metal-organic compounds
κ2O,O′)iron(III)
of a third polymorph of tris(acetylacetonato-aDepartment of Chemistry, 120 Trustee Road, University of Rochester, Rochester, NY 14627, USA
*Correspondence e-mail: michael.neidig@rochester.edu
In the structure of the title complex, [Fe(C5H7O2)3] or Fe(acac)3, the contains one molecule in a general position. The coordination sphere of the FeIII atom is that of a slightly distorted octahedron. The crystal under investigation was a two-component pseudo-merohedral twin in the monoclinic system with a β angle close to 90°. [100/0-10/00-1] reduced the R1 residual [I > 2σ(I)] from 0.0769 to 0.0312, and the mass ratio of twin components refined to 0.8913 (5):0.1087 (5). In the crystal, molecules are arranged in sheets normal to [001] via non-classical C—H⋯O hydrogen bonding. No other significant intermolecular interactions are observed. The structure is a new polymorph of Fe(acac)3 and is isotypic with one polymorph of its gallium analog.
Keywords: crystal structure; twin; polymorphism; ferric acetylacetonate.
CCDC reference: 1437249
1. Related literature
For an early report of the first polymorph of tris(acetylacetonato)iron(III), see: Morgan & Drew (1921), and references therein. For a later occurrence of this polymorph, see: Molokhia et al. (1981). For multiple reports of the second polymorph, see: Roof (1956); Shkol'nikova (1959); Iball & Morgan (1967); Kabak et al. (1996); Diaz-Acosta et al. (2001); Hu et al. (2001); Stabnikov et al. (2007); Weng et al. (2011). For the isotypic gallium analog, see: Sultan et al. (2005).
2. Experimental
2.1. Crystal data
|
2.3. Refinement
|
|
|
Data collection: APEX2 (Bruker, 2014); cell SAINT (Bruker, 2013); data reduction: SAINT; program(s) used to solve structure: SHELXS2013 (Sheldrick, 2008); program(s) used to refine structure: SHELXL2014 (Sheldrick, 2015); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL.
Supporting information
CCDC reference: 1437249
https://doi.org/10.1107/S2056989015021805/vn2103sup1.cif
contains datablocks I, global. DOI:Structure factors: contains datablock I. DOI: https://doi.org/10.1107/S2056989015021805/vn2103Isup2.hkl
Large flat red rectangular prisms grew over the course of weeks from the slow evaporation of a diethyl ether solution at 243 K.
H atoms were placed geometrically and treated as riding atoms: C—H(sp2) = 0.95 Å with Uiso(H) = 1.2Ueq(C) and C—H(methyl) = 0.98 Å with Uiso(H) = 1.5Ueq(C).
To date crystal structures of the unsolvated title complex (Figure 1) have only appeared in one of two polymorphic forms, and both are orthorhombic. The original report of the first polymorph was described by von Lang in 1899 (Morgan & Drew, 1921, and references therein), and was reported again over 80 years later (Molokhia et al., 1981). The second polymorph has been presented in multiple publications (Roof Jr, 1956, Shkol'nikova, 1959, Iball & Morgan, 1967, Kabak et al., 1996, Diaz-Acosta et al., 2001, Hu et al., 2001, Stabnikov et al., 2007, and Weng et al., 2011). This report presents a new (third) polymorph for the iron complex. The structure is isotypic with one polymorph of its gallium analog (Sultan et al., 2005).
Although the beta angle of the title compound is very close to 90°, the data are truly monoclinic. Because of the near-90° beta angle, the potential for
existed, and indeed, the crystal was a pseudo-merohedral twin. Upon completion of the experiment at 100 K, additional sets of data were collected at room temperature to check for any phase changes, of which there were none. Attempts to reproduce the crystallization of this polymorph have been unsuccessful to date.For an early report of the first polymorph of tris(acetylacetonato)iron(III), see: Morgan & Drew (1921), and references therein. For a later occurrence of this polymorph, see: Molokhia et al. (1981). For multiple reports of the second polymorph, see: Roof Jr (1956); Shkol'nikova (1959); Iball & Morgan (1967); Kabak et al. (1996); Diaz-Acosta et al. (2001); Hu et al. (2001); Stabnikov et al. (2007); Weng et al. (2011). For the isotypic gallium analog, see: Sultan et al. (2005).
Data collection: APEX2 (Bruker, 2014); cell
SAINT (Bruker, 2013); data reduction: SAINT (Bruker, 2013); program(s) used to solve structure: SHELXS2013 (Sheldrick, 2008); program(s) used to refine structure: SHELXL2014 (Sheldrick, 2015); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008).Fig. 1. The structure of the molecule showing the atom numbering, with displacement ellipsoids drawn at the 50% probability level. |
[Fe(C5H7O2)3] | F(000) = 740 |
Mr = 353.17 | Dx = 1.415 Mg m−3 |
Monoclinic, P21/n | Mo Kα radiation, λ = 0.71073 Å |
a = 8.011 (3) Å | Cell parameters from 3703 reflections |
b = 13.092 (5) Å | θ = 2.9–37.9° |
c = 15.808 (6) Å | µ = 0.93 mm−1 |
β = 90.108 (7)° | T = 100 K |
V = 1658.1 (10) Å3 | Rectangular prism, red |
Z = 4 | 0.48 × 0.20 × 0.06 mm |
Bruker SMART APEXII CCD platform diffractometer | 7693 reflections with I > 2σ(I) |
Radiation source: fine-focus sealed tube | Rint = 0.041 |
ω scans | θmax = 38.6°, θmin = 1.3° |
Absorption correction: multi-scan (SADABS; Sheldrick, 2014) | h = −14→13 |
Tmin = 0.642, Tmax = 0.748 | k = −22→22 |
52218 measured reflections | l = −27→27 |
9058 independent reflections |
Refinement on F2 | Primary atom site location: heavy-atom method |
Least-squares matrix: full | Secondary atom site location: difference Fourier map |
R[F2 > 2σ(F2)] = 0.031 | Hydrogen site location: inferred from neighbouring sites |
wR(F2) = 0.081 | H-atom parameters constrained |
S = 1.06 | w = 1/[σ2(Fo2) + (0.0422P)2 + 0.1283P] where P = (Fo2 + 2Fc2)/3 |
9058 reflections | (Δ/σ)max = 0.002 |
206 parameters | Δρmax = 0.50 e Å−3 |
0 restraints | Δρmin = −0.58 e Å−3 |
[Fe(C5H7O2)3] | V = 1658.1 (10) Å3 |
Mr = 353.17 | Z = 4 |
Monoclinic, P21/n | Mo Kα radiation |
a = 8.011 (3) Å | µ = 0.93 mm−1 |
b = 13.092 (5) Å | T = 100 K |
c = 15.808 (6) Å | 0.48 × 0.20 × 0.06 mm |
β = 90.108 (7)° |
Bruker SMART APEXII CCD platform diffractometer | 9058 independent reflections |
Absorption correction: multi-scan (SADABS; Sheldrick, 2014) | 7693 reflections with I > 2σ(I) |
Tmin = 0.642, Tmax = 0.748 | Rint = 0.041 |
52218 measured reflections |
R[F2 > 2σ(F2)] = 0.031 | 0 restraints |
wR(F2) = 0.081 | H-atom parameters constrained |
S = 1.06 | Δρmax = 0.50 e Å−3 |
9058 reflections | Δρmin = −0.58 e Å−3 |
206 parameters |
Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes. |
Refinement. The crystal was a two-component pseudo-merohedral twin. Twin law [1 0 0 / 0 - 1 0 / 0 0 - 1] reduced the R1 residual (observed) from 0.0769 to 0.0312. The mass ratio of twin components refined to 0.8913 (5):0.1087 (5). |
x | y | z | Uiso*/Ueq | ||
Fe1 | 0.45028 (2) | 0.51493 (2) | 0.25157 (2) | 0.01370 (3) | |
O1 | 0.34731 (10) | 0.56636 (5) | 0.35904 (4) | 0.01882 (13) | |
O2 | 0.45230 (9) | 0.37683 (5) | 0.30543 (4) | 0.01803 (12) | |
O3 | 0.22215 (9) | 0.49718 (5) | 0.20055 (5) | 0.01809 (12) | |
O4 | 0.54074 (9) | 0.44882 (6) | 0.14732 (4) | 0.01907 (12) | |
O5 | 0.44928 (9) | 0.65608 (5) | 0.20532 (4) | 0.01776 (12) | |
O6 | 0.68337 (9) | 0.54067 (5) | 0.29194 (5) | 0.01786 (12) | |
C1 | 0.24199 (14) | 0.58184 (9) | 0.49814 (6) | 0.02391 (19) | |
H1A | 0.2763 | 0.6533 | 0.4922 | 0.036* | |
H1B | 0.2799 | 0.5555 | 0.5529 | 0.036* | |
H1C | 0.1201 | 0.5773 | 0.4948 | 0.036* | |
C2 | 0.31834 (12) | 0.51942 (7) | 0.42813 (6) | 0.01747 (15) | |
C3 | 0.34901 (13) | 0.41562 (8) | 0.44180 (6) | 0.01941 (16) | |
H3A | 0.3256 | 0.3883 | 0.4962 | 0.023* | |
C4 | 0.41212 (11) | 0.34971 (7) | 0.38019 (6) | 0.01657 (15) | |
C5 | 0.43362 (15) | 0.23768 (8) | 0.39930 (7) | 0.02404 (19) | |
H5A | 0.5452 | 0.2157 | 0.3818 | 0.036* | |
H5B | 0.3492 | 0.1983 | 0.3684 | 0.036* | |
H5C | 0.4204 | 0.2262 | 0.4602 | 0.036* | |
C6 | −0.00658 (14) | 0.44499 (9) | 0.11612 (7) | 0.0257 (2) | |
H6A | −0.0578 | 0.5103 | 0.1317 | 0.039* | |
H6B | −0.0571 | 0.3899 | 0.1494 | 0.039* | |
H6C | −0.0249 | 0.4320 | 0.0558 | 0.039* | |
C7 | 0.17850 (12) | 0.44918 (7) | 0.13395 (6) | 0.01805 (16) | |
C8 | 0.28949 (14) | 0.40143 (9) | 0.07851 (7) | 0.0253 (2) | |
H8A | 0.2443 | 0.3651 | 0.0318 | 0.030* | |
C9 | 0.46286 (14) | 0.40398 (7) | 0.08771 (6) | 0.02005 (16) | |
C10 | 0.57164 (17) | 0.35230 (10) | 0.02260 (8) | 0.0309 (2) | |
H10A | 0.6496 | 0.4022 | −0.0013 | 0.046* | |
H10B | 0.5014 | 0.3243 | −0.0226 | 0.046* | |
H10C | 0.6346 | 0.2969 | 0.0495 | 0.046* | |
C11 | 0.51133 (13) | 0.82920 (7) | 0.17750 (6) | 0.01980 (17) | |
H11A | 0.4886 | 0.8213 | 0.1169 | 0.030* | |
H11B | 0.6042 | 0.8770 | 0.1855 | 0.030* | |
H11C | 0.4116 | 0.8558 | 0.2058 | 0.030* | |
C12 | 0.55669 (12) | 0.72745 (6) | 0.21471 (5) | 0.01511 (14) | |
C13 | 0.71029 (11) | 0.71624 (7) | 0.25599 (6) | 0.01816 (15) | |
H13A | 0.7801 | 0.7746 | 0.2609 | 0.022* | |
C14 | 0.76718 (11) | 0.62403 (7) | 0.29054 (6) | 0.01557 (14) | |
C15 | 0.93944 (13) | 0.61963 (8) | 0.32810 (7) | 0.02235 (18) | |
H15A | 0.9331 | 0.5932 | 0.3860 | 0.034* | |
H15B | 0.9879 | 0.6884 | 0.3289 | 0.034* | |
H15C | 1.0097 | 0.5744 | 0.2939 | 0.034* |
U11 | U22 | U33 | U12 | U13 | U23 | |
Fe1 | 0.01298 (5) | 0.01363 (5) | 0.01448 (5) | −0.00062 (4) | 0.00053 (5) | −0.00014 (4) |
O1 | 0.0206 (3) | 0.0188 (3) | 0.0170 (3) | 0.0029 (2) | 0.0013 (2) | −0.0015 (2) |
O2 | 0.0210 (3) | 0.0148 (3) | 0.0183 (3) | −0.0001 (2) | 0.0040 (2) | 0.0009 (2) |
O3 | 0.0150 (3) | 0.0211 (3) | 0.0182 (3) | −0.0018 (2) | −0.0002 (2) | −0.0028 (2) |
O4 | 0.0180 (3) | 0.0215 (3) | 0.0177 (3) | 0.0000 (2) | 0.0024 (2) | −0.0022 (2) |
O5 | 0.0155 (3) | 0.0167 (3) | 0.0210 (3) | −0.0015 (2) | −0.0029 (2) | 0.0028 (2) |
O6 | 0.0151 (3) | 0.0159 (3) | 0.0225 (3) | −0.0001 (2) | −0.0033 (2) | 0.0012 (2) |
C1 | 0.0207 (4) | 0.0325 (5) | 0.0185 (4) | 0.0061 (4) | 0.0001 (3) | −0.0066 (4) |
C2 | 0.0132 (3) | 0.0235 (4) | 0.0157 (3) | 0.0009 (3) | −0.0012 (3) | −0.0034 (3) |
C3 | 0.0198 (4) | 0.0231 (4) | 0.0154 (3) | 0.0001 (3) | 0.0015 (3) | 0.0013 (3) |
C4 | 0.0137 (3) | 0.0176 (3) | 0.0184 (4) | −0.0023 (3) | −0.0003 (3) | 0.0023 (3) |
C5 | 0.0267 (5) | 0.0183 (4) | 0.0272 (5) | −0.0005 (3) | 0.0032 (4) | 0.0065 (3) |
C6 | 0.0187 (4) | 0.0345 (5) | 0.0238 (5) | −0.0066 (4) | −0.0048 (4) | −0.0005 (4) |
C7 | 0.0186 (4) | 0.0165 (3) | 0.0190 (4) | −0.0037 (3) | −0.0020 (3) | 0.0015 (3) |
C8 | 0.0241 (5) | 0.0283 (5) | 0.0235 (4) | −0.0038 (4) | −0.0006 (4) | −0.0093 (4) |
C9 | 0.0250 (5) | 0.0168 (4) | 0.0184 (4) | 0.0000 (3) | 0.0038 (3) | −0.0028 (3) |
C10 | 0.0331 (6) | 0.0315 (5) | 0.0281 (5) | 0.0022 (5) | 0.0081 (4) | −0.0113 (4) |
C11 | 0.0236 (4) | 0.0156 (3) | 0.0202 (4) | 0.0012 (3) | 0.0002 (3) | 0.0019 (3) |
C12 | 0.0167 (4) | 0.0142 (3) | 0.0144 (3) | 0.0006 (3) | 0.0031 (3) | −0.0004 (2) |
C13 | 0.0150 (3) | 0.0153 (3) | 0.0241 (4) | −0.0014 (3) | −0.0002 (3) | −0.0008 (3) |
C14 | 0.0129 (3) | 0.0173 (3) | 0.0165 (3) | 0.0010 (3) | 0.0005 (3) | −0.0027 (3) |
C15 | 0.0147 (4) | 0.0240 (4) | 0.0283 (4) | 0.0009 (3) | −0.0047 (3) | −0.0041 (3) |
Fe1—O5 | 1.9874 (9) | C6—C7 | 1.5097 (16) |
Fe1—O2 | 1.9986 (9) | C6—H6A | 0.9800 |
Fe1—O4 | 1.9987 (9) | C6—H6B | 0.9800 |
Fe1—O6 | 2.0008 (9) | C6—H6C | 0.9800 |
Fe1—O1 | 2.0063 (9) | C7—C8 | 1.3973 (15) |
Fe1—O3 | 2.0098 (10) | C8—C9 | 1.3967 (17) |
O1—C2 | 1.2747 (13) | C8—H8A | 0.9500 |
O2—C4 | 1.2759 (12) | C9—C10 | 1.5100 (15) |
O3—C7 | 1.2745 (12) | C10—H10A | 0.9800 |
O4—C9 | 1.2726 (12) | C10—H10B | 0.9800 |
O5—C12 | 1.2788 (12) | C10—H10C | 0.9800 |
O6—C14 | 1.2816 (12) | C11—C12 | 1.5006 (13) |
C1—C2 | 1.5065 (14) | C11—H11A | 0.9800 |
C1—H1A | 0.9800 | C11—H11B | 0.9800 |
C1—H1B | 0.9800 | C11—H11C | 0.9800 |
C1—H1C | 0.9800 | C12—C13 | 1.3994 (14) |
C2—C3 | 1.3979 (15) | C13—C14 | 1.4010 (13) |
C3—C4 | 1.3966 (14) | C13—H13A | 0.9500 |
C3—H3A | 0.9500 | C14—C15 | 1.5024 (14) |
C4—C5 | 1.5073 (14) | C15—H15A | 0.9800 |
C5—H5A | 0.9800 | C15—H15B | 0.9800 |
C5—H5B | 0.9800 | C15—H15C | 0.9800 |
C5—H5C | 0.9800 | ||
O5—Fe1—O2 | 176.37 (3) | C7—C6—H6A | 109.5 |
O5—Fe1—O4 | 95.77 (4) | C7—C6—H6B | 109.5 |
O2—Fe1—O4 | 87.52 (4) | H6A—C6—H6B | 109.5 |
O5—Fe1—O6 | 87.93 (3) | C7—C6—H6C | 109.5 |
O2—Fe1—O6 | 90.56 (3) | H6A—C6—H6C | 109.5 |
O4—Fe1—O6 | 89.79 (4) | H6B—C6—H6C | 109.5 |
O5—Fe1—O1 | 89.89 (3) | O3—C7—C8 | 124.38 (10) |
O2—Fe1—O1 | 86.90 (3) | O3—C7—C6 | 116.10 (9) |
O4—Fe1—O1 | 173.63 (3) | C8—C7—C6 | 119.51 (9) |
O6—Fe1—O1 | 93.35 (4) | C9—C8—C7 | 123.91 (9) |
O5—Fe1—O3 | 87.53 (3) | C9—C8—H8A | 118.0 |
O2—Fe1—O3 | 94.18 (3) | C7—C8—H8A | 118.0 |
O4—Fe1—O3 | 87.13 (4) | O4—C9—C8 | 125.04 (9) |
O6—Fe1—O3 | 174.22 (3) | O4—C9—C10 | 115.38 (10) |
O1—Fe1—O3 | 90.21 (4) | C8—C9—C10 | 119.57 (10) |
C2—O1—Fe1 | 129.75 (7) | C9—C10—H10A | 109.5 |
C4—O2—Fe1 | 130.12 (6) | C9—C10—H10B | 109.5 |
C7—O3—Fe1 | 129.53 (7) | H10A—C10—H10B | 109.5 |
C9—O4—Fe1 | 129.22 (7) | C9—C10—H10C | 109.5 |
C12—O5—Fe1 | 129.38 (6) | H10A—C10—H10C | 109.5 |
C14—O6—Fe1 | 128.80 (6) | H10B—C10—H10C | 109.5 |
C2—C1—H1A | 109.5 | C12—C11—H11A | 109.5 |
C2—C1—H1B | 109.5 | C12—C11—H11B | 109.5 |
H1A—C1—H1B | 109.5 | H11A—C11—H11B | 109.5 |
C2—C1—H1C | 109.5 | C12—C11—H11C | 109.5 |
H1A—C1—H1C | 109.5 | H11A—C11—H11C | 109.5 |
H1B—C1—H1C | 109.5 | H11B—C11—H11C | 109.5 |
O1—C2—C3 | 124.68 (9) | O5—C12—C13 | 124.65 (8) |
O1—C2—C1 | 116.28 (9) | O5—C12—C11 | 116.15 (9) |
C3—C2—C1 | 119.03 (9) | C13—C12—C11 | 119.20 (8) |
C4—C3—C2 | 123.82 (9) | C12—C13—C14 | 123.87 (8) |
C4—C3—H3A | 118.1 | C12—C13—H13A | 118.1 |
C2—C3—H3A | 118.1 | C14—C13—H13A | 118.1 |
O2—C4—C3 | 124.50 (9) | O6—C14—C13 | 124.79 (9) |
O2—C4—C5 | 115.31 (9) | O6—C14—C15 | 116.19 (8) |
C3—C4—C5 | 120.19 (9) | C13—C14—C15 | 119.01 (8) |
C4—C5—H5A | 109.5 | C14—C15—H15A | 109.5 |
C4—C5—H5B | 109.5 | C14—C15—H15B | 109.5 |
H5A—C5—H5B | 109.5 | H15A—C15—H15B | 109.5 |
C4—C5—H5C | 109.5 | C14—C15—H15C | 109.5 |
H5A—C5—H5C | 109.5 | H15A—C15—H15C | 109.5 |
H5B—C5—H5C | 109.5 | H15B—C15—H15C | 109.5 |
Fe1—O1—C2—C3 | −2.73 (15) | Fe1—O4—C9—C8 | 7.50 (16) |
Fe1—O1—C2—C1 | 178.71 (7) | Fe1—O4—C9—C10 | −173.67 (8) |
O1—C2—C3—C4 | −1.55 (16) | C7—C8—C9—O4 | 0.58 (19) |
C1—C2—C3—C4 | 176.97 (10) | C7—C8—C9—C10 | −178.20 (11) |
Fe1—O2—C4—C3 | 2.61 (14) | Fe1—O5—C12—C13 | 5.79 (14) |
Fe1—O2—C4—C5 | −178.63 (7) | Fe1—O5—C12—C11 | −174.69 (6) |
C2—C3—C4—O2 | 1.63 (16) | O5—C12—C13—C14 | 1.60 (15) |
C2—C3—C4—C5 | −177.08 (9) | C11—C12—C13—C14 | −177.90 (9) |
Fe1—O3—C7—C8 | −3.57 (15) | Fe1—O6—C14—C13 | −2.54 (14) |
Fe1—O3—C7—C6 | 176.19 (7) | Fe1—O6—C14—C15 | 178.36 (7) |
O3—C7—C8—C9 | −2.61 (18) | C12—C13—C14—O6 | −3.25 (16) |
C6—C7—C8—C9 | 177.64 (11) | C12—C13—C14—C15 | 175.82 (9) |
D—H···A | D—H | H···A | D···A | D—H···A |
C11—H11C···O3i | 0.98 | 2.60 | 3.4736 (15) | 148 |
C15—H15C···O3ii | 0.98 | 2.47 | 3.4326 (15) | 167 |
Symmetry codes: (i) −x+1/2, y+1/2, −z+1/2; (ii) x+1, y, z. |
Fe1—O5 | 1.9874 (9) | Fe1—O6 | 2.0008 (9) |
Fe1—O2 | 1.9986 (9) | Fe1—O1 | 2.0063 (9) |
Fe1—O4 | 1.9987 (9) | Fe1—O3 | 2.0098 (10) |
D—H···A | D—H | H···A | D···A | D—H···A |
C11—H11C···O3i | 0.98 | 2.60 | 3.4736 (15) | 148.1 |
C15—H15C···O3ii | 0.98 | 2.47 | 3.4326 (15) | 166.8 |
Symmetry codes: (i) −x+1/2, y+1/2, −z+1/2; (ii) x+1, y, z. |
Acknowledgements
TMB acknowledges financial support in the form of an NSF graduate fellowship.
References
Bruker (2013). SAINT. Bruker AXS Inc., Madison, Wisconsin, USA. Google Scholar
Bruker (2014). APEX2. Bruker AXS Inc., Madison, Wisconsin, USA. Google Scholar
Diaz-Acosta, I., Baker, J., Cordes, W. & Pulay, P. (2001). J. Phys. Chem. A, 105, 238–244. Web of Science CSD CrossRef CAS Google Scholar
Hu, M.-L., Jin, Z.-M., Miao, Q. & Fang, L.-P. (2001). Z. Kristallogr. New Cryst. Struct. 216, 597–598. CAS Google Scholar
Iball, J. & Morgan, C. H. (1967). Acta Cryst. 23, 239–244. CSD CrossRef CAS IUCr Journals Web of Science Google Scholar
Kabak, M., Elmali, A., Ozbey, S., Atakol, O. & Kenar, A. (1996). Z. Kristallogr. 211, 831–832. CSD CrossRef CAS Web of Science Google Scholar
Molokhia, N. M., El Shahat, M. F. & El Sawi, E. (1981). Ferroelectrics, 31, 23–26. CrossRef CAS Google Scholar
Morgan, G. T. & Drew, H. D. K. (1921). J. Chem. Soc. Trans. 119, 1058–1066. CrossRef CAS Google Scholar
Roof, R. B. (1956). Acta Cryst. 9, 781–786. CSD CrossRef IUCr Journals Web of Science Google Scholar
Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. Web of Science CrossRef CAS IUCr Journals Google Scholar
Sheldrick, G. M. (2014). SADABS. University of Göttingen, Germany. Google Scholar
Sheldrick, G. M. (2015). Acta Cryst. C71, 3–8. Web of Science CrossRef IUCr Journals Google Scholar
Shkol'nikova, L. M. (1959). Kristallografiya, 4, 419–420. CAS Google Scholar
Stabnikov, P. A., Pervukhina, N. V., Baidina, I. A., Sheludyakova, L. A. & Borisov, S. V. (2007). J. Struct. Chem. 48, 186–192. Web of Science CrossRef CAS Google Scholar
Sultan, M., Mazhar, M., Zeller, M. & Hunter, A. D. (2005). Private communication (refcode ACACGA02). CCDC, Cambridge, England. Google Scholar
Weng, S.-S., Ke, C.-S., Chen, F.-K., Lyu, Y.-F. & Lin, G. Y. (2011). Tetrahedron, 67, 1640–1648. Web of Science CSD CrossRef CAS Google Scholar
This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.
To date crystal structures of the unsolvated title complex (Figure 1) have only appeared in one of two polymorphic forms, and both are orthorhombic. The original report of the first polymorph was described by von Lang in 1899 (Morgan & Drew, 1921, and references therein), and was reported again over 80 years later (Molokhia et al., 1981). The second polymorph has been presented in multiple publications (Roof Jr, 1956, Shkol'nikova, 1959, Iball & Morgan, 1967, Kabak et al., 1996, Diaz-Acosta et al., 2001, Hu et al., 2001, Stabnikov et al., 2007, and Weng et al., 2011). This report presents a new (third) polymorph for the iron complex. The structure is isotypic with one polymorph of its gallium analog (Sultan et al., 2005).
Although the beta angle of the title compound is very close to 90°, the data are truly monoclinic. Because of the near-90° beta angle, the potential for twinning existed, and indeed, the crystal was a pseudo-merohedral twin. Upon completion of the experiment at 100 K, additional sets of data were collected at room temperature to check for any phase changes, of which there were none. Attempts to reproduce the crystallization of this polymorph have been unsuccessful to date.