organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Crystal structure of (9S,10S)-10-eth­­oxy-9-hy­dr­oxy-6,6,9-tri­methyl-3-pentyl-7,8,9,10-tetra­hydro-6H-benzo[c]chromen-1-yl 4-methyl­benzene­sulfonate

aNational Center for Natural Products Research, The University of Mississippi, University, MS 38677, USA, bEl Sohly Laboratories Inc., 5 Industrial Park Drive, Oxford, MS 38655, USA, cNational Center for Natural Products Research, Department of Pharmaceutics, School of Pharmacy, The University of Mississippi, University, MS 38677, USA, and dSchool of Pharmacy, Notre Dame of Maryland University, 4701 North Charles Street, 21210, Baltimore, MD, USA
*Correspondence e-mail: pcarvalho@ndm.edu

Edited by E. R. T. Tiekink, University of Malaya, Malaysia (Received 9 December 2015; accepted 14 December 2015; online 24 December 2015)

In the structure of the title compound, C30H40O6S, the cyclo­hexene and heterocyclic rings are linked by a double bond. The cyclo­hexene ring has a half-chair conformation (the methyl­ene group adjacent to the hy­droxy substituent lies above the remaining atoms) and the hy­droxy and eth­oxy groups have equatorial and bis­ectional dispositions, respectively. The heterocyclic ring has an envelope conformation (with the CMe2 C atom being the flap). The dihedral angle between the aromatic rings is 53.88 (10)°. A long intra­molecular C—H⋯S inter­action is noted. In the mol­ecular packing, hy­droxy-O—H⋯O(sulfonate) hydrogen bonds lead to a helical chain along [010]. Connections between chains are of the type methyl-C—H⋯O(sulfonate) and lead to supra­molecular layers that lie parallel to (001). The studied crystal was an inversion twin.

1. Related literature

For Δ9–THC tosyl­ate, see: Ducker (2004[Ducker, J. R. (2004). US Patent No. 2006/0094774-A1.]); Gul et al. (2008[Gul, W., Carvalho, P., Berberich, D. W., Avery, M. A. & ElSohly, M. A. (2008). Acta Cryst. E64, o1686.]). For a related process of photooxygenation, see: Motoyoshiya et al. (1999[Motoyoshiya, J., Okuda, Y., Matsuoka, I., Hayashi, S., Takaguchi, Y. & Aoyama, H. (1999). J. Org. Chem. 64, 493-497.]); Griesbeck et al. (2014[Griesbeck, A. G., de Kiff, A. & Kleczka, M. (2014). Adv. Synth. Catal. 356, 2839-2845.]). For unusually long sulfur hydrogen bonding, see: Huang et al. (2009[Huang, L., Massa, L., Karle, I. & Karle, J. (2009). Proc. Natl Acad. Sci. USA, 106, 3664-3669.]).

[Scheme 1]

2. Experimental

2.1. Crystal data

  • C30H40O6S

  • Mr = 528.68

  • Monoclinic, P 21

  • a = 9.909 (1) Å

  • b = 10.2373 (10) Å

  • c = 13.8402 (10) Å

  • β = 101.00 (1)°

  • V = 1378.2 (2) Å3

  • Z = 2

  • Cu Kα radiation

  • μ = 1.38 mm−1

  • T = 173 K

  • 0.23 × 0.20 × 0.19 mm

2.2. Data collection

  • Bruker SMART CCD area-detector diffractometer

  • 21062 measured reflections

  • 4984 independent reflections

  • 4834 reflections with I > 2σ(I)

  • Rint = 0.025

2.3. Refinement

  • R[F2 > 2σ(F2)] = 0.025

  • wR(F2) = 0.066

  • S = 1.02

  • 4984 reflections

  • 342 parameters

  • 1 restraint

  • H-atom parameters constrained

  • Δρmax = 0.26 e Å−3

  • Δρmin = −0.28 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
C9—H9⋯S1 0.98 2.94 3.687 (2) 134
C10—H10B⋯O5i 0.96 2.57 3.459 (2) 154
O2—H2⋯O6ii 0.82 2.22 3.014 (2) 165
Symmetry codes: (i) [-x, y+{\script{1\over 2}}, -z]; (ii) [-x+1, y+{\script{1\over 2}}, -z].

Data collection: APEX2 (Bruker, 2014[Bruker (2014). APEX2. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2000[Bruker (2000). SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL2014/7 (Sheldrick, 2015[Sheldrick, G. M. (2015). Acta Cryst. C71, 3-8.]); molecular graphics: Mercury (Macrae et al., 2008[Macrae, C. F., Bruno, I. J., Chisholm, J. A., Edgington, P. R., McCabe, P., Pidcock, E., Rodriguez-Monge, L., Taylor, R., van de Streek, J. & Wood, P. A. (2008). J. Appl. Cryst. 41, 466-470.]), ORTEP-3 for Windows (Farrugia, 2012[Farrugia, L. J. (2012). J. Appl. Cryst. 45, 849-854.]), POV-RAY (Cason, 2003[Cason, C. J. (2003). POV-RAY. Persistence of Vision Raytracer Pty. Ltd, Victoria, Australia.]); software used to prepare material for publication: enCIFer (Allen et al., 2004[Allen, F. H., Johnson, O., Shields, G. P., Smith, B. R. & Towler, M. (2004). J. Appl. Cryst. 37, 335-338.]), publCIF (Westrip, 2010[Westrip, S. P. (2010). J. Appl. Cryst. 43, 920-925.]).

Supporting information


Experimental top

Δ9–THC tosyl­ate was submitted to photooxygenation in di­chloro­methane/ethanol for 11 h and 30 min using meso-tetra­phenyl­porphine in the presence of oxygen and light generated by a regular, incandescent light bulb, yielding the title compound, which was crystallized from ethyl acetate : hexanes 1:9, producing needle-like crystals

Refinement top

All H atoms were located in difference maps but were included in the model in the riding model approximation with O—H = 0.82 Å and C—H = 0.93–0.98 Å, and with Uiso = 1.5Ueq (O) for OH and Uiso=1.2–1.5Ueq(C).

Related literature top

For Δ9–THC tosylate, see: Ducker (2004); Gul et al. (2008). For a related process of photooxygenation, see: Motoyoshiya et al. (1999); Griesbeck et al. (2014). For unusually long sulfur hydrogen bonding, see: Huang et al. (2009).

Structure description top

Δ9–THC tosyl­ate was submitted to photooxygenation in di­chloro­methane/ethanol for 11 h and 30 min using meso-tetra­phenyl­porphine in the presence of oxygen and light generated by a regular, incandescent light bulb, yielding the title compound, which was crystallized from ethyl acetate : hexanes 1:9, producing needle-like crystals

For Δ9–THC tosylate, see: Ducker (2004); Gul et al. (2008). For a related process of photooxygenation, see: Motoyoshiya et al. (1999); Griesbeck et al. (2014). For unusually long sulfur hydrogen bonding, see: Huang et al. (2009).

Refinement details top

All H atoms were located in difference maps but were included in the model in the riding model approximation with O—H = 0.82 Å and C—H = 0.93–0.98 Å, and with Uiso = 1.5Ueq (O) for OH and Uiso=1.2–1.5Ueq(C).

Computing details top

Data collection: APEX2 (Bruker, 2014); cell refinement: SAINT (Bruker, 2000); data reduction: SAINT (Bruker, 2000); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL2014/7 (Sheldrick, 2015); molecular graphics: Mercury (Macrae et al., 2008), ORTEP-3 for Windows (Farrugia, 2012), POV-RAY (Cason, 2003); software used to prepare material for publication: enCIFer (Allen et al., 2004), publCIF (Westrip, 2010).

Figures top
[Figure 1] Fig. 1. Plot of the molecular structure of the title compound with the atom-labelling scheme. Displacement ellipsoids are drawn at the 50% probability level.
[Figure 2] Fig. 2. Partial plot of the unit cell contents of the title compound, showing an O6—H2···O2 intermolecular hydrogens bond and one long, intramolecular C9—H9···S1 hydrogen bond, both represented by light blue lines.
(9S,10S)-10-Ethoxy-9-hydroxy-6,6,9-trimethyl-3-pentyl-7,8,9,10-tetrahydro-6H-benzo[c]chromen-1-yl 4-methylbenzenesulfonate top
Crystal data top
C30H40O6SF(000) = 568
Mr = 528.68Dx = 1.274 Mg m3
Monoclinic, P21Cu Kα radiation, λ = 1.54178 Å
a = 9.909 (1) ÅCell parameters from 9903 reflections
b = 10.2373 (10) Åθ = 4.6–68.1°
c = 13.8402 (10) ŵ = 1.38 mm1
β = 101.00 (1)°T = 173 K
V = 1378.2 (2) Å3Needle, colourless
Z = 20.23 × 0.20 × 0.19 mm
Data collection top
Bruker SMART CCD area-detector
diffractometer
Rint = 0.025
Radiation source: X-rayθmax = 68.2°, θmin = 3.3°
φ and ω scansh = 1111
21062 measured reflectionsk = 1212
4984 independent reflectionsl = 1616
4834 reflections with I > 2σ(I)
Refinement top
Refinement on F2Hydrogen site location: inferred from neighbouring sites
Least-squares matrix: fullH-atom parameters constrained
R[F2 > 2σ(F2)] = 0.025 w = 1/[σ2(Fo2) + (0.0429P)2 + 0.1558P]
where P = (Fo2 + 2Fc2)/3
wR(F2) = 0.066(Δ/σ)max < 0.001
S = 1.02Δρmax = 0.26 e Å3
4984 reflectionsΔρmin = 0.28 e Å3
342 parametersAbsolute structure: Twinning involves inversion, so Flack parameter cannot be determined
1 restraint
Crystal data top
C30H40O6SV = 1378.2 (2) Å3
Mr = 528.68Z = 2
Monoclinic, P21Cu Kα radiation
a = 9.909 (1) ŵ = 1.38 mm1
b = 10.2373 (10) ÅT = 173 K
c = 13.8402 (10) Å0.23 × 0.20 × 0.19 mm
β = 101.00 (1)°
Data collection top
Bruker SMART CCD area-detector
diffractometer
4834 reflections with I > 2σ(I)
21062 measured reflectionsRint = 0.025
4984 independent reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0251 restraint
wR(F2) = 0.066H-atom parameters constrained
S = 1.02Δρmax = 0.26 e Å3
4984 reflectionsΔρmin = 0.28 e Å3
342 parametersAbsolute structure: Twinning involves inversion, so Flack parameter cannot be determined
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Refinement. Refined as a 2-component inversion twin.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
S10.33896 (5)0.44735 (5)0.19766 (3)0.01720 (12)
O10.01053 (14)0.87882 (14)0.24328 (10)0.0163 (3)
O20.54967 (16)0.84850 (17)0.05710 (11)0.0269 (4)
H20.56000.88380.00580.040*
O30.47179 (14)0.82165 (14)0.25792 (10)0.0174 (3)
O40.37762 (14)0.56548 (14)0.27376 (10)0.0158 (3)
O50.20422 (16)0.46627 (15)0.14151 (10)0.0247 (3)
O60.45457 (17)0.44066 (17)0.15025 (11)0.0269 (3)
C10.2680 (2)0.6273 (2)0.30887 (14)0.0144 (4)
C20.2306 (2)0.5743 (2)0.39227 (14)0.0156 (4)
H2A0.27850.50350.42400.019*
C30.1205 (2)0.6281 (2)0.42811 (14)0.0163 (4)
C40.0496 (2)0.7316 (2)0.37639 (14)0.0164 (4)
H40.02460.76880.39860.020*
C4A0.0882 (2)0.78021 (19)0.29185 (14)0.0147 (4)
C50.0027 (2)0.8815 (2)0.13601 (14)0.0169 (4)
C5A0.1471 (2)0.8735 (2)0.11459 (14)0.0170 (4)
C60.1735 (2)0.9385 (3)0.02247 (14)0.0228 (4)
H6A0.17671.03240.03190.027*
H6B0.09840.91900.03160.027*
C70.3085 (2)0.8924 (3)0.00372 (15)0.0255 (5)
H7A0.29770.80360.02840.031*
H7B0.33090.94740.05550.031*
C80.4260 (2)0.8973 (2)0.08512 (15)0.0203 (4)
C90.3933 (2)0.7990 (2)0.16179 (14)0.0164 (4)
H90.41380.71080.14100.020*
C9A0.2436 (2)0.80314 (19)0.17329 (14)0.0150 (4)
C9B0.2036 (2)0.7346 (2)0.25771 (14)0.0148 (4)
C100.0683 (2)1.0112 (2)0.10561 (15)0.0201 (4)
H10A0.15491.01390.12690.030*
H10B0.08341.01960.03530.030*
H10C0.01121.08160.13540.030*
C110.0845 (2)0.7666 (2)0.08950 (15)0.0205 (4)
H11A0.04130.68620.11410.031*
H11B0.09260.76970.01930.031*
H11C0.17420.77180.10580.031*
C120.4513 (3)1.0345 (2)0.12656 (18)0.0277 (5)
H12A0.53371.03530.17600.042*
H12B0.37491.06120.15530.042*
H12C0.46121.09370.07460.042*
C130.0733 (2)0.5677 (2)0.51606 (15)0.0195 (4)
H13A0.08910.47430.51520.023*
H13B0.02500.58130.50890.023*
C140.1441 (2)0.6214 (2)0.61665 (15)0.0197 (4)
H14A0.11190.57290.66800.024*
H14B0.24240.60730.62460.024*
C150.1177 (2)0.7662 (2)0.62955 (15)0.0215 (4)
H15A0.01930.78160.61370.026*
H15B0.15940.81510.58290.026*
C160.1730 (2)0.8183 (2)0.73286 (15)0.0223 (5)
H16A0.27130.80300.74950.027*
H16B0.13020.77140.77990.027*
C170.1449 (3)0.9644 (3)0.74043 (16)0.0333 (6)
H17A0.18571.01100.69310.050*
H17B0.18380.99460.80550.050*
H17C0.04740.97930.72750.050*
C180.3399 (2)0.31006 (19)0.27416 (15)0.0159 (4)
C190.4624 (2)0.2741 (2)0.33485 (15)0.0185 (4)
H190.54190.32280.33600.022*
C200.4641 (2)0.1648 (2)0.39354 (15)0.0202 (4)
H200.54540.14080.43530.024*
C210.3458 (2)0.0896 (2)0.39119 (15)0.0186 (4)
C220.2245 (2)0.1286 (2)0.32967 (16)0.0214 (5)
H220.14490.07970.32750.026*
C230.2205 (2)0.2395 (2)0.27151 (15)0.0193 (4)
H230.13880.26590.23140.023*
C240.3507 (2)0.0315 (2)0.45314 (16)0.0265 (5)
H24A0.37320.10530.41650.040*
H24B0.26250.04520.47070.040*
H24C0.41930.02130.51180.040*
C250.6098 (2)0.7735 (2)0.27438 (16)0.0229 (5)
H25A0.66840.83240.24610.027*
H25B0.61290.68800.24470.027*
C260.6567 (2)0.7654 (3)0.38428 (17)0.0305 (5)
H26A0.65770.85130.41220.046*
H26B0.74760.72890.39910.046*
H26C0.59480.71070.41160.046*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
S10.0244 (3)0.0168 (2)0.0111 (2)0.0027 (2)0.00518 (17)0.00065 (18)
O10.0180 (7)0.0179 (7)0.0134 (6)0.0035 (6)0.0041 (5)0.0009 (5)
O20.0259 (8)0.0394 (9)0.0193 (7)0.0076 (7)0.0136 (6)0.0107 (7)
O30.0158 (7)0.0233 (7)0.0133 (7)0.0012 (6)0.0030 (5)0.0015 (5)
O40.0170 (7)0.0160 (7)0.0154 (7)0.0019 (6)0.0056 (6)0.0006 (5)
O50.0327 (8)0.0238 (8)0.0150 (6)0.0034 (7)0.0024 (6)0.0019 (6)
O60.0393 (9)0.0238 (7)0.0222 (7)0.0036 (7)0.0177 (7)0.0009 (7)
C10.0149 (10)0.0162 (9)0.0121 (9)0.0014 (8)0.0023 (8)0.0030 (7)
C20.0178 (10)0.0152 (9)0.0128 (9)0.0019 (8)0.0007 (8)0.0005 (7)
C30.0196 (10)0.0183 (9)0.0110 (9)0.0065 (8)0.0032 (8)0.0029 (7)
C40.0162 (10)0.0197 (10)0.0148 (9)0.0015 (8)0.0065 (8)0.0037 (8)
C4A0.0150 (9)0.0149 (9)0.0134 (9)0.0020 (8)0.0009 (7)0.0034 (7)
C50.0186 (10)0.0206 (9)0.0111 (9)0.0027 (8)0.0017 (8)0.0006 (8)
C5A0.0212 (11)0.0168 (10)0.0134 (9)0.0007 (8)0.0040 (8)0.0003 (8)
C60.0218 (10)0.0306 (11)0.0163 (9)0.0048 (10)0.0042 (8)0.0081 (9)
C70.0275 (12)0.0356 (12)0.0147 (9)0.0060 (10)0.0075 (9)0.0089 (9)
C80.0195 (11)0.0252 (11)0.0183 (10)0.0024 (9)0.0090 (8)0.0051 (8)
C90.0188 (10)0.0187 (10)0.0124 (9)0.0026 (8)0.0045 (8)0.0005 (7)
C9A0.0197 (10)0.0149 (9)0.0111 (9)0.0005 (8)0.0047 (8)0.0024 (7)
C9B0.0163 (10)0.0170 (9)0.0109 (9)0.0025 (8)0.0022 (7)0.0025 (7)
C100.0226 (11)0.0206 (10)0.0164 (9)0.0045 (9)0.0019 (8)0.0005 (8)
C110.0213 (11)0.0214 (11)0.0180 (9)0.0004 (9)0.0017 (8)0.0022 (8)
C120.0308 (13)0.0252 (12)0.0296 (12)0.0010 (10)0.0121 (10)0.0091 (10)
C130.0213 (11)0.0215 (10)0.0172 (10)0.0026 (9)0.0076 (8)0.0008 (8)
C140.0194 (11)0.0264 (11)0.0143 (9)0.0011 (9)0.0057 (8)0.0035 (8)
C150.0240 (11)0.0263 (11)0.0143 (9)0.0029 (9)0.0041 (8)0.0044 (8)
C160.0226 (11)0.0291 (12)0.0152 (10)0.0007 (9)0.0038 (8)0.0025 (8)
C170.0470 (14)0.0297 (13)0.0193 (10)0.0033 (12)0.0036 (10)0.0003 (10)
C180.0205 (10)0.0143 (9)0.0139 (9)0.0028 (8)0.0055 (8)0.0023 (7)
C190.0154 (10)0.0229 (11)0.0178 (9)0.0017 (8)0.0046 (8)0.0023 (8)
C200.0186 (10)0.0247 (11)0.0169 (9)0.0033 (9)0.0024 (8)0.0015 (8)
C210.0236 (11)0.0180 (10)0.0159 (9)0.0007 (8)0.0077 (8)0.0032 (8)
C220.0211 (11)0.0194 (10)0.0247 (11)0.0049 (8)0.0071 (9)0.0048 (8)
C230.0179 (10)0.0219 (11)0.0177 (9)0.0029 (9)0.0021 (8)0.0025 (8)
C240.0340 (12)0.0235 (12)0.0231 (10)0.0001 (10)0.0080 (9)0.0020 (9)
C250.0169 (10)0.0309 (12)0.0220 (11)0.0009 (9)0.0064 (9)0.0040 (9)
C260.0192 (11)0.0478 (15)0.0237 (11)0.0032 (11)0.0020 (9)0.0053 (11)
Geometric parameters (Å, º) top
S1—O51.4240 (16)C11—H11B0.9600
S1—O61.4264 (15)C11—H11C0.9600
S1—O41.6014 (15)C12—H12A0.9600
S1—C181.759 (2)C12—H12B0.9600
O1—C4A1.366 (3)C12—H12C0.9600
O1—C51.472 (2)C13—C141.536 (3)
O2—C81.443 (2)C13—H13A0.9700
O2—H20.8200C13—H13B0.9700
O3—C91.426 (2)C14—C151.521 (3)
O3—C251.431 (3)C14—H14A0.9700
O4—C11.421 (2)C14—H14B0.9700
C1—C21.388 (3)C15—C161.527 (3)
C1—C9B1.394 (3)C15—H15A0.9700
C2—C31.395 (3)C15—H15B0.9700
C2—H2A0.9300C16—C171.528 (3)
C3—C41.392 (3)C16—H16A0.9700
C3—C131.517 (3)C16—H16B0.9700
C4—C4A1.391 (3)C17—H17A0.9600
C4—H40.9300C17—H17B0.9600
C4A—C9B1.398 (3)C17—H17C0.9600
C5—C5A1.518 (3)C18—C231.380 (3)
C5—C101.523 (3)C18—C191.387 (3)
C5—C111.526 (3)C19—C201.381 (3)
C5A—C9A1.340 (3)C19—H190.9300
C5A—C61.505 (3)C20—C211.397 (3)
C6—C71.526 (3)C20—H200.9300
C6—H6A0.9700C21—C221.393 (3)
C6—H6B0.9700C21—C241.503 (3)
C7—C81.524 (3)C22—C231.388 (3)
C7—H7A0.9700C22—H220.9300
C7—H7B0.9700C23—H230.9300
C8—C121.520 (3)C24—H24A0.9600
C8—C91.541 (3)C24—H24B0.9600
C9—C9A1.523 (3)C24—H24C0.9600
C9—H90.9800C25—C261.506 (3)
C9A—C9B1.480 (3)C25—H25A0.9700
C10—H10A0.9600C25—H25B0.9700
C10—H10B0.9600C26—H26A0.9600
C10—H10C0.9600C26—H26B0.9600
C11—H11A0.9600C26—H26C0.9600
O5—S1—O6120.48 (9)H11A—C11—H11C109.5
O5—S1—O4109.74 (8)H11B—C11—H11C109.5
O6—S1—O4103.09 (9)C8—C12—H12A109.5
O5—S1—C18109.51 (10)C8—C12—H12B109.5
O6—S1—C18109.04 (10)H12A—C12—H12B109.5
O4—S1—C18103.56 (8)C8—C12—H12C109.5
C4A—O1—C5115.24 (15)H12A—C12—H12C109.5
C8—O2—H2109.5H12B—C12—H12C109.5
C9—O3—C25115.27 (15)C3—C13—C14115.09 (17)
C1—O4—S1117.32 (12)C3—C13—H13A108.5
C2—C1—C9B124.13 (19)C14—C13—H13A108.5
C2—C1—O4116.98 (18)C3—C13—H13B108.5
C9B—C1—O4118.88 (17)C14—C13—H13B108.5
C1—C2—C3119.5 (2)H13A—C13—H13B107.5
C1—C2—H2A120.2C15—C14—C13113.32 (18)
C3—C2—H2A120.2C15—C14—H14A108.9
C4—C3—C2118.04 (18)C13—C14—H14A108.9
C4—C3—C13121.37 (19)C15—C14—H14B108.9
C2—C3—C13120.41 (19)C13—C14—H14B108.9
C4A—C4—C3120.78 (18)H14A—C14—H14B107.7
C4A—C4—H4119.6C14—C15—C16114.31 (18)
C3—C4—H4119.6C14—C15—H15A108.7
O1—C4A—C4117.27 (18)C16—C15—H15A108.7
O1—C4A—C9B120.06 (17)C14—C15—H15B108.7
C4—C4A—C9B122.64 (19)C16—C15—H15B108.7
O1—C5—C5A109.00 (16)H15A—C15—H15B107.6
O1—C5—C10103.17 (15)C15—C16—C17111.65 (19)
C5A—C5—C10113.29 (17)C15—C16—H16A109.3
O1—C5—C11109.13 (16)C17—C16—H16A109.3
C5A—C5—C11110.76 (17)C15—C16—H16B109.3
C10—C5—C11111.16 (16)C17—C16—H16B109.3
C9A—C5A—C6122.14 (18)H16A—C16—H16B108.0
C9A—C5A—C5120.03 (17)C16—C17—H17A109.5
C6—C5A—C5117.68 (17)C16—C17—H17B109.5
C5A—C6—C7111.51 (18)H17A—C17—H17B109.5
C5A—C6—H6A109.3C16—C17—H17C109.5
C7—C6—H6A109.3H17A—C17—H17C109.5
C5A—C6—H6B109.3H17B—C17—H17C109.5
C7—C6—H6B109.3C23—C18—C19121.6 (2)
H6A—C6—H6B108.0C23—C18—S1119.73 (16)
C8—C7—C6111.56 (17)C19—C18—S1118.70 (16)
C8—C7—H7A109.3C20—C19—C18118.86 (19)
C6—C7—H7A109.3C20—C19—H19120.6
C8—C7—H7B109.3C18—C19—H19120.6
C6—C7—H7B109.3C19—C20—C21121.07 (19)
H7A—C7—H7B108.0C19—C20—H20119.5
O2—C8—C12109.50 (18)C21—C20—H20119.5
O2—C8—C7109.20 (17)C22—C21—C20118.61 (19)
C12—C8—C7112.3 (2)C22—C21—C24121.0 (2)
O2—C8—C9105.08 (16)C20—C21—C24120.4 (2)
C12—C8—C9112.64 (17)C23—C22—C21121.0 (2)
C7—C8—C9107.81 (18)C23—C22—H22119.5
O3—C9—C9A105.46 (15)C21—C22—H22119.5
O3—C9—C8112.79 (17)C18—C23—C22118.9 (2)
C9A—C9—C8113.00 (17)C18—C23—H23120.5
O3—C9—H9108.5C22—C23—H23120.5
C9A—C9—H9108.5C21—C24—H24A109.5
C8—C9—H9108.5C21—C24—H24B109.5
C5A—C9A—C9B117.76 (18)H24A—C24—H24B109.5
C5A—C9A—C9123.25 (18)C21—C24—H24C109.5
C9B—C9A—C9118.82 (17)H24A—C24—H24C109.5
C1—C9B—C4A114.59 (18)H24B—C24—H24C109.5
C1—C9B—C9A127.53 (18)O3—C25—C26106.32 (17)
C4A—C9B—C9A117.88 (18)O3—C25—H25A110.5
C5—C10—H10A109.5C26—C25—H25A110.5
C5—C10—H10B109.5O3—C25—H25B110.5
H10A—C10—H10B109.5C26—C25—H25B110.5
C5—C10—H10C109.5H25A—C25—H25B108.7
H10A—C10—H10C109.5C25—C26—H26A109.5
H10B—C10—H10C109.5C25—C26—H26B109.5
C5—C11—H11A109.5H26A—C26—H26B109.5
C5—C11—H11B109.5C25—C26—H26C109.5
H11A—C11—H11B109.5H26A—C26—H26C109.5
C5—C11—H11C109.5H26B—C26—H26C109.5
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C9—H9···S10.982.943.687 (2)134
C10—H10B···O5i0.962.573.459 (2)154
O2—H2···O6ii0.822.223.014 (2)165
Symmetry codes: (i) x, y+1/2, z; (ii) x+1, y+1/2, z.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C9—H9···S10.982.943.687 (2)134
C10—H10B···O5i0.962.573.459 (2)154
O2—H2···O6ii0.822.223.014 (2)165
Symmetry codes: (i) x, y+1/2, z; (ii) x+1, y+1/2, z.
 

Acknowledgements

The authors thank the United States Department of Agriculture, Agriculture Research Service Specific Cooperative Agreement No. 58-6408-7-012, for partial support of this work.

References

First citationAllen, F. H., Johnson, O., Shields, G. P., Smith, B. R. & Towler, M. (2004). J. Appl. Cryst. 37, 335–338.  Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
First citationBruker (2000). SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationBruker (2014). APEX2. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationCason, C. J. (2003). POV-RAY. Persistence of Vision Raytracer Pty. Ltd, Victoria, Australia.  Google Scholar
First citationDucker, J. R. (2004). US Patent No. 2006/0094774-A1.  Google Scholar
First citationFarrugia, L. J. (2012). J. Appl. Cryst. 45, 849–854.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationGriesbeck, A. G., de Kiff, A. & Kleczka, M. (2014). Adv. Synth. Catal. 356, 2839–2845.  Web of Science CrossRef CAS Google Scholar
First citationGul, W., Carvalho, P., Berberich, D. W., Avery, M. A. & ElSohly, M. A. (2008). Acta Cryst. E64, o1686.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationHuang, L., Massa, L., Karle, I. & Karle, J. (2009). Proc. Natl Acad. Sci. USA, 106, 3664–3669.  Web of Science CrossRef PubMed CAS Google Scholar
First citationMacrae, C. F., Bruno, I. J., Chisholm, J. A., Edgington, P. R., McCabe, P., Pidcock, E., Rodriguez-Monge, L., Taylor, R., van de Streek, J. & Wood, P. A. (2008). J. Appl. Cryst. 41, 466–470.  Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
First citationMotoyoshiya, J., Okuda, Y., Matsuoka, I., Hayashi, S., Takaguchi, Y. & Aoyama, H. (1999). J. Org. Chem. 64, 493–497.  Web of Science CrossRef CAS Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSheldrick, G. M. (2015). Acta Cryst. C71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar
First citationWestrip, S. P. (2010). J. Appl. Cryst. 43, 920–925.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds