organic compounds
of 2-(5-methoxy-1-benzofuran-3-yl)acetic acid
aDepartment of Physics, Govt. College for Women, Kolar 563 101, Karnataka, India, bDepartment of Physics, Govt. College for Women, Mandya 571 401, Karnataka, India, cDepartment of Physics, Govt. PU College, Jayanagara, Bangalore 560 011, Karnataka, India, and dDepartment of Chemistry, P.C. Jabin Science College, Hubli 580 031, Karnataka, India
*Correspondence e-mail: rkgowdaphy@gmail.com
The benzofuran residue in the title compound, C11H10O4, is essentially planar (the r.m.s. deviation for the nine non-H atoms = 0.011 Å). While the methoxy group is coplanar with the fused ring system [C—C—O—C torsion angle = 3.1 (3)°], the acetic acid residue occupies a position almost prime [C—C—C—C = 77.0 (2)°]. In the crystal, centrosymmetrically related molecules are linked by O—H⋯O hydrogen bonds to form eight-membered {⋯HOCO}2 synthons. The dimeric aggregates assemble into supramolecular layers in the ab plane via benzene-C—H⋯O(ring) interactions.
Keywords: crystal structure; benzofuran; hydrogen bonding.
CCDC reference: 1401314
1. Related literature
For a related structures and background to benzofurans and their applications, see: Dawood (2013); Khanam & Shamsuzzaman (2015); Radadiya & Shah (2015); Naik et al. (2015); Nevagi et al. (2015). For the synthesis, see: Basanagouda et al. (2015).
2. Experimental
2.1. Crystal data
|
2.3. Refinement
|
|
Data collection: APEX2 (Bruker, 2004); cell APEX2 and SAINT (Bruker, 2004); data reduction: SAINT and XPREP (Bruker, 2004); program(s) used to solve structure: SIR92 (Altomare et al., 1994); program(s) used to refine structure: SHELXL2014 (Sheldrick, 2015); molecular graphics: ORTEP-3 for Windows (Farrugia, 2012) and Mercury (Bruno et al., 2002); software used to prepare material for publication: SHELXL2014.
Supporting information
CCDC reference: 1401314
https://doi.org/10.1107/S2056989015023609/tk5414sup1.cif
contains datablocks I, New_Global_Publ_Block. DOI:Structure factors: contains datablock I. DOI: https://doi.org/10.1107/S2056989015023609/tk5414Isup2.hkl
Supporting information file. DOI: https://doi.org/10.1107/S2056989015023609/tk5414Isup3.cml
6-Methoxy-4-bromomethylcoumarin (10 mM) was refluxed in 1 M NaOH (100 mL) for 2 h (monitored by TLC). The reaction mixture was cooled, neutralized with 1 M HCl and the obtained product was filtered off and dried. Colourless blocks were obtained by recrystallization from ethanol and ethyl acetate mixture by slow evaporation.
The carbon-bound H-atoms were placed in calculated positions (C—H = 0.93–0.97 Å) and were included in the
in the riding model approximation, with Uiso(H) set to 1.2–1.5Uequiv(C). The oxygen-bound H-atom was also placed in a calculated position (O—H = 0.82 Å) with Uiso(H) set to 1.5Uequiv(O).Benzofuran scaffolds have drawn considerable attention due to their physiological and chemotherapeutic properties as well as their widespread occurrence in nature. They display potent biological properties including antihyperglycemic, analgesic, antiparasitic, antimicrobial, antitumor and kinase inhibitor activities (Dawood, 2013; Khanam & Shamsuzzaman, 2015; Radadiya & Shah, 2015; Naik et al. 2015; Nevagi et al. 2015). In addition, substituted benzofurans find application such as fluorescent sensors, oxidant, antioxidants and brightening agents. The derivatives of 2,3-dihydro-benzofuranyl-3-acetic acid have been reported to be potent, selective and orally bioavailable G protein-coupled receptor 40 (GPR40) and free fatty acid receptor 1 agonists (FFA1) (Basanagouda et al., 2015). A perspective view of the molecule is shown in Fig. 1 and geomtric data for the intermolecular interactions are listed in Table 1.
For a related structures and background to benzofurans and their applications, see: Dawood (2013); Khanam & Shamsuzzaman (2015); Radadiya & Shah (2015); Naik et al. (2015); Nevagi et al. (2015). For the synthesis, see: Basanagouda et al. (2015).
Data collection: APEX2 (Bruker, 2004); cell
APEX2 and SAINT (Bruker, 2004); data reduction: SAINT and XPREP (Bruker, 2004); program(s) used to solve structure: SIR92 (Altomare et al., 1994); program(s) used to refine structure: SHELXL2014 (Sheldrick, 2015); molecular graphics: ORTEP-3 for Windows (Farrugia, 2012) and Mercury (Bruno et al., 2002); software used to prepare material for publication: SHELXL2014 (Sheldrick, 2015).Fig. 1. Molecular structure of the title compound showing atom labelling and 40% probability displacement ellipsoids. |
C11H10O4 | Dx = 1.433 Mg m−3 |
Mr = 206.19 | Melting point: 413 K |
Monoclinic, P21/c | Mo Kα radiation, λ = 0.71073 Å |
a = 5.8096 (3) Å | Cell parameters from 5229 reflections |
b = 13.2034 (5) Å | θ = 2.2–28.6° |
c = 12.5738 (6) Å | µ = 0.11 mm−1 |
β = 97.641 (3)° | T = 296 K |
V = 955.93 (8) Å3 | Block, colourless |
Z = 4 | 0.35 × 0.30 × 0.25 mm |
F(000) = 432 |
Bruker Kappa APEXII CCD diffractometer | 2094 independent reflections |
Radiation source: fine-focus sealed tube | 1621 reflections with I > 2σ(I) |
Graphite monochromator | Rint = 0.024 |
ω and φ scan | θmax = 27.0°, θmin = 2.3° |
Absorption correction: multi-scan (SADABS; Bruker, 2004) | h = −7→7 |
Tmin = 0.961, Tmax = 0.979 | k = −16→16 |
12813 measured reflections | l = −16→16 |
Refinement on F2 | Hydrogen site location: inferred from neighbouring sites |
Least-squares matrix: full | H-atom parameters constrained |
R[F2 > 2σ(F2)] = 0.040 | w = 1/[σ2(Fo2) + (0.0364P)2 + 0.4069P] where P = (Fo2 + 2Fc2)/3 |
wR(F2) = 0.110 | (Δ/σ)max < 0.001 |
S = 1.12 | Δρmax = 0.22 e Å−3 |
2094 reflections | Δρmin = −0.16 e Å−3 |
137 parameters | Extinction correction: SHELXL2014 (Sheldrick, 2015), Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4 |
0 restraints | Extinction coefficient: 0.017 (3) |
C11H10O4 | V = 955.93 (8) Å3 |
Mr = 206.19 | Z = 4 |
Monoclinic, P21/c | Mo Kα radiation |
a = 5.8096 (3) Å | µ = 0.11 mm−1 |
b = 13.2034 (5) Å | T = 296 K |
c = 12.5738 (6) Å | 0.35 × 0.30 × 0.25 mm |
β = 97.641 (3)° |
Bruker Kappa APEXII CCD diffractometer | 2094 independent reflections |
Absorption correction: multi-scan (SADABS; Bruker, 2004) | 1621 reflections with I > 2σ(I) |
Tmin = 0.961, Tmax = 0.979 | Rint = 0.024 |
12813 measured reflections |
R[F2 > 2σ(F2)] = 0.040 | 0 restraints |
wR(F2) = 0.110 | H-atom parameters constrained |
S = 1.12 | Δρmax = 0.22 e Å−3 |
2094 reflections | Δρmin = −0.16 e Å−3 |
137 parameters |
Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes. |
x | y | z | Uiso*/Ueq | ||
C1 | 0.4010 (3) | 0.61606 (13) | 0.80077 (14) | 0.0432 (4) | |
C2 | 0.2178 (3) | 0.67578 (12) | 0.82316 (13) | 0.0389 (4) | |
H2 | 0.1770 | 0.6787 | 0.8922 | 0.047* | |
C3 | 0.0964 (3) | 0.73116 (11) | 0.74025 (12) | 0.0349 (4) | |
C4 | 0.1631 (3) | 0.72515 (13) | 0.63818 (13) | 0.0398 (4) | |
C5 | 0.3460 (3) | 0.66724 (14) | 0.61521 (14) | 0.0477 (5) | |
H5 | 0.3882 | 0.6653 | 0.5464 | 0.057* | |
C6 | 0.4647 (3) | 0.61208 (14) | 0.69782 (15) | 0.0479 (5) | |
H6 | 0.5890 | 0.5716 | 0.6848 | 0.057* | |
C7 | 0.7098 (4) | 0.50545 (17) | 0.8728 (2) | 0.0646 (6) | |
H7A | 0.7685 | 0.4733 | 0.9394 | 0.097* | |
H7B | 0.6680 | 0.4547 | 0.8190 | 0.097* | |
H7C | 0.8272 | 0.5488 | 0.8506 | 0.097* | |
C8 | −0.0997 (3) | 0.79821 (12) | 0.73082 (13) | 0.0378 (4) | |
C9 | −0.1369 (3) | 0.82596 (14) | 0.62760 (14) | 0.0476 (4) | |
H9 | −0.2559 | 0.8692 | 0.5995 | 0.057* | |
C10 | −0.2391 (3) | 0.82719 (13) | 0.81742 (14) | 0.0421 (4) | |
H10A | −0.2708 | 0.7666 | 0.8566 | 0.051* | |
H10B | −0.3869 | 0.8541 | 0.7845 | 0.051* | |
C11 | −0.1270 (3) | 0.90353 (12) | 0.89552 (13) | 0.0367 (4) | |
O1 | −0.2484 (2) | 0.92135 (9) | 0.97334 (10) | 0.0491 (4) | |
H1 | −0.1813 | 0.9636 | 1.0141 | 0.074* | |
O2 | 0.0578 (2) | 0.94412 (10) | 0.88700 (10) | 0.0514 (4) | |
O3 | 0.5123 (3) | 0.56354 (12) | 0.88677 (12) | 0.0665 (4) | |
O4 | 0.0193 (2) | 0.78381 (10) | 0.56745 (9) | 0.0503 (4) |
U11 | U22 | U33 | U12 | U13 | U23 | |
C1 | 0.0431 (9) | 0.0419 (9) | 0.0459 (10) | −0.0026 (7) | 0.0101 (8) | −0.0053 (7) |
C2 | 0.0428 (9) | 0.0434 (9) | 0.0328 (8) | −0.0051 (7) | 0.0133 (7) | −0.0068 (7) |
C3 | 0.0381 (8) | 0.0356 (8) | 0.0329 (8) | −0.0099 (7) | 0.0113 (6) | −0.0089 (6) |
C4 | 0.0456 (9) | 0.0428 (9) | 0.0325 (8) | −0.0113 (7) | 0.0114 (7) | −0.0072 (7) |
C5 | 0.0537 (11) | 0.0543 (10) | 0.0394 (9) | −0.0101 (9) | 0.0218 (8) | −0.0140 (8) |
C6 | 0.0464 (10) | 0.0477 (10) | 0.0535 (11) | −0.0024 (8) | 0.0215 (8) | −0.0139 (8) |
C7 | 0.0515 (12) | 0.0578 (12) | 0.0832 (15) | 0.0092 (10) | 0.0038 (11) | −0.0052 (11) |
C8 | 0.0383 (9) | 0.0399 (8) | 0.0360 (8) | −0.0087 (7) | 0.0075 (7) | −0.0069 (7) |
C9 | 0.0477 (10) | 0.0514 (10) | 0.0439 (10) | −0.0038 (8) | 0.0065 (8) | −0.0018 (8) |
C10 | 0.0363 (9) | 0.0472 (9) | 0.0438 (9) | −0.0026 (7) | 0.0093 (7) | −0.0071 (7) |
C11 | 0.0408 (9) | 0.0362 (8) | 0.0349 (8) | 0.0018 (7) | 0.0118 (7) | −0.0002 (6) |
O1 | 0.0558 (8) | 0.0503 (7) | 0.0461 (7) | −0.0115 (6) | 0.0248 (6) | −0.0119 (6) |
O2 | 0.0507 (8) | 0.0599 (8) | 0.0476 (7) | −0.0158 (6) | 0.0207 (6) | −0.0172 (6) |
O3 | 0.0661 (9) | 0.0760 (10) | 0.0590 (9) | 0.0257 (8) | 0.0144 (7) | 0.0081 (7) |
O4 | 0.0604 (8) | 0.0598 (8) | 0.0322 (6) | −0.0064 (6) | 0.0114 (6) | −0.0009 (5) |
C1—O3 | 1.372 (2) | C7—H7A | 0.9600 |
C1—C2 | 1.383 (2) | C7—H7B | 0.9600 |
C1—C6 | 1.394 (2) | C7—H7C | 0.9600 |
C2—C3 | 1.387 (2) | C8—C9 | 1.338 (2) |
C2—H2 | 0.9300 | C8—C10 | 1.491 (2) |
C3—C4 | 1.391 (2) | C9—O4 | 1.374 (2) |
C3—C8 | 1.435 (2) | C9—H9 | 0.9300 |
C4—C5 | 1.371 (2) | C10—C11 | 1.495 (2) |
C4—O4 | 1.375 (2) | C10—H10A | 0.9700 |
C5—C6 | 1.377 (3) | C10—H10B | 0.9700 |
C5—H5 | 0.9300 | C11—O2 | 1.217 (2) |
C6—H6 | 0.9300 | C11—O1 | 1.3014 (18) |
C7—O3 | 1.410 (2) | O1—H1 | 0.8200 |
O3—C1—C2 | 115.00 (15) | O3—C7—H7C | 109.5 |
O3—C1—C6 | 123.86 (17) | H7A—C7—H7C | 109.5 |
C2—C1—C6 | 121.13 (17) | H7B—C7—H7C | 109.5 |
C1—C2—C3 | 118.41 (15) | C9—C8—C3 | 105.85 (15) |
C1—C2—H2 | 120.8 | C9—C8—C10 | 127.22 (17) |
C3—C2—H2 | 120.8 | C3—C8—C10 | 126.89 (15) |
C2—C3—C4 | 119.14 (15) | C8—C9—O4 | 112.94 (17) |
C2—C3—C8 | 134.93 (14) | C8—C9—H9 | 123.5 |
C4—C3—C8 | 105.92 (15) | O4—C9—H9 | 123.5 |
C5—C4—O4 | 126.81 (15) | C8—C10—C11 | 114.92 (14) |
C5—C4—C3 | 123.03 (17) | C8—C10—H10A | 108.5 |
O4—C4—C3 | 110.16 (15) | C11—C10—H10A | 108.5 |
C4—C5—C6 | 117.44 (15) | C8—C10—H10B | 108.5 |
C4—C5—H5 | 121.3 | C11—C10—H10B | 108.5 |
C6—C5—H5 | 121.3 | H10A—C10—H10B | 107.5 |
C5—C6—C1 | 120.83 (17) | O2—C11—O1 | 123.98 (15) |
C5—C6—H6 | 119.6 | O2—C11—C10 | 123.47 (14) |
C1—C6—H6 | 119.6 | O1—C11—C10 | 112.55 (14) |
O3—C7—H7A | 109.5 | C11—O1—H1 | 109.5 |
O3—C7—H7B | 109.5 | C1—O3—C7 | 118.88 (16) |
H7A—C7—H7B | 109.5 | C9—O4—C4 | 105.13 (13) |
O3—C1—C2—C3 | −179.94 (15) | C4—C3—C8—C9 | 0.53 (18) |
C6—C1—C2—C3 | 0.7 (3) | C2—C3—C8—C10 | −1.0 (3) |
C1—C2—C3—C4 | −0.3 (2) | C4—C3—C8—C10 | 178.12 (15) |
C1—C2—C3—C8 | 178.71 (17) | C3—C8—C9—O4 | −0.6 (2) |
C2—C3—C4—C5 | −0.5 (2) | C10—C8—C9—O4 | −178.15 (15) |
C8—C3—C4—C5 | −179.78 (15) | C9—C8—C10—C11 | −105.9 (2) |
C2—C3—C4—O4 | 178.93 (14) | C3—C8—C10—C11 | 77.0 (2) |
C8—C3—C4—O4 | −0.33 (17) | C8—C10—C11—O2 | 4.0 (3) |
O4—C4—C5—C6 | −178.48 (16) | C8—C10—C11—O1 | −175.80 (15) |
C3—C4—C5—C6 | 0.9 (3) | C2—C1—O3—C7 | −176.25 (17) |
C4—C5—C6—C1 | −0.4 (3) | C6—C1—O3—C7 | 3.1 (3) |
O3—C1—C6—C5 | −179.65 (17) | C8—C9—O4—C4 | 0.38 (19) |
C2—C1—C6—C5 | −0.3 (3) | C5—C4—O4—C9 | 179.42 (17) |
C2—C3—C8—C9 | −178.54 (18) | C3—C4—O4—C9 | −0.01 (18) |
D—H···A | D—H | H···A | D···A | D—H···A |
O1—H1···O2i | 0.82 | 1.82 | 2.6357 (17) | 174 |
C2—H2···O4ii | 0.93 | 2.55 | 3.4629 (19) | 169 |
Symmetry codes: (i) −x, −y+2, −z+2; (ii) x, −y+3/2, z+1/2. |
D—H···A | D—H | H···A | D···A | D—H···A |
O1—H1···O2i | 0.82 | 1.82 | 2.6357 (17) | 174 |
C2—H2···O4ii | 0.93 | 2.55 | 3.4629 (19) | 169 |
Symmetry codes: (i) −x, −y+2, −z+2; (ii) x, −y+3/2, z+1/2. |
Acknowledgements
MB thanks UGC–SWRO, Bangalore, for providing a Minor Research Project (reference No. 1415-MRP/14–15/KAKA067/UGC–SWRO, Diary No. 1709). The authors also thank the SAIF IIT Madras, Chennai, for the data collection.
References
Altomare, A., Cascarano, G., Giacovazzo, C., Guagliardi, A., Burla, M. C., Polidori, G. & Camalli, M. (1994). J. Appl. Cryst. 27, 435. CrossRef Web of Science IUCr Journals Google Scholar
Basanagouda, M., Narayanachar, Majati, I. B., Mulimani, S. S., Sunnal, S. B., Nadiger, R. V., Ghanti, A. S., Gudageri, S. F., Naik, R. & Nayak, A. (2015). Synth. Commun. 45, 2195–2202. Web of Science CSD CrossRef CAS Google Scholar
Bruker (2004). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA Google Scholar
Bruno, I. J., Cole, J. C., Edgington, P. R., Kessler, M., Macrae, C. F., McCabe, P., Pearson, J. & Taylor, R. (2002). Acta Cryst. B58, 389–397. Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
Dawood, K. M. (2013). Exp. Opin. Ther. Patents, 23, 1133–1156. Google Scholar
Farrugia, L. J. (2012). J. Appl. Cryst. 45, 849–854. Web of Science CrossRef CAS IUCr Journals Google Scholar
Khanam, H. & Shamsuzzaman (2015). Eur. J. Med. Chem. 97, 483–504. Google Scholar
Naik, R., Harmalkar, D. S., Xu, X., Jang, K. & Lee, K. (2015). Eur. J. Med. Chem. 90, 379–393. CrossRef CAS PubMed Google Scholar
Nevagi, R. J., Dighe, S. N. & Dighe, S. N. (2015). Eur. J. Med. Chem. 97, 561–581. Web of Science CrossRef CAS PubMed Google Scholar
Radadiya, A. & Shah, A. B. (2015). Eur. J. Med. Chem. 97, 356–376. Web of Science CrossRef CAS PubMed Google Scholar
Sheldrick, G. M. (2015). Acta Cryst. C71, 3–8. Web of Science CrossRef IUCr Journals Google Scholar
This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.
Benzofuran scaffolds have drawn considerable attention due to their physiological and chemotherapeutic properties as well as their widespread occurrence in nature. They display potent biological properties including antihyperglycemic, analgesic, antiparasitic, antimicrobial, antitumor and kinase inhibitor activities (Dawood, 2013; Khanam & Shamsuzzaman, 2015; Radadiya & Shah, 2015; Naik et al. 2015; Nevagi et al. 2015). In addition, substituted benzofurans find application such as fluorescent sensors, oxidant, antioxidants and brightening agents. The derivatives of 2,3-dihydro-benzofuranyl-3-acetic acid have been reported to be potent, selective and orally bioavailable G protein-coupled receptor 40 (GPR40) and free fatty acid receptor 1 agonists (FFA1) (Basanagouda et al., 2015). A perspective view of the molecule is shown in Fig. 1 and geomtric data for the intermolecular interactions are listed in Table 1.