organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Crystal structure of 2-(5-meth­­oxy-1-benzo­furan-3-yl)acetic acid

aDepartment of Physics, Govt. College for Women, Kolar 563 101, Karnataka, India, bDepartment of Physics, Govt. College for Women, Mandya 571 401, Karnataka, India, cDepartment of Physics, Govt. PU College, Jayanagara, Bangalore 560 011, Karnataka, India, and dDepartment of Chemistry, P.C. Jabin Science College, Hubli 580 031, Karnataka, India
*Correspondence e-mail: rkgowdaphy@gmail.com

Edited by E. R. T. Tiekink, University of Malaya, Malaysia (Received 6 December 2015; accepted 9 December 2015; online 16 December 2015)

The benzo­furan residue in the title compound, C11H10O4, is essentially planar (the r.m.s. deviation for the nine non-H atoms = 0.011 Å). While the meth­oxy group is coplanar with the fused ring system [C—C—O—C torsion angle = 3.1 (3)°], the acetic acid residue occupies a position almost prime [C—C—C—C = 77.0 (2)°]. In the crystal, centrosymmetrically related mol­ecules are linked by O—H⋯O hydrogen bonds to form eight-membered {⋯HOCO}2 synthons. The dimeric aggregates assemble into supra­molecular layers in the ab plane via benzene-C—H⋯O(ring) inter­actions.

1. Related literature

For a related structures and background to benzo­furans and their applications, see: Dawood (2013[Dawood, K. M. (2013). Exp. Opin. Ther. Patents, 23, 1133-1156.]); Khanam & Shamsuzzaman (2015[Khanam, H. & Shamsuzzaman (2015). Eur. J. Med. Chem. 97, 483-504.]); Radadiya & Shah (2015[Radadiya, A. & Shah, A. B. (2015). Eur. J. Med. Chem. 97, 356-376.]); Naik et al. (2015[Naik, R., Harmalkar, D. S., Xu, X., Jang, K. & Lee, K. (2015). Eur. J. Med. Chem. 90, 379-393.]); Nevagi et al. (2015[Nevagi, R. J., Dighe, S. N. & Dighe, S. N. (2015). Eur. J. Med. Chem. 97, 561-581.]). For the synthesis, see: Basanagouda et al. (2015[Basanagouda, M., Narayanachar, Majati, I. B., Mulimani, S. S., Sunnal, S. B., Nadiger, R. V., Ghanti, A. S., Gudageri, S. F., Naik, R. & Nayak, A. (2015). Synth. Commun. 45, 2195-2202.]).

[Scheme 1]

2. Experimental

2.1. Crystal data

  • C11H10O4

  • Mr = 206.19

  • Monoclinic, P 21 /c

  • a = 5.8096 (3) Å

  • b = 13.2034 (5) Å

  • c = 12.5738 (6) Å

  • β = 97.641 (3)°

  • V = 955.93 (8) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.11 mm−1

  • T = 296 K

  • 0.35 × 0.30 × 0.25 mm

2.2. Data collection

  • Bruker Kappa APEXII CCD diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 2004[Bruker (2004). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA]) Tmin = 0.961, Tmax = 0.979

  • 12813 measured reflections

  • 2094 independent reflections

  • 1621 reflections with I > 2σ(I)

  • Rint = 0.024

2.3. Refinement

  • R[F2 > 2σ(F2)] = 0.040

  • wR(F2) = 0.110

  • S = 1.12

  • 2094 reflections

  • 137 parameters

  • H-atom parameters constrained

  • Δρmax = 0.22 e Å−3

  • Δρmin = −0.16 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
O1—H1⋯O2i 0.82 1.82 2.6357 (17) 174
C2—H2⋯O4ii 0.93 2.55 3.4629 (19) 169
Symmetry codes: (i) -x, -y+2, -z+2; (ii) [x, -y+{\script{3\over 2}}, z+{\script{1\over 2}}].

Data collection: APEX2 (Bruker, 2004[Bruker (2004). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA]); cell refinement: APEX2 and SAINT (Bruker, 2004[Bruker (2004). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA]); data reduction: SAINT and XPREP (Bruker, 2004[Bruker (2004). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA]); program(s) used to solve structure: SIR92 (Altomare et al., 1994[Altomare, A., Cascarano, G., Giacovazzo, C., Guagliardi, A., Burla, M. C., Polidori, G. & Camalli, M. (1994). J. Appl. Cryst. 27, 435.]); program(s) used to refine structure: SHELXL2014 (Sheldrick, 2015[Sheldrick, G. M. (2015). Acta Cryst. C71, 3-8.]); molecular graphics: ORTEP-3 for Windows (Farrugia, 2012[Farrugia, L. J. (2012). J. Appl. Cryst. 45, 849-854.]) and Mercury (Bruno et al., 2002[Bruno, I. J., Cole, J. C., Edgington, P. R., Kessler, M., Macrae, C. F., McCabe, P., Pearson, J. & Taylor, R. (2002). Acta Cryst. B58, 389-397.]); software used to prepare material for publication: SHELXL2014.

Supporting information


Comment top

Benzofuran scaffolds have drawn considerable attention due to their physiological and chemotherapeutic properties as well as their widespread occurrence in nature. They display potent biological properties including antihyperglycemic, analgesic, antiparasitic, antimicrobial, antitumor and kinase inhibitor activities (Dawood, 2013; Khanam & Shamsuzzaman, 2015; Radadiya & Shah, 2015; Naik et al. 2015; Nevagi et al. 2015). In addition, substituted benzofurans find application such as fluorescent sensors, oxidant, antioxidants and brightening agents. The derivatives of 2,3-dihydro-benzofuranyl-3-acetic acid have been reported to be potent, selective and orally bioavailable G protein-coupled receptor 40 (GPR40) and free fatty acid receptor 1 agonists (FFA1) (Basanagouda et al., 2015). A perspective view of the molecule is shown in Fig. 1 and geomtric data for the intermolecular interactions are listed in Table 1.

Related literature top

For a related structures and background to benzofurans and their applications, see: Dawood (2013); Khanam & Shamsuzzaman (2015); Radadiya & Shah (2015); Naik et al. (2015); Nevagi et al. (2015). For the synthesis, see: Basanagouda et al. (2015).

Experimental top

6-Methoxy-4-bromomethylcoumarin (10 mM) was refluxed in 1 M NaOH (100 mL) for 2 h (monitored by TLC). The reaction mixture was cooled, neutralized with 1 M HCl and the obtained product was filtered off and dried. Colourless blocks were obtained by recrystallization from ethanol and ethyl acetate mixture by slow evaporation.

Refinement top

The carbon-bound H-atoms were placed in calculated positions (C—H = 0.93–0.97 Å) and were included in the refinement in the riding model approximation, with Uiso(H) set to 1.2–1.5Uequiv(C). The oxygen-bound H-atom was also placed in a calculated position (O—H = 0.82 Å) with Uiso(H) set to 1.5Uequiv(O).

Structure description top

Benzofuran scaffolds have drawn considerable attention due to their physiological and chemotherapeutic properties as well as their widespread occurrence in nature. They display potent biological properties including antihyperglycemic, analgesic, antiparasitic, antimicrobial, antitumor and kinase inhibitor activities (Dawood, 2013; Khanam & Shamsuzzaman, 2015; Radadiya & Shah, 2015; Naik et al. 2015; Nevagi et al. 2015). In addition, substituted benzofurans find application such as fluorescent sensors, oxidant, antioxidants and brightening agents. The derivatives of 2,3-dihydro-benzofuranyl-3-acetic acid have been reported to be potent, selective and orally bioavailable G protein-coupled receptor 40 (GPR40) and free fatty acid receptor 1 agonists (FFA1) (Basanagouda et al., 2015). A perspective view of the molecule is shown in Fig. 1 and geomtric data for the intermolecular interactions are listed in Table 1.

For a related structures and background to benzofurans and their applications, see: Dawood (2013); Khanam & Shamsuzzaman (2015); Radadiya & Shah (2015); Naik et al. (2015); Nevagi et al. (2015). For the synthesis, see: Basanagouda et al. (2015).

Computing details top

Data collection: APEX2 (Bruker, 2004); cell refinement: APEX2 and SAINT (Bruker, 2004); data reduction: SAINT and XPREP (Bruker, 2004); program(s) used to solve structure: SIR92 (Altomare et al., 1994); program(s) used to refine structure: SHELXL2014 (Sheldrick, 2015); molecular graphics: ORTEP-3 for Windows (Farrugia, 2012) and Mercury (Bruno et al., 2002); software used to prepare material for publication: SHELXL2014 (Sheldrick, 2015).

Figures top
[Figure 1] Fig. 1. Molecular structure of the title compound showing atom labelling and 40% probability displacement ellipsoids.
2-(5-Methoxy-1-benzofuran-3-yl)acetic acid top
Crystal data top
C11H10O4Dx = 1.433 Mg m3
Mr = 206.19Melting point: 413 K
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
a = 5.8096 (3) ÅCell parameters from 5229 reflections
b = 13.2034 (5) Åθ = 2.2–28.6°
c = 12.5738 (6) ŵ = 0.11 mm1
β = 97.641 (3)°T = 296 K
V = 955.93 (8) Å3Block, colourless
Z = 40.35 × 0.30 × 0.25 mm
F(000) = 432
Data collection top
Bruker Kappa APEXII CCD
diffractometer
2094 independent reflections
Radiation source: fine-focus sealed tube1621 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.024
ω and φ scanθmax = 27.0°, θmin = 2.3°
Absorption correction: multi-scan
(SADABS; Bruker, 2004)
h = 77
Tmin = 0.961, Tmax = 0.979k = 1616
12813 measured reflectionsl = 1616
Refinement top
Refinement on F2Hydrogen site location: inferred from neighbouring sites
Least-squares matrix: fullH-atom parameters constrained
R[F2 > 2σ(F2)] = 0.040 w = 1/[σ2(Fo2) + (0.0364P)2 + 0.4069P]
where P = (Fo2 + 2Fc2)/3
wR(F2) = 0.110(Δ/σ)max < 0.001
S = 1.12Δρmax = 0.22 e Å3
2094 reflectionsΔρmin = 0.16 e Å3
137 parametersExtinction correction: SHELXL2014 (Sheldrick, 2015), Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4
0 restraintsExtinction coefficient: 0.017 (3)
Crystal data top
C11H10O4V = 955.93 (8) Å3
Mr = 206.19Z = 4
Monoclinic, P21/cMo Kα radiation
a = 5.8096 (3) ŵ = 0.11 mm1
b = 13.2034 (5) ÅT = 296 K
c = 12.5738 (6) Å0.35 × 0.30 × 0.25 mm
β = 97.641 (3)°
Data collection top
Bruker Kappa APEXII CCD
diffractometer
2094 independent reflections
Absorption correction: multi-scan
(SADABS; Bruker, 2004)
1621 reflections with I > 2σ(I)
Tmin = 0.961, Tmax = 0.979Rint = 0.024
12813 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0400 restraints
wR(F2) = 0.110H-atom parameters constrained
S = 1.12Δρmax = 0.22 e Å3
2094 reflectionsΔρmin = 0.16 e Å3
137 parameters
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
C10.4010 (3)0.61606 (13)0.80077 (14)0.0432 (4)
C20.2178 (3)0.67578 (12)0.82316 (13)0.0389 (4)
H20.17700.67870.89220.047*
C30.0964 (3)0.73116 (11)0.74025 (12)0.0349 (4)
C40.1631 (3)0.72515 (13)0.63818 (13)0.0398 (4)
C50.3460 (3)0.66724 (14)0.61521 (14)0.0477 (5)
H50.38820.66530.54640.057*
C60.4647 (3)0.61208 (14)0.69782 (15)0.0479 (5)
H60.58900.57160.68480.057*
C70.7098 (4)0.50545 (17)0.8728 (2)0.0646 (6)
H7A0.76850.47330.93940.097*
H7B0.66800.45470.81900.097*
H7C0.82720.54880.85060.097*
C80.0997 (3)0.79821 (12)0.73082 (13)0.0378 (4)
C90.1369 (3)0.82596 (14)0.62760 (14)0.0476 (4)
H90.25590.86920.59950.057*
C100.2391 (3)0.82719 (13)0.81742 (14)0.0421 (4)
H10A0.27080.76660.85660.051*
H10B0.38690.85410.78450.051*
C110.1270 (3)0.90353 (12)0.89552 (13)0.0367 (4)
O10.2484 (2)0.92135 (9)0.97334 (10)0.0491 (4)
H10.18130.96361.01410.074*
O20.0578 (2)0.94412 (10)0.88700 (10)0.0514 (4)
O30.5123 (3)0.56354 (12)0.88677 (12)0.0665 (4)
O40.0193 (2)0.78381 (10)0.56745 (9)0.0503 (4)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
C10.0431 (9)0.0419 (9)0.0459 (10)0.0026 (7)0.0101 (8)0.0053 (7)
C20.0428 (9)0.0434 (9)0.0328 (8)0.0051 (7)0.0133 (7)0.0068 (7)
C30.0381 (8)0.0356 (8)0.0329 (8)0.0099 (7)0.0113 (6)0.0089 (6)
C40.0456 (9)0.0428 (9)0.0325 (8)0.0113 (7)0.0114 (7)0.0072 (7)
C50.0537 (11)0.0543 (10)0.0394 (9)0.0101 (9)0.0218 (8)0.0140 (8)
C60.0464 (10)0.0477 (10)0.0535 (11)0.0024 (8)0.0215 (8)0.0139 (8)
C70.0515 (12)0.0578 (12)0.0832 (15)0.0092 (10)0.0038 (11)0.0052 (11)
C80.0383 (9)0.0399 (8)0.0360 (8)0.0087 (7)0.0075 (7)0.0069 (7)
C90.0477 (10)0.0514 (10)0.0439 (10)0.0038 (8)0.0065 (8)0.0018 (8)
C100.0363 (9)0.0472 (9)0.0438 (9)0.0026 (7)0.0093 (7)0.0071 (7)
C110.0408 (9)0.0362 (8)0.0349 (8)0.0018 (7)0.0118 (7)0.0002 (6)
O10.0558 (8)0.0503 (7)0.0461 (7)0.0115 (6)0.0248 (6)0.0119 (6)
O20.0507 (8)0.0599 (8)0.0476 (7)0.0158 (6)0.0207 (6)0.0172 (6)
O30.0661 (9)0.0760 (10)0.0590 (9)0.0257 (8)0.0144 (7)0.0081 (7)
O40.0604 (8)0.0598 (8)0.0322 (6)0.0064 (6)0.0114 (6)0.0009 (5)
Geometric parameters (Å, º) top
C1—O31.372 (2)C7—H7A0.9600
C1—C21.383 (2)C7—H7B0.9600
C1—C61.394 (2)C7—H7C0.9600
C2—C31.387 (2)C8—C91.338 (2)
C2—H20.9300C8—C101.491 (2)
C3—C41.391 (2)C9—O41.374 (2)
C3—C81.435 (2)C9—H90.9300
C4—C51.371 (2)C10—C111.495 (2)
C4—O41.375 (2)C10—H10A0.9700
C5—C61.377 (3)C10—H10B0.9700
C5—H50.9300C11—O21.217 (2)
C6—H60.9300C11—O11.3014 (18)
C7—O31.410 (2)O1—H10.8200
O3—C1—C2115.00 (15)O3—C7—H7C109.5
O3—C1—C6123.86 (17)H7A—C7—H7C109.5
C2—C1—C6121.13 (17)H7B—C7—H7C109.5
C1—C2—C3118.41 (15)C9—C8—C3105.85 (15)
C1—C2—H2120.8C9—C8—C10127.22 (17)
C3—C2—H2120.8C3—C8—C10126.89 (15)
C2—C3—C4119.14 (15)C8—C9—O4112.94 (17)
C2—C3—C8134.93 (14)C8—C9—H9123.5
C4—C3—C8105.92 (15)O4—C9—H9123.5
C5—C4—O4126.81 (15)C8—C10—C11114.92 (14)
C5—C4—C3123.03 (17)C8—C10—H10A108.5
O4—C4—C3110.16 (15)C11—C10—H10A108.5
C4—C5—C6117.44 (15)C8—C10—H10B108.5
C4—C5—H5121.3C11—C10—H10B108.5
C6—C5—H5121.3H10A—C10—H10B107.5
C5—C6—C1120.83 (17)O2—C11—O1123.98 (15)
C5—C6—H6119.6O2—C11—C10123.47 (14)
C1—C6—H6119.6O1—C11—C10112.55 (14)
O3—C7—H7A109.5C11—O1—H1109.5
O3—C7—H7B109.5C1—O3—C7118.88 (16)
H7A—C7—H7B109.5C9—O4—C4105.13 (13)
O3—C1—C2—C3179.94 (15)C4—C3—C8—C90.53 (18)
C6—C1—C2—C30.7 (3)C2—C3—C8—C101.0 (3)
C1—C2—C3—C40.3 (2)C4—C3—C8—C10178.12 (15)
C1—C2—C3—C8178.71 (17)C3—C8—C9—O40.6 (2)
C2—C3—C4—C50.5 (2)C10—C8—C9—O4178.15 (15)
C8—C3—C4—C5179.78 (15)C9—C8—C10—C11105.9 (2)
C2—C3—C4—O4178.93 (14)C3—C8—C10—C1177.0 (2)
C8—C3—C4—O40.33 (17)C8—C10—C11—O24.0 (3)
O4—C4—C5—C6178.48 (16)C8—C10—C11—O1175.80 (15)
C3—C4—C5—C60.9 (3)C2—C1—O3—C7176.25 (17)
C4—C5—C6—C10.4 (3)C6—C1—O3—C73.1 (3)
O3—C1—C6—C5179.65 (17)C8—C9—O4—C40.38 (19)
C2—C1—C6—C50.3 (3)C5—C4—O4—C9179.42 (17)
C2—C3—C8—C9178.54 (18)C3—C4—O4—C90.01 (18)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O1—H1···O2i0.821.822.6357 (17)174
C2—H2···O4ii0.932.553.4629 (19)169
Symmetry codes: (i) x, y+2, z+2; (ii) x, y+3/2, z+1/2.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O1—H1···O2i0.821.822.6357 (17)174
C2—H2···O4ii0.932.553.4629 (19)169
Symmetry codes: (i) x, y+2, z+2; (ii) x, y+3/2, z+1/2.
 

Acknowledgements

MB thanks UGC–SWRO, Bangalore, for providing a Minor Research Project (reference No. 1415-MRP/14–15/KAKA067/UGC–SWRO, Diary No. 1709). The authors also thank the SAIF IIT Madras, Chennai, for the data collection.

References

First citationAltomare, A., Cascarano, G., Giacovazzo, C., Guagliardi, A., Burla, M. C., Polidori, G. & Camalli, M. (1994). J. Appl. Cryst. 27, 435.  CrossRef Web of Science IUCr Journals Google Scholar
First citationBasanagouda, M., Narayanachar, Majati, I. B., Mulimani, S. S., Sunnal, S. B., Nadiger, R. V., Ghanti, A. S., Gudageri, S. F., Naik, R. & Nayak, A. (2015). Synth. Commun. 45, 2195–2202.  Web of Science CSD CrossRef CAS Google Scholar
First citationBruker (2004). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA  Google Scholar
First citationBruno, I. J., Cole, J. C., Edgington, P. R., Kessler, M., Macrae, C. F., McCabe, P., Pearson, J. & Taylor, R. (2002). Acta Cryst. B58, 389–397.  Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
First citationDawood, K. M. (2013). Exp. Opin. Ther. Patents, 23, 1133–1156.  Google Scholar
First citationFarrugia, L. J. (2012). J. Appl. Cryst. 45, 849–854.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationKhanam, H. & Shamsuzzaman (2015). Eur. J. Med. Chem. 97, 483–504.  Google Scholar
First citationNaik, R., Harmalkar, D. S., Xu, X., Jang, K. & Lee, K. (2015). Eur. J. Med. Chem. 90, 379–393.  CrossRef CAS PubMed Google Scholar
First citationNevagi, R. J., Dighe, S. N. & Dighe, S. N. (2015). Eur. J. Med. Chem. 97, 561–581.  Web of Science CrossRef CAS PubMed Google Scholar
First citationRadadiya, A. & Shah, A. B. (2015). Eur. J. Med. Chem. 97, 356–376.  Web of Science CrossRef CAS PubMed Google Scholar
First citationSheldrick, G. M. (2015). Acta Cryst. C71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds