4) Åθ = 3.0–30.3°
c = 24.1521 (16) ŵ = 0.08 mm1
β = 106.3069 (9)°T = 100 K
V = 3181.0 (4) Å3Block, colourless
Z = 80.45 × 0.26 × 0.15 mm
Data collection top
Bruker APEX DUO CCD area-detector
diffractometer
4750 independent reflections
Radiation source: fine-focus sealed tube4090 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.028
φ and ω scansθmax = 30.3°, θmin = 1.8°
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
h = 3029
Tmin = 0.921, Tmax = 0.962k = 88
27492 measured reflectionsl = 3434
Refinement top
Refinement on F20 restraints
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.043H-atom parameters constrained
wR(F2) = 0.122 w = 1/[σ2(Fo2) + (0.0683P)2 + 1.9935P]
where P = (Fo2 + 2Fc2)/3
S = 1.04(Δ/σ)max < 0.001
4750 reflectionsΔρmax = 0.37 e Å3
211 parametersΔρmin = 0.22 e Å3
Crystal data top
C19H21N3OV = 3181.0 (4) Å3
Mr = 307.39Z = 8
Monoclinic, C2/cMo Kα radiation
a = 21.9524 (15) ŵ = 0.08 mm1
b = 6.2511 (4) ÅT = 100 K
c = 24.1521 (16) Å0.45 × 0.26 × 0.15 mm
β = 106.3069 (9)°
Data collection top
Bruker APEX DUO CCD area-detector
diffractometer
4750 independent reflections
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
4090 reflections with I > 2σ(I)
Tmin = 0.921, Tmax = 0.962Rint = 0.028
27492 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0430 restraints
wR(F2) = 0.122H-atom parameters constrained
S = 1.04Δρmax = 0.37 e Å3
4750 reflectionsΔρmin = 0.22 e Å3
211 parameters
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
O10.06265 (4)0.29904 (12)0.11364 (3)0.02109 (17)
N10.01154 (4)0.01958 (13)0.10464 (3)0.01627 (17)
N20.01890 (4)0.18157 (13)0.06779 (3)0.01565 (17)
N30.25348 (4)0.20563 (14)0.32043 (4)0.01865 (18)
C10.09931 (5)0.28895 (16)0.21033 (4)0.01817 (19)
H1A0.07790.40020.18570.022*
C20.15816 (5)0.33020 (16)0.24891 (4)0.01840 (19)
H2A0.17570.46990.25080.022*
C30.19237 (5)0.16856 (15)0.28528 (4)0.01578 (18)
C40.16344 (5)0.03445 (15)0.28189 (4)0.01599 (18)
H4A0.18470.14670.30620.019*
C50.10411 (5)0.07238 (15)0.24333 (4)0.01551 (18)
H5A0.08580.21080.24180.019*
C60.07085 (5)0.08737 (15)0.20693 (4)0.01555 (18)
C70.00689 (5)0.04206 (15)0.16474 (4)0.01606 (18)
H7A0.01150.09110.17640.019*
C80.04155 (5)0.22678 (17)0.15670 (4)0.01855 (19)
H8A0.02550.34270.18500.022*
H8B0.08280.17550.16070.022*
C90.04769 (4)0.30150 (15)0.09584 (4)0.01509 (18)
C100.08377 (4)0.48998 (15)0.06946 (4)0.01530 (18)
C110.08705 (5)0.55364 (16)0.01292 (4)0.01714 (19)
H11A0.06600.47180.00930.021*
C120.12078 (5)0.73494 (16)0.01069 (4)0.01826 (19)
H12A0.12260.77540.04900.022*
C130.15214 (5)0.85946 (16)0.02091 (4)0.0189 (2)
C140.14841 (5)0.79645 (18)0.07700 (5)0.0228 (2)
H14A0.16900.87970.09930.027*
C150.11508 (5)0.61392 (17)0.10118 (4)0.0203 (2)
H15A0.11360.57330.13940.024*
C160.03751 (4)0.14662 (16)0.08404 (4)0.01661 (18)
H16A0.03630.14570.04440.020*
C170.18897 (6)1.05622 (18)0.00455 (5)0.0265 (2)
H17A0.16731.12910.02950.040*
H17B0.23171.01480.02730.040*
H17C0.19191.15280.02660.040*
C180.27313 (5)0.42547 (17)0.33548 (5)0.0208 (2)
H18A0.31820.42820.35700.031*
H18B0.26650.51050.30020.031*
H18C0.24790.48570.35940.031*
C190.28414 (5)0.04748 (17)0.36345 (5)0.0205 (2)
H19A0.32900.08450.37940.031*
H19B0.26340.04560.39450.031*
H19C0.28060.09410.34540.031*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
O10.0212 (3)0.0179 (3)0.0216 (4)0.0049 (3)0.0017 (3)0.0014 (3)
N10.0194 (4)0.0166 (4)0.0116 (3)0.0050 (3)0.0023 (3)0.0016 (3)
N20.0171 (4)0.0146 (4)0.0137 (4)0.0027 (3)0.0017 (3)0.0016 (3)
N30.0183 (4)0.0157 (4)0.0204 (4)0.0010 (3)0.0028 (3)0.0008 (3)
C10.0234 (5)0.0151 (4)0.0158 (4)0.0033 (3)0.0051 (3)0.0029 (3)
C20.0233 (5)0.0137 (4)0.0184 (4)0.0003 (3)0.0063 (4)0.0006 (3)
C30.0185 (4)0.0156 (4)0.0141 (4)0.0009 (3)0.0059 (3)0.0007 (3)
C40.0194 (4)0.0144 (4)0.0138 (4)0.0018 (3)0.0041 (3)0.0013 (3)
C50.0194 (4)0.0135 (4)0.0135 (4)0.0005 (3)0.0044 (3)0.0003 (3)
C60.0187 (4)0.0157 (4)0.0121 (4)0.0021 (3)0.0041 (3)0.0007 (3)
C70.0182 (4)0.0175 (4)0.0121 (4)0.0028 (3)0.0037 (3)0.0018 (3)
C80.0199 (4)0.0220 (5)0.0145 (4)0.0060 (4)0.0060 (3)0.0034 (3)
C90.0143 (4)0.0165 (4)0.0138 (4)0.0010 (3)0.0030 (3)0.0012 (3)
C100.0143 (4)0.0157 (4)0.0150 (4)0.0014 (3)0.0026 (3)0.0002 (3)
C110.0198 (4)0.0162 (4)0.0154 (4)0.0026 (3)0.0051 (3)0.0004 (3)
C120.0212 (4)0.0175 (4)0.0148 (4)0.0018 (3)0.0029 (3)0.0011 (3)
C130.0182 (4)0.0171 (4)0.0187 (4)0.0039 (3)0.0007 (3)0.0004 (3)
C140.0236 (5)0.0257 (5)0.0194 (5)0.0110 (4)0.0063 (4)0.0002 (4)
C150.0214 (5)0.0238 (5)0.0160 (4)0.0073 (4)0.0057 (4)0.0021 (4)
C160.0160 (4)0.0167 (4)0.0158 (4)0.0017 (3)0.0024 (3)0.0018 (3)
C170.0296 (5)0.0218 (5)0.0240 (5)0.0107 (4)0.0010 (4)0.0018 (4)
C180.0230 (5)0.0185 (5)0.0214 (5)0.0047 (4)0.0069 (4)0.0027 (4)
C190.0177 (4)0.0208 (5)0.0213 (5)0.0008 (4)0.0026 (4)0.0018 (4)
Geometric parameters (Å, º) top
O1—C161.2256 (12)C8—H8B0.9900
N1—C161.3459 (12)C9—C101.4622 (13)
N1—N21.3892 (11)C10—C151.3982 (13)
N1—C71.4901 (12)C10—C111.4049 (13)
N2—C91.2889 (12)C11—C121.3858 (13)
N3—C31.3908 (12)C11—H11A0.9500
N3—C191.4550 (13)C12—C131.3991 (14)
N3—C181.4556 (13)C12—H12A0.9500
C1—C21.3884 (14)C13—C141.3910 (15)
C1—C61.3986 (14)C13—C171.5051 (14)
C1—H1A0.9500C14—C151.3922 (14)
C2—C31.4094 (13)C14—H14A0.9500
C2—H2A0.9500C15—H15A0.9500
C3—C41.4112 (13)C16—H16A0.9500
C4—C51.3923 (13)C17—H17A0.9800
C4—H4A0.9500C17—H17B0.9800
C5—C61.3938 (13)C17—H17C0.9800
C5—H5A0.9500C18—H18A0.9800
C6—C71.5121 (13)C18—H18B0.9800
C7—C81.5446 (14)C18—H18C0.9800
C7—H7A1.0000C19—H19A0.9800
C8—C91.5118 (13)C19—H19B0.9800
C8—H8A0.9900C19—H19C0.9800
C16—N1—N2120.22 (8)C15—C10—C11118.47 (9)
C16—N1—C7125.80 (8)C15—C10—C9119.82 (9)
N2—N1—C7113.78 (7)C11—C10—C9121.70 (8)
C9—N2—N1107.81 (8)C12—C11—C10120.48 (9)
C3—N3—C19119.75 (8)C12—C11—H11A119.8
C3—N3—C18118.50 (8)C10—C11—H11A119.8
C19—N3—C18114.70 (8)C11—C12—C13121.23 (9)
C2—C1—C6121.52 (9)C11—C12—H12A119.4
C2—C1—H1A119.2C13—C12—H12A119.4
C6—C1—H1A119.2C14—C13—C12118.05 (9)
C1—C2—C3121.18 (9)C14—C13—C17120.48 (9)
C1—C2—H2A119.4C12—C13—C17121.47 (9)
C3—C2—H2A119.4C13—C14—C15121.39 (9)
N3—C3—C2120.99 (9)C13—C14—H14A119.3
N3—C3—C4121.77 (9)C15—C14—H14A119.3
C2—C3—C4117.14 (9)C14—C15—C10120.38 (9)
C5—C4—C3120.88 (9)C14—C15—H15A119.8
C5—C4—H4A119.6C10—C15—H15A119.8
C3—C4—H4A119.6O1—C16—N1123.54 (9)
C4—C5—C6121.73 (9)O1—C16—H16A118.2
C4—C5—H5A119.1N1—C16—H16A118.2
C6—C5—H5A119.1C13—C17—H17A109.5
C5—C6—C1117.53 (9)C13—C17—H17B109.5
C5—C6—C7120.91 (8)H17A—C17—H17B109.5
C1—C6—C7121.55 (8)C13—C17—H17C109.5
N1—C7—C6111.69 (8)H17A—C17—H17C109.5
N1—C7—C8100.43 (7)H17B—C17—H17C109.5
C6—C7—C8114.89 (8)N3—C18—H18A109.5
N1—C7—H7A109.8N3—C18—H18B109.5
C6—C7—H7A109.8H18A—C18—H18B109.5
C8—C7—H7A109.8N3—C18—H18C109.5
C9—C8—C7102.92 (8)H18A—C18—H18C109.5
C9—C8—H8A111.2H18B—C18—H18C109.5
C7—C8—H8A111.2N3—C19—H19A109.5
C9—C8—H8B111.2N3—C19—H19B109.5
C7—C8—H8B111.2H19A—C19—H19B109.5
H8A—C8—H8B109.1N3—C19—H19C109.5
N2—C9—C10121.69 (9)H19A—C19—H19C109.5
N2—C9—C8114.10 (8)H19B—C19—H19C109.5
C10—C9—C8124.20 (8)
C16—N1—N2—C9170.18 (9)C1—C6—C7—C838.39 (12)
C7—N1—N2—C94.90 (11)N1—C7—C8—C99.05 (9)
C6—C1—C2—C31.62 (15)C6—C7—C8—C9110.93 (9)
C19—N3—C3—C2171.16 (9)N1—N2—C9—C10179.08 (8)
C18—N3—C3—C222.08 (13)N1—N2—C9—C82.03 (11)
C19—N3—C3—C412.60 (14)C7—C8—C9—N27.57 (11)
C18—N3—C3—C4161.68 (9)C7—C8—C9—C10173.57 (9)
C1—C2—C3—N3174.66 (9)N2—C9—C10—C15179.05 (9)
C1—C2—C3—C41.75 (14)C8—C9—C10—C150.28 (14)
N3—C3—C4—C5175.25 (9)N2—C9—C10—C112.17 (15)
C2—C3—C4—C51.13 (14)C8—C9—C10—C11179.05 (9)
C3—C4—C5—C60.36 (14)C15—C10—C11—C120.19 (15)
C4—C5—C6—C10.14 (14)C9—C10—C11—C12178.98 (9)
C4—C5—C6—C7179.11 (8)C10—C11—C12—C130.23 (15)
C2—C1—C6—C50.77 (14)C11—C12—C13—C140.17 (15)
C2—C1—C6—C7179.72 (9)C11—C12—C13—C17179.86 (9)
C16—N1—C7—C672.07 (12)C12—C13—C14—C150.62 (16)
N2—N1—C7—C6113.18 (9)C17—C13—C14—C15179.41 (10)
C16—N1—C7—C8165.67 (9)C13—C14—C15—C100.67 (17)
N2—N1—C7—C89.08 (10)C11—C10—C15—C140.25 (15)
C5—C6—C7—N1103.78 (10)C9—C10—C15—C14178.56 (9)
C1—C6—C7—N175.15 (11)N2—N1—C16—O1176.82 (9)
C5—C6—C7—C8142.69 (9)C7—N1—C16—O12.38 (16)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C1—H1A···O1i0.952.523.4175 (12)158
C19—H19A···O1ii0.982.453.3902 (15)161
Symmetry codes: (i) x, y1, z; (ii) x+1/2, y1/2, z+1/2.

Experimental details

Crystal data
Chemical formulaC19H21N3O
Mr307.39
Crystal system, space groupMonoclinic, C2/c
Temperature (K)100
a, b, c (Å)21.9524 (15), 6.2511 (4), 24.1521 (16)
β (°) 106.3069 (9)
V3)3181.0 (4)
Z8
Radiation typeMo Kα
µ (mm1)0.08
Crystal size (mm)0.45 × 0.26 × 0.15
Data collection
DiffractometerBruker APEX DUO CCD area-detector
Absorption correctionMulti-scan
(SADABS; Sheldrick, 1996)
Tmin, Tmax0.921, 0.962
No. of measured, independent and
observed [I > 2σ(I)] reflections
27492, 4750, 4090
Rint0.028
(sin θ/λ)max1)0.710
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.043, 0.122, 1.04
No. of reflections4750
No. of parameters211
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.37, 0.22

Computer programs: APEX2 (Bruker, 2014), SAINT (Bruker, 2014), SHELXS2013 (Sheldrick, 2008), SHELXL2014 (Sheldrick, 2015), SHELXTL (Sheldrick, 2008), PLATON (Spek, 2009).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C1—H1A···O1i0.95002.523.4175 (12)158
C19—H19A···O1ii0.98002.453.3902 (15)161
Symmetry codes: (i) x, y1, z; (ii) x+1/2, y1/2, z+1/2.
 

Acknowledgements

SS thanks Alva's Education Foundation, Moodbidri, for providing research facilities. The authors would like to thank Universiti Malaysia Kelantan, SLAI, the Malaysian Ministry of Higher Education and the Universiti Sains Malaysia for RU research grants (Nos. PKIMIA/846017 and 1001/PKIMIA/811269), which partly supported this work.

References

First citationBaktır, Z., Akkurt, M., Samshuddin, S., Narayana, B. & Yathirajan, H. S. (2011). Acta Cryst. E67, o1292–o1293.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationBruker (2014). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationFun, H.-K., Hemamalini, M., Samshuddin, S., Narayana, B. & Yathirajan, H. S. (2010). Acta Cryst. E66, o582–o583.  Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
First citationLu, Z. Y., Zhu, W. G., Jiang, Q. & Xie, M. G. (1999). Chin. Chem. Lett. 10, 679–682.  CAS Google Scholar
First citationSamshuddin, S., Narayana, B., Sarojini, B. K., Khan, M. T. H., Yathirajan, H. S., Raj, C. G. D. & Raghavendra, R. (2012). Med. Chem. Res. 21, 2012–2022.  Web of Science CSD CrossRef CAS Google Scholar
First citationSarojini, B. K., Vidyagayatri, M., Darshanraj, C. G., Bharath, B. R. & Manjunatha, H. (2010). Lett. Drug. Des. Discov. 7, 214–224.  CrossRef Google Scholar
First citationSheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSheldrick, G. M. (2015). Acta Cryst. C71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar
First citationSpek, A. L. (2009). Acta Cryst. D65, 148–155.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationWiley, R. H., Jarboe, C. H., Hayes, F. N., Hansbury, E., Nielsen, J. T., Callahan, P. X. & Sellars, M. (1958). J. Org. Chem. 23, 732–738.  CrossRef CAS Web of Science Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds