metal-organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Crystal structure of a third polymorph of tris­­(acetyl­acetonato-κ2O,O′)iron(III)

aDepartment of Chemistry, 120 Trustee Road, University of Rochester, Rochester, NY 14627, USA
*Correspondence e-mail: michael.neidig@rochester.edu

Edited by A. Van der Lee, Université de Montpellier II, France (Received 11 November 2015; accepted 16 November 2015; online 21 November 2015)

In the structure of the title complex, [Fe(C5H7O2)3] or Fe(acac)3, the asymmetric unit contains one mol­ecule in a general position. The coordination sphere of the FeIII atom is that of a slightly distorted octahedron. The crystal under investigation was a two-component pseudo-merohedral twin in the monoclinic system with a β angle close to 90°. Twin law [100/0-10/00-1] reduced the R1 residual [I > 2σ(I)] from 0.0769 to 0.0312, and the mass ratio of twin components refined to 0.8913 (5):0.1087 (5). In the crystal, mol­ecules are arranged in sheets normal to [001] via non-classical C—H⋯O hydrogen bonding. No other significant inter­molecular inter­actions are observed. The structure is a new polymorph of Fe(acac)3 and is isotypic with one polymorph of its gallium analog.

1. Related literature

For an early report of the first polymorph of tris­(acetyl­acetonato)iron(III), see: Morgan & Drew (1921[Morgan, G. T. & Drew, H. D. K. (1921). J. Chem. Soc. Trans. 119, 1058-1066.]), and references therein. For a later occurrence of this polymorph, see: Molokhia et al. (1981[Molokhia, N. M., El Shahat, M. F. & El Sawi, E. (1981). Ferroelectrics, 31, 23-26.]). For multiple reports of the second polymorph, see: Roof (1956[Roof, R. B. (1956). Acta Cryst. 9, 781-786.]); Shkol'nikova (1959[Shkol'nikova, L. M. (1959). Kristallografiya, 4, 419-420.]); Iball & Morgan (1967[Iball, J. & Morgan, C. H. (1967). Acta Cryst. 23, 239-244.]); Kabak et al. (1996[Kabak, M., Elmali, A., Ozbey, S., Atakol, O. & Kenar, A. (1996). Z. Kristallogr. 211, 831-832.]); Diaz-Acosta et al. (2001[Diaz-Acosta, I., Baker, J., Cordes, W. & Pulay, P. (2001). J. Phys. Chem. A, 105, 238-244.]); Hu et al. (2001[Hu, M.-L., Jin, Z.-M., Miao, Q. & Fang, L.-P. (2001). Z. Kristallogr. New Cryst. Struct. 216, 597-598.]); Stabnikov et al. (2007[Stabnikov, P. A., Pervukhina, N. V., Baidina, I. A., Sheludyakova, L. A. & Borisov, S. V. (2007). J. Struct. Chem. 48, 186-192.]); Weng et al. (2011[Weng, S.-S., Ke, C.-S., Chen, F.-K., Lyu, Y.-F. & Lin, G. Y. (2011). Tetrahedron, 67, 1640-1648.]). For the isotypic gallium analog, see: Sultan et al. (2005[Sultan, M., Mazhar, M., Zeller, M. & Hunter, A. D. (2005). Private communication (refcode ACACGA02). CCDC, Cambridge, England.]).

[Scheme 1]

2. Experimental

2.1. Crystal data

  • [Fe(C5H7O2)3]

  • Mr = 353.17

  • Monoclinic, P 21 /n

  • a = 8.011 (3) Å

  • b = 13.092 (5) Å

  • c = 15.808 (6) Å

  • β = 90.108 (7)°

  • V = 1658.1 (10) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.93 mm−1

  • T = 100 K

  • 0.48 × 0.20 × 0.06 mm

2.2. Data collection

  • Bruker SMART APEXII CCD platform diffractometer

  • Absorption correction: multi-scan (SADABS; Sheldrick, 2014[Sheldrick, G. M. (2014). SADABS. University of Göttingen, Germany.]) Tmin = 0.642, Tmax = 0.748

  • 52218 measured reflections

  • 9058 independent reflections

  • 7693 reflections with I > 2σ(I)

  • Rint = 0.041

2.3. Refinement

  • R[F2 > 2σ(F2)] = 0.031

  • wR(F2) = 0.081

  • S = 1.06

  • 9058 reflections

  • 206 parameters

  • H-atom parameters constrained

  • Δρmax = 0.50 e Å−3

  • Δρmin = −0.58 e Å−3

Table 1
Selected bond lengths (Å)

Fe1—O5 1.9874 (9)
Fe1—O2 1.9986 (9)
Fe1—O4 1.9987 (9)
Fe1—O6 2.0008 (9)
Fe1—O1 2.0063 (9)
Fe1—O3 2.0098 (10)

Table 2
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
C11—H11C⋯O3i 0.98 2.60 3.4736 (15) 148
C15—H15C⋯O3ii 0.98 2.47 3.4326 (15) 167
Symmetry codes: (i) [-x+{\script{1\over 2}}, y+{\script{1\over 2}}, -z+{\script{1\over 2}}]; (ii) x+1, y, z.

Data collection: APEX2 (Bruker, 2014[Bruker (2014). APEX2. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2013[Bruker (2013). SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXS2013 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL2014 (Sheldrick, 2015[Sheldrick, G. M. (2015). Acta Cryst. C71, 3-8.]); molecular graphics: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); software used to prepare material for publication: SHELXTL.

Supporting information


Comment top

To date crystal structures of the unsolvated title complex (Figure 1) have only appeared in one of two polymorphic forms, and both are orthorhombic. The original report of the first polymorph was described by von Lang in 1899 (Morgan & Drew, 1921, and references therein), and was reported again over 80 years later (Molokhia et al., 1981). The second polymorph has been presented in multiple publications (Roof Jr, 1956, Shkol'nikova, 1959, Iball & Morgan, 1967, Kabak et al., 1996, Diaz-Acosta et al., 2001, Hu et al., 2001, Stabnikov et al., 2007, and Weng et al., 2011). This report presents a new (third) polymorph for the iron complex. The structure is isotypic with one polymorph of its gallium analog (Sultan et al., 2005).

Although the beta angle of the title compound is very close to 90°, the data are truly monoclinic. Because of the near-90° beta angle, the potential for twinning existed, and indeed, the crystal was a pseudo-merohedral twin. Upon completion of the experiment at 100 K, additional sets of data were collected at room temperature to check for any phase changes, of which there were none. Attempts to reproduce the crystallization of this polymorph have been unsuccessful to date.

Related literature top

For an early report of the first polymorph of tris(acetylacetonato)iron(III), see: Morgan & Drew (1921), and references therein. For a later occurrence of this polymorph, see: Molokhia et al. (1981). For multiple reports of the second polymorph, see: Roof Jr (1956); Shkol'nikova (1959); Iball & Morgan (1967); Kabak et al. (1996); Diaz-Acosta et al. (2001); Hu et al. (2001); Stabnikov et al. (2007); Weng et al. (2011). For the isotypic gallium analog, see: Sultan et al. (2005).

Experimental top

Large flat red rectangular prisms grew over the course of weeks from the slow evaporation of a diethyl ether solution at 243 K.

Refinement top

H atoms were placed geometrically and treated as riding atoms: C—H(sp2) = 0.95 Å with Uiso(H) = 1.2Ueq(C) and CH(methyl) = 0.98 Å with Uiso(H) = 1.5Ueq(C).

Structure description top

To date crystal structures of the unsolvated title complex (Figure 1) have only appeared in one of two polymorphic forms, and both are orthorhombic. The original report of the first polymorph was described by von Lang in 1899 (Morgan & Drew, 1921, and references therein), and was reported again over 80 years later (Molokhia et al., 1981). The second polymorph has been presented in multiple publications (Roof Jr, 1956, Shkol'nikova, 1959, Iball & Morgan, 1967, Kabak et al., 1996, Diaz-Acosta et al., 2001, Hu et al., 2001, Stabnikov et al., 2007, and Weng et al., 2011). This report presents a new (third) polymorph for the iron complex. The structure is isotypic with one polymorph of its gallium analog (Sultan et al., 2005).

Although the beta angle of the title compound is very close to 90°, the data are truly monoclinic. Because of the near-90° beta angle, the potential for twinning existed, and indeed, the crystal was a pseudo-merohedral twin. Upon completion of the experiment at 100 K, additional sets of data were collected at room temperature to check for any phase changes, of which there were none. Attempts to reproduce the crystallization of this polymorph have been unsuccessful to date.

For an early report of the first polymorph of tris(acetylacetonato)iron(III), see: Morgan & Drew (1921), and references therein. For a later occurrence of this polymorph, see: Molokhia et al. (1981). For multiple reports of the second polymorph, see: Roof Jr (1956); Shkol'nikova (1959); Iball & Morgan (1967); Kabak et al. (1996); Diaz-Acosta et al. (2001); Hu et al. (2001); Stabnikov et al. (2007); Weng et al. (2011). For the isotypic gallium analog, see: Sultan et al. (2005).

Computing details top

Data collection: APEX2 (Bruker, 2014); cell refinement: SAINT (Bruker, 2013); data reduction: SAINT (Bruker, 2013); program(s) used to solve structure: SHELXS2013 (Sheldrick, 2008); program(s) used to refine structure: SHELXL2014 (Sheldrick, 2015); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. The structure of the molecule showing the atom numbering, with displacement ellipsoids drawn at the 50% probability level.
Tris(acetylacetonato-κ2O,O')iron(III) top
Crystal data top
[Fe(C5H7O2)3]F(000) = 740
Mr = 353.17Dx = 1.415 Mg m3
Monoclinic, P21/nMo Kα radiation, λ = 0.71073 Å
a = 8.011 (3) ÅCell parameters from 3703 reflections
b = 13.092 (5) Åθ = 2.9–37.9°
c = 15.808 (6) ŵ = 0.93 mm1
β = 90.108 (7)°T = 100 K
V = 1658.1 (10) Å3Rectangular prism, red
Z = 40.48 × 0.20 × 0.06 mm
Data collection top
Bruker SMART APEXII CCD platform
diffractometer
7693 reflections with I > 2σ(I)
Radiation source: fine-focus sealed tubeRint = 0.041
ω scansθmax = 38.6°, θmin = 1.3°
Absorption correction: multi-scan
(SADABS; Sheldrick, 2014)
h = 1413
Tmin = 0.642, Tmax = 0.748k = 2222
52218 measured reflectionsl = 2727
9058 independent reflections
Refinement top
Refinement on F2Primary atom site location: heavy-atom method
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.031Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.081H-atom parameters constrained
S = 1.06 w = 1/[σ2(Fo2) + (0.0422P)2 + 0.1283P]
where P = (Fo2 + 2Fc2)/3
9058 reflections(Δ/σ)max = 0.002
206 parametersΔρmax = 0.50 e Å3
0 restraintsΔρmin = 0.58 e Å3
Crystal data top
[Fe(C5H7O2)3]V = 1658.1 (10) Å3
Mr = 353.17Z = 4
Monoclinic, P21/nMo Kα radiation
a = 8.011 (3) ŵ = 0.93 mm1
b = 13.092 (5) ÅT = 100 K
c = 15.808 (6) Å0.48 × 0.20 × 0.06 mm
β = 90.108 (7)°
Data collection top
Bruker SMART APEXII CCD platform
diffractometer
9058 independent reflections
Absorption correction: multi-scan
(SADABS; Sheldrick, 2014)
7693 reflections with I > 2σ(I)
Tmin = 0.642, Tmax = 0.748Rint = 0.041
52218 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0310 restraints
wR(F2) = 0.081H-atom parameters constrained
S = 1.06Δρmax = 0.50 e Å3
9058 reflectionsΔρmin = 0.58 e Å3
206 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. The crystal was a two-component pseudo-merohedral twin. Twin law [1 0 0 / 0 - 1 0 / 0 0 - 1] reduced the R1 residual (observed) from 0.0769 to 0.0312. The mass ratio of twin components refined to 0.8913 (5):0.1087 (5).

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Fe10.45028 (2)0.51493 (2)0.25157 (2)0.01370 (3)
O10.34731 (10)0.56636 (5)0.35904 (4)0.01882 (13)
O20.45230 (9)0.37683 (5)0.30543 (4)0.01803 (12)
O30.22215 (9)0.49718 (5)0.20055 (5)0.01809 (12)
O40.54074 (9)0.44882 (6)0.14732 (4)0.01907 (12)
O50.44928 (9)0.65608 (5)0.20532 (4)0.01776 (12)
O60.68337 (9)0.54067 (5)0.29194 (5)0.01786 (12)
C10.24199 (14)0.58184 (9)0.49814 (6)0.02391 (19)
H1A0.27630.65330.49220.036*
H1B0.27990.55550.55290.036*
H1C0.12010.57730.49480.036*
C20.31834 (12)0.51942 (7)0.42813 (6)0.01747 (15)
C30.34901 (13)0.41562 (8)0.44180 (6)0.01941 (16)
H3A0.32560.38830.49620.023*
C40.41212 (11)0.34971 (7)0.38019 (6)0.01657 (15)
C50.43362 (15)0.23768 (8)0.39930 (7)0.02404 (19)
H5A0.54520.21570.38180.036*
H5B0.34920.19830.36840.036*
H5C0.42040.22620.46020.036*
C60.00658 (14)0.44499 (9)0.11612 (7)0.0257 (2)
H6A0.05780.51030.13170.039*
H6B0.05710.38990.14940.039*
H6C0.02490.43200.05580.039*
C70.17850 (12)0.44918 (7)0.13395 (6)0.01805 (16)
C80.28949 (14)0.40143 (9)0.07851 (7)0.0253 (2)
H8A0.24430.36510.03180.030*
C90.46286 (14)0.40398 (7)0.08771 (6)0.02005 (16)
C100.57164 (17)0.35230 (10)0.02260 (8)0.0309 (2)
H10A0.64960.40220.00130.046*
H10B0.50140.32430.02260.046*
H10C0.63460.29690.04950.046*
C110.51133 (13)0.82920 (7)0.17750 (6)0.01980 (17)
H11A0.48860.82130.11690.030*
H11B0.60420.87700.18550.030*
H11C0.41160.85580.20580.030*
C120.55669 (12)0.72745 (6)0.21471 (5)0.01511 (14)
C130.71029 (11)0.71624 (7)0.25599 (6)0.01816 (15)
H13A0.78010.77460.26090.022*
C140.76718 (11)0.62403 (7)0.29054 (6)0.01557 (14)
C150.93944 (13)0.61963 (8)0.32810 (7)0.02235 (18)
H15A0.93310.59320.38600.034*
H15B0.98790.68840.32890.034*
H15C1.00970.57440.29390.034*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Fe10.01298 (5)0.01363 (5)0.01448 (5)0.00062 (4)0.00053 (5)0.00014 (4)
O10.0206 (3)0.0188 (3)0.0170 (3)0.0029 (2)0.0013 (2)0.0015 (2)
O20.0210 (3)0.0148 (3)0.0183 (3)0.0001 (2)0.0040 (2)0.0009 (2)
O30.0150 (3)0.0211 (3)0.0182 (3)0.0018 (2)0.0002 (2)0.0028 (2)
O40.0180 (3)0.0215 (3)0.0177 (3)0.0000 (2)0.0024 (2)0.0022 (2)
O50.0155 (3)0.0167 (3)0.0210 (3)0.0015 (2)0.0029 (2)0.0028 (2)
O60.0151 (3)0.0159 (3)0.0225 (3)0.0001 (2)0.0033 (2)0.0012 (2)
C10.0207 (4)0.0325 (5)0.0185 (4)0.0061 (4)0.0001 (3)0.0066 (4)
C20.0132 (3)0.0235 (4)0.0157 (3)0.0009 (3)0.0012 (3)0.0034 (3)
C30.0198 (4)0.0231 (4)0.0154 (3)0.0001 (3)0.0015 (3)0.0013 (3)
C40.0137 (3)0.0176 (3)0.0184 (4)0.0023 (3)0.0003 (3)0.0023 (3)
C50.0267 (5)0.0183 (4)0.0272 (5)0.0005 (3)0.0032 (4)0.0065 (3)
C60.0187 (4)0.0345 (5)0.0238 (5)0.0066 (4)0.0048 (4)0.0005 (4)
C70.0186 (4)0.0165 (3)0.0190 (4)0.0037 (3)0.0020 (3)0.0015 (3)
C80.0241 (5)0.0283 (5)0.0235 (4)0.0038 (4)0.0006 (4)0.0093 (4)
C90.0250 (5)0.0168 (4)0.0184 (4)0.0000 (3)0.0038 (3)0.0028 (3)
C100.0331 (6)0.0315 (5)0.0281 (5)0.0022 (5)0.0081 (4)0.0113 (4)
C110.0236 (4)0.0156 (3)0.0202 (4)0.0012 (3)0.0002 (3)0.0019 (3)
C120.0167 (4)0.0142 (3)0.0144 (3)0.0006 (3)0.0031 (3)0.0004 (2)
C130.0150 (3)0.0153 (3)0.0241 (4)0.0014 (3)0.0002 (3)0.0008 (3)
C140.0129 (3)0.0173 (3)0.0165 (3)0.0010 (3)0.0005 (3)0.0027 (3)
C150.0147 (4)0.0240 (4)0.0283 (4)0.0009 (3)0.0047 (3)0.0041 (3)
Geometric parameters (Å, º) top
Fe1—O51.9874 (9)C6—C71.5097 (16)
Fe1—O21.9986 (9)C6—H6A0.9800
Fe1—O41.9987 (9)C6—H6B0.9800
Fe1—O62.0008 (9)C6—H6C0.9800
Fe1—O12.0063 (9)C7—C81.3973 (15)
Fe1—O32.0098 (10)C8—C91.3967 (17)
O1—C21.2747 (13)C8—H8A0.9500
O2—C41.2759 (12)C9—C101.5100 (15)
O3—C71.2745 (12)C10—H10A0.9800
O4—C91.2726 (12)C10—H10B0.9800
O5—C121.2788 (12)C10—H10C0.9800
O6—C141.2816 (12)C11—C121.5006 (13)
C1—C21.5065 (14)C11—H11A0.9800
C1—H1A0.9800C11—H11B0.9800
C1—H1B0.9800C11—H11C0.9800
C1—H1C0.9800C12—C131.3994 (14)
C2—C31.3979 (15)C13—C141.4010 (13)
C3—C41.3966 (14)C13—H13A0.9500
C3—H3A0.9500C14—C151.5024 (14)
C4—C51.5073 (14)C15—H15A0.9800
C5—H5A0.9800C15—H15B0.9800
C5—H5B0.9800C15—H15C0.9800
C5—H5C0.9800
O5—Fe1—O2176.37 (3)C7—C6—H6A109.5
O5—Fe1—O495.77 (4)C7—C6—H6B109.5
O2—Fe1—O487.52 (4)H6A—C6—H6B109.5
O5—Fe1—O687.93 (3)C7—C6—H6C109.5
O2—Fe1—O690.56 (3)H6A—C6—H6C109.5
O4—Fe1—O689.79 (4)H6B—C6—H6C109.5
O5—Fe1—O189.89 (3)O3—C7—C8124.38 (10)
O2—Fe1—O186.90 (3)O3—C7—C6116.10 (9)
O4—Fe1—O1173.63 (3)C8—C7—C6119.51 (9)
O6—Fe1—O193.35 (4)C9—C8—C7123.91 (9)
O5—Fe1—O387.53 (3)C9—C8—H8A118.0
O2—Fe1—O394.18 (3)C7—C8—H8A118.0
O4—Fe1—O387.13 (4)O4—C9—C8125.04 (9)
O6—Fe1—O3174.22 (3)O4—C9—C10115.38 (10)
O1—Fe1—O390.21 (4)C8—C9—C10119.57 (10)
C2—O1—Fe1129.75 (7)C9—C10—H10A109.5
C4—O2—Fe1130.12 (6)C9—C10—H10B109.5
C7—O3—Fe1129.53 (7)H10A—C10—H10B109.5
C9—O4—Fe1129.22 (7)C9—C10—H10C109.5
C12—O5—Fe1129.38 (6)H10A—C10—H10C109.5
C14—O6—Fe1128.80 (6)H10B—C10—H10C109.5
C2—C1—H1A109.5C12—C11—H11A109.5
C2—C1—H1B109.5C12—C11—H11B109.5
H1A—C1—H1B109.5H11A—C11—H11B109.5
C2—C1—H1C109.5C12—C11—H11C109.5
H1A—C1—H1C109.5H11A—C11—H11C109.5
H1B—C1—H1C109.5H11B—C11—H11C109.5
O1—C2—C3124.68 (9)O5—C12—C13124.65 (8)
O1—C2—C1116.28 (9)O5—C12—C11116.15 (9)
C3—C2—C1119.03 (9)C13—C12—C11119.20 (8)
C4—C3—C2123.82 (9)C12—C13—C14123.87 (8)
C4—C3—H3A118.1C12—C13—H13A118.1
C2—C3—H3A118.1C14—C13—H13A118.1
O2—C4—C3124.50 (9)O6—C14—C13124.79 (9)
O2—C4—C5115.31 (9)O6—C14—C15116.19 (8)
C3—C4—C5120.19 (9)C13—C14—C15119.01 (8)
C4—C5—H5A109.5C14—C15—H15A109.5
C4—C5—H5B109.5C14—C15—H15B109.5
H5A—C5—H5B109.5H15A—C15—H15B109.5
C4—C5—H5C109.5C14—C15—H15C109.5
H5A—C5—H5C109.5H15A—C15—H15C109.5
H5B—C5—H5C109.5H15B—C15—H15C109.5
Fe1—O1—C2—C32.73 (15)Fe1—O4—C9—C87.50 (16)
Fe1—O1—C2—C1178.71 (7)Fe1—O4—C9—C10173.67 (8)
O1—C2—C3—C41.55 (16)C7—C8—C9—O40.58 (19)
C1—C2—C3—C4176.97 (10)C7—C8—C9—C10178.20 (11)
Fe1—O2—C4—C32.61 (14)Fe1—O5—C12—C135.79 (14)
Fe1—O2—C4—C5178.63 (7)Fe1—O5—C12—C11174.69 (6)
C2—C3—C4—O21.63 (16)O5—C12—C13—C141.60 (15)
C2—C3—C4—C5177.08 (9)C11—C12—C13—C14177.90 (9)
Fe1—O3—C7—C83.57 (15)Fe1—O6—C14—C132.54 (14)
Fe1—O3—C7—C6176.19 (7)Fe1—O6—C14—C15178.36 (7)
O3—C7—C8—C92.61 (18)C12—C13—C14—O63.25 (16)
C6—C7—C8—C9177.64 (11)C12—C13—C14—C15175.82 (9)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C11—H11C···O3i0.982.603.4736 (15)148
C15—H15C···O3ii0.982.473.4326 (15)167
Symmetry codes: (i) x+1/2, y+1/2, z+1/2; (ii) x+1, y, z.
Selected bond lengths (Å) top
Fe1—O51.9874 (9)Fe1—O62.0008 (9)
Fe1—O21.9986 (9)Fe1—O12.0063 (9)
Fe1—O41.9987 (9)Fe1—O32.0098 (10)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C11—H11C···O3i0.982.603.4736 (15)148.1
C15—H15C···O3ii0.982.473.4326 (15)166.8
Symmetry codes: (i) x+1/2, y+1/2, z+1/2; (ii) x+1, y, z.
 

Acknowledgements

TMB acknowledges financial support in the form of an NSF graduate fellowship.

References

First citationBruker (2013). SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationBruker (2014). APEX2. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationDiaz-Acosta, I., Baker, J., Cordes, W. & Pulay, P. (2001). J. Phys. Chem. A, 105, 238–244.  Web of Science CSD CrossRef CAS Google Scholar
First citationHu, M.-L., Jin, Z.-M., Miao, Q. & Fang, L.-P. (2001). Z. Kristallogr. New Cryst. Struct. 216, 597–598.  CAS Google Scholar
First citationIball, J. & Morgan, C. H. (1967). Acta Cryst. 23, 239–244.  CSD CrossRef CAS IUCr Journals Web of Science Google Scholar
First citationKabak, M., Elmali, A., Ozbey, S., Atakol, O. & Kenar, A. (1996). Z. Kristallogr. 211, 831–832.  CSD CrossRef CAS Web of Science Google Scholar
First citationMolokhia, N. M., El Shahat, M. F. & El Sawi, E. (1981). Ferroelectrics, 31, 23–26.  CrossRef CAS Google Scholar
First citationMorgan, G. T. & Drew, H. D. K. (1921). J. Chem. Soc. Trans. 119, 1058–1066.  CrossRef CAS Google Scholar
First citationRoof, R. B. (1956). Acta Cryst. 9, 781–786.  CSD CrossRef IUCr Journals Web of Science Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSheldrick, G. M. (2014). SADABS. University of Göttingen, Germany.  Google Scholar
First citationSheldrick, G. M. (2015). Acta Cryst. C71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar
First citationShkol'nikova, L. M. (1959). Kristallografiya, 4, 419–420.  CAS Google Scholar
First citationStabnikov, P. A., Pervukhina, N. V., Baidina, I. A., Sheludyakova, L. A. & Borisov, S. V. (2007). J. Struct. Chem. 48, 186–192.  Web of Science CrossRef CAS Google Scholar
First citationSultan, M., Mazhar, M., Zeller, M. & Hunter, A. D. (2005). Private communication (refcode ACACGA02). CCDC, Cambridge, England.  Google Scholar
First citationWeng, S.-S., Ke, C.-S., Chen, F.-K., Lyu, Y.-F. & Lin, G. Y. (2011). Tetrahedron, 67, 1640–1648.  Web of Science CSD CrossRef CAS Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds