organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Crystal structure of (Z)-7,8-di­chloro-4-(2-oxo­propyl­­idene)-4,5-di­hydro-1H-1,5-benzodiazepin-2(3H)-one

aLaboratoire de Chimie Organique Hétérocyclique URAC 21, Pôle de Compétence Pharmacochimie, Av. Ibn Battouta, BP 1014, Faculté des Sciences, Université Mohammed V, Rabat, Morocco, and bLaboratoire de Chimie du Solide Appliquée, Faculté des Sciences, Université Mohammed V de Rabat, Avenue Ibn Battouta, BP 1014, Rabat, Morocco
*Correspondence e-mail: lahmidi_s@yahoo.fr

Edited by E. R. T. Tiekink, University of Malaya, Malaysia (Received 8 December 2015; accepted 10 December 2015; online 16 December 2015)

In the title compound, C12H10Cl2N2O2, the seven-membered heterocycle displays a half-chair conformation. The mean plane through the oxo­propyl­idene group makes a dihedral angle of 36.44 (9)° with the fused benzene ring. An intra­molecular N—H⋯O hydrogen bond to close an S(6) loop is noted. An important feature of the mol­ecular packing are N—H⋯O hydrogen bonds that lead to the formation of helical supra­molecular chains along the b axis.

1. Related literature

For the pharmaceutical and biochemical properties of 1,5-benzodiazepine and their derivatives, see: El Azzaoui et al. (1999[El Azzaoui, B., Fifani, J., Tjiou, E. M., Essassi, E. M., Jaud, J., Lopez, L. & Bellan, J. (1999). Tetrahedron Lett. 40, 4677-4680.]); Gringauz (1999[Gringauz, A. (1999). Med. Chem. pp. 578-580 New York: Wiley-VCH.]); Swamy et al. (2008[Swamy, G. Y. S. K., Sridhar, B., Ravikumar, K., Reddy, K. S. & Reddy, V. V. N. (2008). J. Struct. Chem. 49, 775-779.]). For related structures, see: El Abbassi et al. (1997[El Abbassi, M., Essassi, E. M. & Fifani, J. (1997). Bull. Soc. Chim. Belg. 106, 205-210.]); Akkurt et al. (2006[Akkurt, M., Karaca, S., Bouhfid, R., Essassi, E. M. & Büyükgüngör, O. (2006). Anal. Sci. X-ray Struct. Anal. Online, 22, x147-x148.]).

[Scheme 1]

2. Experimental

2.1. Crystal data

  • C12H10Cl2N2O2

  • Mr = 285.12

  • Monoclinic, P 21 /n

  • a = 7.6789 (4) Å

  • b = 13.2199 (6) Å

  • c = 12.4129 (7) Å

  • β = 102.561 (3)°

  • V = 1229.93 (11) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.52 mm−1

  • T = 296 K

  • 0.36 × 0.33 × 0.24 mm

2.2. Data collection

  • Bruker X8 APEX diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 2009[Bruker (2009). APEX2, SAINT-Plus and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]) Tmin = 0.672, Tmax = 0.746

  • 25693 measured reflections

  • 3299 independent reflections

  • 2692 reflections with I > 2σ(I)

  • Rint = 0.031

2.3. Refinement

  • R[F2 > 2σ(F2)] = 0.038

  • wR(F2) = 0.112

  • S = 1.02

  • 3298 reflections

  • 163 parameters

  • H-atom parameters constrained

  • Δρmax = 0.36 e Å−3

  • Δρmin = −0.33 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
N2—H2⋯O2 0.86 1.96 2.6410 (18) 135
N1—H1⋯O2i 0.86 1.95 2.8010 (19) 173
Symmetry code: (i) [-x+{\script{3\over 2}}, y+{\script{1\over 2}}, -z+{\script{1\over 2}}].

Data collection: APEX2 (Bruker, 2009[Bruker (2009). APEX2, SAINT-Plus and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT-Plus (Bruker, 2009[Bruker (2009). APEX2, SAINT-Plus and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT-Plus; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL2014 (Sheldrick, 2015[Sheldrick, G. M. (2015). Acta Cryst. C71, 3-8.]); molecular graphics: ORTEP-3 for Windows (Farrugia, 2012[Farrugia, L. J. (2012). J. Appl. Cryst. 45, 849-854.]); software used to prepare material for publication: PLATON (Spek, 2009[Spek, A. L. (2009). Acta Cryst. D65, 148-155.]) and publCIF (Westrip, 2010[Westrip, S. P. (2010). J. Appl. Cryst. 43, 920-925.]).

Supporting information


Comment top

1,5-Benzodiazepines are used as starting materials in the synthesis of several heterocyclic compounds studied for potential biological activities (El Azzaoui et al. 1999). They are used for the purpose of hypnotic effects, owing to their less toxic and less severe withdrawal effects when compared with barbiturates (Gringauz, 1999). Some benzodiazepine derivatives have been widely used as anti-bacterial, anti-fungal, analgesic and anti-convulsant agents (Swamy et al., 2008). In our laboratory we were interested in the synthesis of new 1,5-benzodiazepine derivatives (El Abbassi et al., 1997; Akkurt et al., 2006). The purpose of this work is to synthesize (Z)-7,8-dichloro-4,5-dihydro-4-(2-oxopropylidene)-1H-benzo[b][1,4] diazepin-2(3H)-one by condensation of 4,5-dichloro-o-phenylenediamine with 4-hydroxy-6-methyl-2H-pyran-2-one.

The molecule of the title compound, Fig. 1, is build up from two fused six- and seven-membered rings linked to a 2-oxopropylidene group. The seven-membered ring displays a half-chair conformation as indicated by the puckering amplitude QT = 0.811 (2) Å and spherical polar angle θ2 = 73.9 (2)°, φ2 = 129.07 (12)° and φ3 = -76.3 (4)°. Moreover, the dihedral angle between the mean plane through the oxopropylidene group and the dichlorobenzene ring is of 36.44 (9)°.

In the crystal, the molecules are linked by hydrogen bonds in the way to build an helical chain along the b axis as shown in Fig. 2 and Table 1. An intramolecular hydrogen bond N2—H2···O2 is also observed in this structure.

Related literature top

For the pharmaceutical and biochemical properties of 1,5-benzodiazepine and their derivatives, see: El Azzaoui et al. (1999); Gringauz (1999); Swamy et al. (2008). For related structures, see: El Abbassi et al. (1997); Akkurt et al. (2006).

Experimental top

A mixture of 4,5-dichloro-o-phenylenediamine (1.13 g) and of 4-hydroxy-6-methyl-2H- pyran-2-one (0.25 g) in xylene (30 mL) was heated at reflux for 4 h with azeotropic distillation. The completion of the reaction was confirmed by TLC. The solid obtained upon cooling the mixture was recrystallized from ethanol to afford colourless crystals in 75% yield.

Refinement top

The H atoms were located in a difference map and treated as riding with C—H = 0.93–0.97 Å and N—H = 0.86 Å, and with Uiso(H) = 1.2–1.5Ueq(C, N).

Structure description top

1,5-Benzodiazepines are used as starting materials in the synthesis of several heterocyclic compounds studied for potential biological activities (El Azzaoui et al. 1999). They are used for the purpose of hypnotic effects, owing to their less toxic and less severe withdrawal effects when compared with barbiturates (Gringauz, 1999). Some benzodiazepine derivatives have been widely used as anti-bacterial, anti-fungal, analgesic and anti-convulsant agents (Swamy et al., 2008). In our laboratory we were interested in the synthesis of new 1,5-benzodiazepine derivatives (El Abbassi et al., 1997; Akkurt et al., 2006). The purpose of this work is to synthesize (Z)-7,8-dichloro-4,5-dihydro-4-(2-oxopropylidene)-1H-benzo[b][1,4] diazepin-2(3H)-one by condensation of 4,5-dichloro-o-phenylenediamine with 4-hydroxy-6-methyl-2H-pyran-2-one.

The molecule of the title compound, Fig. 1, is build up from two fused six- and seven-membered rings linked to a 2-oxopropylidene group. The seven-membered ring displays a half-chair conformation as indicated by the puckering amplitude QT = 0.811 (2) Å and spherical polar angle θ2 = 73.9 (2)°, φ2 = 129.07 (12)° and φ3 = -76.3 (4)°. Moreover, the dihedral angle between the mean plane through the oxopropylidene group and the dichlorobenzene ring is of 36.44 (9)°.

In the crystal, the molecules are linked by hydrogen bonds in the way to build an helical chain along the b axis as shown in Fig. 2 and Table 1. An intramolecular hydrogen bond N2—H2···O2 is also observed in this structure.

For the pharmaceutical and biochemical properties of 1,5-benzodiazepine and their derivatives, see: El Azzaoui et al. (1999); Gringauz (1999); Swamy et al. (2008). For related structures, see: El Abbassi et al. (1997); Akkurt et al. (2006).

Computing details top

Data collection: APEX2 (Bruker, 2009); cell refinement: SAINT-Plus (Bruker, 2009); data reduction: SAINT-Plus (Bruker, 2009); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL2014 (Sheldrick, 2015); molecular graphics: ORTEP-3 for Windows (Farrugia, 2012); software used to prepare material for publication: PLATON (Spek, 2009) and publCIF (Westrip, 2010).

Figures top
[Figure 1] Fig. 1. Molecular structure of the title compound with the atom-labelling scheme. Displacement ellipsoids are drawn at the 50% probability level. H atoms are represented as small circles.
[Figure 2] Fig. 2. Structure of the title compound, showing molecules linked through N1—H1···O1 hydrogen bonds and the intramolecular hydrogen bond N2—H2···O2 (dashed lines).
(Z)-7,8-Dichloro-4-(2-oxopropylidene)-4,5-dihydro-1H-1,5-benzodiazepin-2(3H)-one top
Crystal data top
C12H10Cl2N2O2F(000) = 584
Mr = 285.12Dx = 1.540 Mg m3
Monoclinic, P21/nMo Kα radiation, λ = 0.71073 Å
a = 7.6789 (4) ÅCell parameters from 3299 reflections
b = 13.2199 (6) Åθ = 2.3–29.1°
c = 12.4129 (7) ŵ = 0.52 mm1
β = 102.561 (3)°T = 296 K
V = 1229.93 (11) Å3Block, colourless
Z = 40.36 × 0.33 × 0.24 mm
Data collection top
Bruker X8 APEX
diffractometer
3299 independent reflections
Radiation source: fine-focus sealed tube2692 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.031
φ and ω scansθmax = 29.1°, θmin = 2.3°
Absorption correction: multi-scan
(SADABS; Bruker, 2009)
h = 1010
Tmin = 0.672, Tmax = 0.746k = 1818
25693 measured reflectionsl = 1616
Refinement top
Refinement on F20 restraints
Least-squares matrix: fullHydrogen site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.038H-atom parameters constrained
wR(F2) = 0.112 w = 1/[σ2(Fo2) + (0.0553P)2 + 0.6111P]
where P = (Fo2 + 2Fc2)/3
S = 1.02(Δ/σ)max = 0.001
3298 reflectionsΔρmax = 0.36 e Å3
163 parametersΔρmin = 0.33 e Å3
Crystal data top
C12H10Cl2N2O2V = 1229.93 (11) Å3
Mr = 285.12Z = 4
Monoclinic, P21/nMo Kα radiation
a = 7.6789 (4) ŵ = 0.52 mm1
b = 13.2199 (6) ÅT = 296 K
c = 12.4129 (7) Å0.36 × 0.33 × 0.24 mm
β = 102.561 (3)°
Data collection top
Bruker X8 APEX
diffractometer
3299 independent reflections
Absorption correction: multi-scan
(SADABS; Bruker, 2009)
2692 reflections with I > 2σ(I)
Tmin = 0.672, Tmax = 0.746Rint = 0.031
25693 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0380 restraints
wR(F2) = 0.112H-atom parameters constrained
S = 1.02Δρmax = 0.36 e Å3
3298 reflectionsΔρmin = 0.33 e Å3
163 parameters
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
C10.5232 (2)0.21313 (13)0.49879 (13)0.0338 (3)
C20.5740 (2)0.30850 (13)0.54157 (13)0.0355 (3)
C30.6157 (2)0.38307 (12)0.47350 (13)0.0346 (3)
H30.64790.44700.50240.042*
C40.6104 (2)0.36438 (11)0.36221 (13)0.0303 (3)
C50.5633 (2)0.26785 (11)0.31938 (12)0.0291 (3)
C60.5189 (2)0.19345 (12)0.38896 (13)0.0330 (3)
H60.48580.12940.36070.040*
C70.6022 (2)0.46740 (11)0.19419 (14)0.0349 (3)
C80.4552 (2)0.40089 (12)0.13165 (15)0.0375 (4)
H8A0.35860.39840.17070.045*
H8B0.40870.42980.05930.045*
C90.5204 (2)0.29534 (11)0.11872 (13)0.0310 (3)
C100.5298 (2)0.25845 (12)0.01690 (13)0.0333 (3)
H100.49580.30070.04400.040*
C110.5889 (2)0.15901 (12)0.00056 (13)0.0330 (3)
C120.6037 (3)0.12898 (15)0.11491 (14)0.0424 (4)
H12A0.56800.18470.16450.064*
H12B0.72490.11110.11450.064*
H12C0.52750.07200.13880.064*
N10.6678 (2)0.44232 (10)0.30134 (12)0.0352 (3)
H10.73640.48590.34100.042*
N20.5688 (2)0.23921 (10)0.21168 (11)0.0339 (3)
H20.60120.17810.20280.041*
Cl10.46370 (7)0.11838 (4)0.57991 (4)0.04762 (15)
Cl20.58703 (8)0.33611 (4)0.67921 (4)0.05696 (17)
O10.6604 (2)0.54018 (9)0.15280 (11)0.0496 (3)
O20.6297 (2)0.09619 (9)0.07595 (10)0.0451 (3)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
C10.0353 (8)0.0360 (8)0.0318 (7)0.0068 (6)0.0109 (6)0.0083 (6)
C20.0383 (9)0.0408 (8)0.0278 (7)0.0116 (7)0.0080 (6)0.0008 (6)
C30.0383 (9)0.0313 (7)0.0330 (8)0.0052 (6)0.0053 (6)0.0031 (6)
C40.0316 (8)0.0283 (7)0.0309 (7)0.0032 (6)0.0066 (6)0.0017 (6)
C50.0317 (8)0.0281 (7)0.0278 (7)0.0031 (6)0.0069 (6)0.0018 (5)
C60.0389 (9)0.0276 (7)0.0330 (8)0.0009 (6)0.0089 (6)0.0022 (6)
C70.0438 (9)0.0245 (7)0.0383 (8)0.0055 (6)0.0136 (7)0.0015 (6)
C80.0410 (9)0.0325 (8)0.0370 (8)0.0075 (7)0.0043 (7)0.0044 (6)
C90.0328 (8)0.0278 (7)0.0309 (7)0.0020 (6)0.0039 (6)0.0031 (6)
C100.0407 (9)0.0315 (7)0.0258 (7)0.0023 (6)0.0029 (6)0.0055 (6)
C110.0353 (8)0.0346 (8)0.0273 (7)0.0037 (6)0.0028 (6)0.0009 (6)
C120.0495 (10)0.0468 (10)0.0306 (8)0.0034 (8)0.0083 (7)0.0031 (7)
N10.0416 (8)0.0275 (6)0.0359 (7)0.0056 (5)0.0073 (6)0.0001 (5)
N20.0487 (8)0.0253 (6)0.0287 (6)0.0033 (5)0.0104 (6)0.0020 (5)
Cl10.0591 (3)0.0464 (3)0.0420 (2)0.0054 (2)0.0213 (2)0.01498 (18)
Cl20.0855 (4)0.0567 (3)0.0300 (2)0.0141 (3)0.0155 (2)0.00200 (18)
O10.0731 (10)0.0323 (6)0.0465 (7)0.0059 (6)0.0199 (7)0.0064 (5)
O20.0680 (9)0.0334 (6)0.0318 (6)0.0095 (6)0.0061 (6)0.0038 (5)
Geometric parameters (Å, º) top
C1—C61.381 (2)C8—C91.503 (2)
C1—C21.391 (2)C8—H8A0.9700
C1—Cl11.7297 (16)C8—H8B0.9700
C2—C31.380 (2)C9—N21.3541 (19)
C2—Cl21.7286 (17)C9—C101.371 (2)
C3—C41.395 (2)C10—C111.422 (2)
C3—H30.9300C10—H100.9300
C4—C51.399 (2)C11—O21.2491 (19)
C4—N11.404 (2)C11—C121.502 (2)
C5—N21.3989 (19)C12—H12A0.9600
C5—C61.399 (2)C12—H12B0.9600
C6—H60.9300C12—H12C0.9600
C7—O11.220 (2)N1—H10.8599
C7—N11.357 (2)N2—H20.8600
C7—C81.506 (2)
C6—C1—C2119.49 (15)C9—C8—H8B109.3
C6—C1—Cl1119.04 (13)C7—C8—H8B109.3
C2—C1—Cl1121.46 (13)H8A—C8—H8B108.0
C3—C2—C1119.79 (15)N2—C9—C10122.05 (14)
C3—C2—Cl2118.88 (13)N2—C9—C8116.99 (14)
C1—C2—Cl2121.34 (13)C10—C9—C8120.95 (14)
C2—C3—C4121.26 (15)C9—C10—C11123.48 (14)
C2—C3—H3119.4C9—C10—H10118.3
C4—C3—H3119.4C11—C10—H10118.3
C3—C4—C5119.15 (14)O2—C11—C10122.29 (15)
C3—C4—N1117.25 (14)O2—C11—C12119.00 (15)
C5—C4—N1123.37 (14)C10—C11—C12118.71 (15)
N2—C5—C4123.42 (14)C11—C12—H12A109.5
N2—C5—C6117.50 (14)C11—C12—H12B109.5
C4—C5—C6118.95 (14)H12A—C12—H12B109.5
C1—C6—C5121.34 (15)C11—C12—H12C109.5
C1—C6—H6119.3H12A—C12—H12C109.5
C5—C6—H6119.3H12B—C12—H12C109.5
O1—C7—N1120.91 (17)C7—N1—C4127.87 (14)
O1—C7—C8123.03 (16)C7—N1—H1116.6
N1—C7—C8116.06 (14)C4—N1—H1114.1
C9—C8—C7111.53 (14)C9—N2—C5127.32 (13)
C9—C8—H8A109.3C9—N2—H2116.1
C7—C8—H8A109.3C5—N2—H2116.5
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N2—H2···O20.861.962.6410 (18)135
N1—H1···O2i0.861.952.8010 (19)173
Symmetry code: (i) x+3/2, y+1/2, z+1/2.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N2—H2···O20.861.962.6410 (18)135
N1—H1···O2i0.861.952.8010 (19)173
Symmetry code: (i) x+3/2, y+1/2, z+1/2.
 

Acknowledgements

The authors thank the Unit of Support for Technical and Scientific Research (UATRS, CNRST) for the X-ray measurements and the University Mohammed V, Rabat, Morocco, for financial support.

References

First citationAkkurt, M., Karaca, S., Bouhfid, R., Essassi, E. M. & Büyükgüngör, O. (2006). Anal. Sci. X-ray Struct. Anal. Online, 22, x147–x148.  CSD CrossRef CAS Google Scholar
First citationBruker (2009). APEX2, SAINT-Plus and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationEl Abbassi, M., Essassi, E. M. & Fifani, J. (1997). Bull. Soc. Chim. Belg. 106, 205–210.  CAS Google Scholar
First citationEl Azzaoui, B., Fifani, J., Tjiou, E. M., Essassi, E. M., Jaud, J., Lopez, L. & Bellan, J. (1999). Tetrahedron Lett. 40, 4677–4680.  Web of Science CSD CrossRef CAS Google Scholar
First citationFarrugia, L. J. (2012). J. Appl. Cryst. 45, 849–854.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationGringauz, A. (1999). Med. Chem. pp. 578–580 New York: Wiley-VCH.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSheldrick, G. M. (2015). Acta Cryst. C71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar
First citationSpek, A. L. (2009). Acta Cryst. D65, 148–155.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSwamy, G. Y. S. K., Sridhar, B., Ravikumar, K., Reddy, K. S. & Reddy, V. V. N. (2008). J. Struct. Chem. 49, 775–779.  Web of Science CrossRef CAS Google Scholar
First citationWestrip, S. P. (2010). J. Appl. Cryst. 43, 920–925.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds