metal-organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Crystal structure of bis­­(acetonyltri­phenyl­phospho­nium) tetra­chlorido­cobaltate(II)

aLaboratoire de Chimie Minérale et Analytique, Département de Chimie, Faculté des Sciences et Techniques, Université Cheikh Anta Diop, Dakar, Senegal, and bDepartment of Chemistry and Biochemistry, University of Notre Dame, 246 Nieuwland Science Hall, Notre Dame, IN 46557-5670, USA
*Correspondence e-mail: mouhamadoubdiop@gmail.com

Edited by M. Weil, Vienna University of Technology, Austria (Received 1 October 2015; accepted 11 October 2015; online 4 November 2015)

The complex title salt, (C21H20OP)2[CoCl4], is the reaction product of CoCl2 with acetonyltri­phenyl­phospho­nium chloride in aceto­nitrile. In the anion, the CoII atom exhibits a typical tetra­hedral environment, with Co—Cl distances ranging from 2.2721 (6) to 2.2901 (6) Å, and with Cl—Co—Cl angles ranging from 106.12 (2) to 112.24 (2)°. The two phospho­nium cations likewise show the expected tetra­hedral configuration, with P—C distances ranging from 1.785 (2) to 1.8059 (18) Å and C—P—C angles ranging from 106.98 (8) to 112.85 (15)°. The mol­ecules inter­act in the lattice mainly through Coulombic and van der Waals forces because there is no particular polarity to the charges carried by the cations or anion. In the crystal, the cations and anions are arranged in sheets parallel to (001).

1. Related literature

Cobalt(II) and cobalt(III) compounds can show a variety of extended structural arrangements and are used as metal catalysts (Adams et al., 2008[Adams, C. J., Kurawa, M. A., Lusi, M. & Orpen, A. G. (2008). CrystEngComm, 10, 1790-1795.]; Boudraa et al., 2015[Boudraa, M., Bouacida, S., Bouchareb, H., Merazig, H. & Chtoun, E. H. (2015). Acta Cryst. E71, m16-m17.]; Bronova et al., 2013[Bronova, A., Glaum, R. & Litterscheid, C. (2013). Acta Cryst. E69, i26.]; Dhieb et al., 2014[Dhieb, A. C., Janzen, D. E., Rzaigui, M. & Smirani Sta, W. (2014). Acta Cryst. E70, m166.]; Lassahn et al., 2003[Lassahn, P.-G., Lozan, V. & Janiak, C. (2003). Dalton Trans. pp. 927-935.]; Luo et al., 2013[Luo, X.-J., Zhang, C.-H., Zhou, J. & Liu, Y.-C. (2013). Acta Cryst. E69, m278-m279.]; Merola et al., 2013[Merola, J. S., Ngo, M. & Karpin, G. W. (2013). Acta Cryst. E69, m504.]). Alkyl­tri­phenyl­phospho­nium cations have been employed as stabilizing cations for a variety of different anions, such as nitrate, tetra­phenyl­borate and bromide (Diop et al., 2013[Diop, T., Diop, L., Kučeráková, M. & Dušek, M. (2013). Acta Cryst. E69, o303.]; Evans, 2010[Evans, C. (2010). Acta Cryst. E66, o384-o385.]; Kavitha et al., 2012[Kavitha, C. N., Yathirajan, H. S., Dayananda, A. S., Gerber, T., Hosten, E. & Betz, R. (2012). Acta Cryst. E68, o3115.]). For other structures containing the tetra­hedral [CoCl4]2− anion, see: Diop et al. (2015[Diop, M. B., Diop, L. & Maris, T. (2015). Acta Cryst. E71, 1064-1066.]); Gueddar et al. (2013[Gueddar, H., Bouhfid, R., Essassi, E. M., El Brahmi, N. & El Ammari, L. (2013). Acta Cryst. E69, m5-m6.]).

[Scheme 1]

2. Experimental

2.1. Crystal data

  • (C21H20OP)2[CoCl4]

  • Mr = 839.41

  • Orthorhombic, P b c a

  • a = 18.758 (3) Å

  • b = 15.769 (2) Å

  • c = 27.157 (4) Å

  • V = 8033 (2) Å3

  • Z = 8

  • Mo Kα radiation

  • μ = 0.81 mm−1

  • T = 120 K

  • 0.24 × 0.16 × 0.10 mm

2.2. Data collection

  • Bruker Kappa X8-APEXII diffractometer

  • Absorption correction: numerical (SADABS; Krause et al., 2015[Krause, L., Herbst-Irmer, R., Sheldrick, G. M. & Stalke, D. (2015). J. Appl. Cryst. 48, 3-10.]) Tmin = 0.813, Tmax = 0.920

  • 148135 measured reflections

  • 10073 independent reflections

  • 8207 reflections with I > 2σ(I)

  • Rint = 0.061

2.3. Refinement

  • R[F2 > 2σ(F2)] = 0.038

  • wR(F2) = 0.097

  • S = 1.06

  • 10073 reflections

  • 462 parameters

  • H-atom parameters constrained

  • Δρmax = 0.76 e Å−3

  • Δρmin = −0.25 e Å−3

Data collection: APEX2 (Bruker, 2014[Bruker. (2014). APEX2 and SAINT. Bruker-Nonius AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2014[Bruker. (2014). APEX2 and SAINT. Bruker-Nonius AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXT (Sheldrick, 2015a[Sheldrick, G. M. (2015a). Acta Cryst. A71, 3-8.]); program(s) used to refine structure: SHELXL2014 (Sheldrick, 2015b[Sheldrick, G. M. (2015b). Acta Cryst. C71, 3-8.]); molecular graphics: XP in SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]) and Mercury (Macrae et al., 2006[Macrae, C. F., Edgington, P. R., McCabe, P., Pidcock, E., Shields, G. P., Taylor, R., Towler, M. & van de Streek, J. (2006). J. Appl. Cryst. 39, 453-457.]); software used to prepare material for publication: CIFTAB (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]) and publCIF (Westrip, 2010[Westrip, S. P. (2010). J. Appl. Cryst. 43, 920-925.]).

Supporting information


Synthesis and crystallization top

All chemicals were purchased from Aldrich-Germany and were used as received. Acetonyl tri­phenyl­phospho­nium chloride was mixed in aceto­nitrile with CoCl2·6H2O in a 2:1 ratio. Blue crystals suitable for a single-crystal X-ray diffraction study were obtained after slow solvent evaporation at room temperature.

Refinement top

Hydrogen atoms were included in idealized positions with Uiso(H) = 1.2Ueq(Caromatic/methyl­ene) or 1.5Ueq(Cmethyl). C—H distances were set to 0.95 (aromatic), 0.98 (methyl) and 0.99 Å (methyl­ene).

Related literature top

Cobalt(II) and cobalt(III) compounds can show a variety of extended structural arrangements and are used as metal catalysts (Adams et al., 2008; Boudraa et al., 2015; Bronova et al., 2013; Dhieb et al., 2014; Lassahn et al., 2003; Luo et al., 2013; Merola et al., 2013). Alkyltriphenylphosphonium cations have been employed as stabilizing cations for a variety of different anions, such as nitrate, tetraphenylborate and bromide (Diop et al., 2013; Evans, 2010; Kavitha et al., 2012). For other structures containing the tetrahedral [CoCl4]2- anion, see: Diop et al. (2015); Gueddar et al. (2013).

Structure description top

Cobalt(II) and cobalt(III) compounds can show a variety of extended structural arrangements and are used as metal catalysts (Adams et al., 2008; Boudraa et al., 2015; Bronova et al., 2013; Dhieb et al., 2014; Lassahn et al., 2003; Luo et al., 2013; Merola et al., 2013). Alkyltriphenylphosphonium cations have been employed as stabilizing cations for a variety of different anions, such as nitrate, tetraphenylborate and bromide (Diop et al., 2013; Evans, 2010; Kavitha et al., 2012). For other structures containing the tetrahedral [CoCl4]2- anion, see: Diop et al. (2015); Gueddar et al. (2013).

Synthesis and crystallization top

All chemicals were purchased from Aldrich-Germany and were used as received. Acetonyl tri­phenyl­phospho­nium chloride was mixed in aceto­nitrile with CoCl2·6H2O in a 2:1 ratio. Blue crystals suitable for a single-crystal X-ray diffraction study were obtained after slow solvent evaporation at room temperature.

Refinement details top

Hydrogen atoms were included in idealized positions with Uiso(H) = 1.2Ueq(Caromatic/methyl­ene) or 1.5Ueq(Cmethyl). C—H distances were set to 0.95 (aromatic), 0.98 (methyl) and 0.99 Å (methyl­ene).

Computing details top

Data collection: APEX2 (Bruker, 2014); cell refinement: SAINT (Bruker, 2014); data reduction: SAINT (Bruker, 2014); program(s) used to solve structure: SHELXT (Sheldrick, 2015a); program(s) used to refine structure: SHELXL2014 (Sheldrick, 2015b); molecular graphics: XP in SHELXTL (Sheldrick, 2008) and Mercury (Macrae et al., 2006); software used to prepare material for publication: CIFTAB (Sheldrick, 2008) and publCIF (Westrip, 2010).

Figures top
[Figure 1] Fig. 1. The molecular components of the title compound. Displacement ellipsoids are drawn at the 50% probability level.
[Figure 2] Fig. 2. Packing views of the title compound a) along [100] and b) along [010]. Hydrogen atoms were omitted for clarity. Displacement ellipsoids are drawn at the 50% probability level.
Bis(acetonyltriphenylphosphonium) tetrachloridocobaltate(II) top
Crystal data top
(C21H20OP)2[CoCl4]Dx = 1.388 Mg m3
Mr = 839.41Mo Kα radiation, λ = 0.71073 Å
Orthorhombic, PbcaCell parameters from 9962 reflections
a = 18.758 (3) Åθ = 2.3–28.3°
b = 15.769 (2) ŵ = 0.81 mm1
c = 27.157 (4) ÅT = 120 K
V = 8033 (2) Å3Tablet, blue
Z = 80.24 × 0.16 × 0.10 mm
F(000) = 3464
Data collection top
Bruker Kappa X8-APEXII
diffractometer
10073 independent reflections
Radiation source: fine-focus sealed tube8207 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.061
Detector resolution: 8.33 pixels mm-1θmax = 28.4°, θmin = 1.5°
combination of ω and φ–scansh = 2525
Absorption correction: numerical
(SADABS; Krause et al., 2015)
k = 2121
Tmin = 0.813, Tmax = 0.920l = 3636
148135 measured reflections
Refinement top
Refinement on F2Primary atom site location: real-space vector search
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.038Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.097H-atom parameters constrained
S = 1.06 w = 1/[σ2(Fo2) + (0.047P)2 + 5.1834P]
where P = (Fo2 + 2Fc2)/3
10073 reflections(Δ/σ)max = 0.002
462 parametersΔρmax = 0.76 e Å3
0 restraintsΔρmin = 0.25 e Å3
Crystal data top
(C21H20OP)2[CoCl4]V = 8033 (2) Å3
Mr = 839.41Z = 8
Orthorhombic, PbcaMo Kα radiation
a = 18.758 (3) ŵ = 0.81 mm1
b = 15.769 (2) ÅT = 120 K
c = 27.157 (4) Å0.24 × 0.16 × 0.10 mm
Data collection top
Bruker Kappa X8-APEXII
diffractometer
10073 independent reflections
Absorption correction: numerical
(SADABS; Krause et al., 2015)
8207 reflections with I > 2σ(I)
Tmin = 0.813, Tmax = 0.920Rint = 0.061
148135 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0380 restraints
wR(F2) = 0.097H-atom parameters constrained
S = 1.06Δρmax = 0.76 e Å3
10073 reflectionsΔρmin = 0.25 e Å3
462 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Co10.67585 (2)0.78995 (2)0.34640 (2)0.01815 (7)
Cl10.74555 (3)0.67130 (3)0.35096 (2)0.02314 (10)
Cl20.58678 (3)0.77319 (3)0.40325 (2)0.02611 (11)
Cl30.63163 (3)0.79320 (3)0.26854 (2)0.02741 (11)
Cl40.73968 (3)0.90911 (3)0.36500 (2)0.02644 (11)
P10.43467 (2)0.50603 (3)0.74508 (2)0.01730 (10)
O10.31362 (7)0.50028 (9)0.81285 (5)0.0253 (3)
C10.34791 (9)0.46217 (12)0.73157 (7)0.0205 (4)
H1A0.33080.48510.69980.025*
H1B0.35200.39980.72820.025*
C20.29400 (10)0.48277 (11)0.77155 (7)0.0205 (4)
C30.21765 (10)0.48012 (13)0.75622 (8)0.0268 (4)
H3A0.20900.42890.73670.040*
H3B0.20660.53040.73640.040*
H3C0.18720.47940.78550.040*
C40.48127 (10)0.44742 (12)0.79153 (7)0.0201 (4)
C50.45435 (11)0.37160 (12)0.80994 (7)0.0243 (4)
H50.40950.35090.79900.029*
C60.49371 (12)0.32628 (13)0.84449 (8)0.0293 (4)
H60.47570.27430.85710.035*
C70.55904 (12)0.35646 (13)0.86060 (8)0.0295 (4)
H70.58530.32540.88450.035*
C80.58631 (11)0.43149 (13)0.84208 (7)0.0261 (4)
H80.63110.45190.85330.031*
C90.54805 (10)0.47700 (12)0.80697 (7)0.0228 (4)
H90.56710.52780.79360.027*
C100.42343 (9)0.61523 (11)0.76149 (7)0.0189 (3)
C110.38399 (11)0.66634 (13)0.72936 (7)0.0244 (4)
H110.36480.64320.69990.029*
C120.37310 (11)0.75082 (13)0.74080 (8)0.0281 (4)
H120.34600.78570.71930.034*
C130.40164 (11)0.78474 (13)0.78367 (8)0.0269 (4)
H130.39490.84310.79110.032*
C140.43982 (11)0.73370 (13)0.81562 (7)0.0256 (4)
H140.45880.75710.84510.031*
C150.45054 (10)0.64892 (12)0.80503 (7)0.0217 (4)
H150.47620.61390.82730.026*
C160.48683 (9)0.49899 (12)0.68965 (6)0.0187 (3)
C170.54246 (10)0.55695 (13)0.68207 (7)0.0233 (4)
H170.54880.60350.70390.028*
C180.58806 (10)0.54562 (14)0.64240 (7)0.0264 (4)
H180.62610.58440.63710.032*
C190.57847 (11)0.47806 (13)0.61039 (7)0.0256 (4)
H190.61020.47040.58350.031*
C200.52278 (11)0.42182 (12)0.61749 (7)0.0235 (4)
H200.51580.37640.59500.028*
C210.47709 (10)0.43131 (12)0.65729 (7)0.0215 (4)
H210.43940.39200.66250.026*
P20.81009 (3)0.67681 (3)0.51792 (2)0.02010 (10)
O20.68507 (12)0.56656 (15)0.53292 (6)0.0650 (7)
C220.73531 (11)0.66612 (14)0.47682 (7)0.0291 (4)
H22A0.70820.71990.47650.035*
H22B0.75320.65590.44300.035*
C230.68560 (12)0.59424 (16)0.49123 (8)0.0339 (5)
C240.64020 (12)0.55970 (15)0.45136 (8)0.0338 (5)
H24A0.61950.60660.43250.051*
H24B0.60190.52540.46570.051*
H24C0.66920.52420.42950.051*
C250.85355 (11)0.57674 (12)0.52453 (7)0.0257 (4)
C260.89525 (13)0.56012 (14)0.56578 (8)0.0346 (5)
H260.89760.60020.59180.041*
C270.93322 (17)0.48528 (18)0.56879 (10)0.0547 (8)
H270.96180.47380.59690.066*
C280.9295 (2)0.42738 (18)0.53091 (12)0.0666 (10)
H280.95540.37580.53320.080*
C290.8887 (2)0.44340 (17)0.48981 (11)0.0613 (9)
H290.88660.40290.46400.074*
C300.85083 (15)0.51835 (15)0.48610 (9)0.0396 (6)
H300.82320.52990.45760.048*
C310.87237 (10)0.74834 (12)0.49010 (7)0.0207 (4)
C320.94058 (11)0.75279 (13)0.51041 (7)0.0262 (4)
H320.95200.72040.53880.031*
C330.99159 (12)0.80463 (15)0.48902 (9)0.0341 (5)
H331.03810.80780.50270.041*
C340.97468 (13)0.85188 (14)0.44761 (8)0.0361 (5)
H341.00990.88690.43280.043*
C350.90704 (13)0.84835 (13)0.42767 (8)0.0329 (5)
H350.89590.88150.39950.039*
C360.85523 (11)0.79668 (12)0.44854 (7)0.0251 (4)
H360.80870.79420.43480.030*
C370.78322 (10)0.71941 (12)0.57609 (7)0.0208 (4)
C380.77556 (12)0.80730 (13)0.58000 (8)0.0294 (4)
H380.78700.84290.55290.035*
C390.75113 (13)0.84223 (14)0.62383 (8)0.0348 (5)
H390.74530.90190.62670.042*
C400.73537 (11)0.79010 (14)0.66319 (8)0.0290 (4)
H400.71900.81430.69320.035*
C410.74312 (11)0.70303 (13)0.65961 (7)0.0257 (4)
H410.73250.66790.68710.031*
C420.76634 (10)0.66707 (12)0.61586 (7)0.0237 (4)
H420.77070.60730.61300.028*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Co10.01844 (13)0.01928 (13)0.01673 (12)0.00064 (9)0.00024 (9)0.00037 (9)
Cl10.0255 (2)0.0228 (2)0.0212 (2)0.00573 (18)0.00104 (17)0.00089 (16)
Cl20.0239 (2)0.0303 (2)0.0241 (2)0.00433 (19)0.00580 (18)0.00585 (18)
Cl30.0284 (2)0.0360 (3)0.0178 (2)0.0041 (2)0.00300 (17)0.00000 (18)
Cl40.0277 (2)0.0213 (2)0.0303 (2)0.00336 (18)0.00315 (19)0.00061 (18)
P10.0163 (2)0.0186 (2)0.0170 (2)0.00126 (17)0.00101 (17)0.00021 (17)
O10.0276 (7)0.0272 (7)0.0210 (7)0.0022 (6)0.0019 (5)0.0008 (5)
C10.0171 (8)0.0241 (9)0.0203 (9)0.0038 (7)0.0007 (7)0.0018 (7)
C20.0221 (9)0.0166 (8)0.0229 (9)0.0008 (7)0.0018 (7)0.0037 (7)
C30.0198 (9)0.0299 (10)0.0308 (10)0.0007 (8)0.0028 (8)0.0013 (8)
C40.0207 (9)0.0203 (9)0.0192 (8)0.0020 (7)0.0008 (7)0.0005 (7)
C50.0253 (9)0.0210 (9)0.0266 (10)0.0001 (8)0.0000 (8)0.0007 (8)
C60.0364 (12)0.0196 (9)0.0320 (11)0.0028 (8)0.0007 (9)0.0058 (8)
C70.0320 (11)0.0278 (10)0.0288 (10)0.0105 (9)0.0038 (8)0.0041 (8)
C80.0216 (9)0.0284 (10)0.0285 (10)0.0027 (8)0.0041 (8)0.0011 (8)
C90.0208 (9)0.0226 (9)0.0250 (9)0.0009 (7)0.0005 (7)0.0023 (7)
C100.0182 (8)0.0172 (8)0.0213 (9)0.0006 (7)0.0013 (7)0.0001 (7)
C110.0259 (10)0.0271 (10)0.0201 (9)0.0012 (8)0.0043 (7)0.0013 (7)
C120.0296 (11)0.0251 (10)0.0295 (10)0.0054 (8)0.0028 (8)0.0060 (8)
C130.0251 (10)0.0197 (9)0.0358 (11)0.0014 (8)0.0010 (8)0.0003 (8)
C140.0248 (10)0.0247 (10)0.0272 (10)0.0001 (8)0.0046 (8)0.0053 (8)
C150.0200 (9)0.0222 (9)0.0229 (9)0.0015 (7)0.0037 (7)0.0014 (7)
C160.0173 (8)0.0224 (9)0.0165 (8)0.0017 (7)0.0009 (7)0.0021 (7)
C170.0221 (9)0.0262 (10)0.0215 (9)0.0040 (8)0.0033 (7)0.0010 (7)
C180.0190 (9)0.0330 (11)0.0273 (10)0.0055 (8)0.0002 (7)0.0059 (8)
C190.0231 (10)0.0330 (11)0.0209 (9)0.0066 (8)0.0032 (7)0.0075 (8)
C200.0287 (10)0.0227 (9)0.0192 (9)0.0044 (8)0.0010 (7)0.0012 (7)
C210.0226 (9)0.0206 (9)0.0214 (9)0.0014 (7)0.0001 (7)0.0016 (7)
P20.0219 (2)0.0232 (2)0.0152 (2)0.00295 (19)0.00015 (17)0.00036 (18)
O20.0754 (14)0.0948 (16)0.0248 (9)0.0567 (13)0.0012 (9)0.0086 (9)
C220.0260 (10)0.0428 (12)0.0185 (9)0.0090 (9)0.0017 (8)0.0017 (8)
C230.0287 (11)0.0486 (13)0.0244 (10)0.0140 (10)0.0014 (8)0.0022 (9)
C240.0311 (11)0.0371 (12)0.0333 (11)0.0074 (9)0.0039 (9)0.0041 (9)
C250.0348 (11)0.0201 (9)0.0222 (9)0.0018 (8)0.0061 (8)0.0016 (7)
C260.0506 (14)0.0274 (11)0.0257 (10)0.0107 (10)0.0044 (10)0.0005 (8)
C270.076 (2)0.0447 (15)0.0433 (15)0.0297 (14)0.0098 (14)0.0113 (12)
C280.098 (3)0.0351 (14)0.067 (2)0.0279 (16)0.0277 (19)0.0062 (14)
C290.097 (2)0.0298 (13)0.0571 (18)0.0002 (15)0.0307 (17)0.0183 (12)
C300.0544 (15)0.0327 (12)0.0318 (12)0.0071 (11)0.0118 (11)0.0096 (9)
C310.0231 (9)0.0201 (9)0.0187 (8)0.0006 (7)0.0024 (7)0.0022 (7)
C320.0251 (10)0.0263 (10)0.0272 (10)0.0025 (8)0.0019 (8)0.0007 (8)
C330.0257 (11)0.0365 (12)0.0400 (12)0.0076 (9)0.0024 (9)0.0040 (10)
C340.0423 (13)0.0297 (11)0.0364 (12)0.0119 (10)0.0138 (10)0.0011 (9)
C350.0504 (14)0.0245 (10)0.0237 (10)0.0044 (9)0.0043 (9)0.0030 (8)
C360.0304 (10)0.0225 (9)0.0223 (9)0.0012 (8)0.0015 (8)0.0005 (7)
C370.0198 (9)0.0249 (9)0.0176 (8)0.0003 (7)0.0003 (7)0.0010 (7)
C380.0345 (11)0.0275 (10)0.0263 (10)0.0039 (9)0.0065 (8)0.0033 (8)
C390.0421 (13)0.0268 (11)0.0355 (12)0.0041 (9)0.0116 (10)0.0046 (9)
C400.0275 (11)0.0341 (11)0.0255 (10)0.0012 (9)0.0076 (8)0.0063 (8)
C410.0250 (10)0.0320 (11)0.0202 (9)0.0034 (8)0.0031 (8)0.0001 (8)
C420.0274 (10)0.0234 (9)0.0202 (9)0.0022 (8)0.0011 (7)0.0004 (7)
Geometric parameters (Å, º) top
Co1—Cl32.2721 (6)C20—H200.9500
Co1—Cl42.2845 (6)C21—H210.9500
Co1—Cl12.2859 (6)P2—C251.785 (2)
Co1—Cl22.2901 (6)P2—C371.7892 (19)
P1—C101.7912 (19)P2—C311.7912 (19)
P1—C41.7914 (19)P2—C221.801 (2)
P1—C161.7988 (18)O2—C231.213 (3)
P1—C11.8059 (18)C22—C231.519 (3)
O1—C21.212 (2)C22—H22A0.9900
C1—C21.519 (3)C22—H22B0.9900
C1—H1A0.9900C23—C241.481 (3)
C1—H1B0.9900C24—H24A0.9800
C2—C31.492 (3)C24—H24B0.9800
C3—H3A0.9800C24—H24C0.9800
C3—H3B0.9800C25—C261.391 (3)
C3—H3C0.9800C25—C301.393 (3)
C4—C51.391 (3)C26—C271.381 (3)
C4—C91.401 (3)C26—H260.9500
C5—C61.391 (3)C27—C281.377 (4)
C5—H50.9500C27—H270.9500
C6—C71.386 (3)C28—C291.377 (5)
C6—H60.9500C28—H280.9500
C7—C81.384 (3)C29—C301.382 (4)
C7—H70.9500C29—H290.9500
C8—C91.392 (3)C30—H300.9500
C8—H80.9500C31—C321.395 (3)
C9—H90.9500C31—C361.399 (3)
C10—C151.392 (3)C32—C331.386 (3)
C10—C111.399 (3)C32—H320.9500
C11—C121.383 (3)C33—C341.386 (3)
C11—H110.9500C33—H330.9500
C12—C131.389 (3)C34—C351.381 (3)
C12—H120.9500C34—H340.9500
C13—C141.383 (3)C35—C361.389 (3)
C13—H130.9500C35—H350.9500
C14—C151.382 (3)C36—H360.9500
C14—H140.9500C37—C421.396 (3)
C15—H150.9500C37—C381.397 (3)
C16—C211.394 (3)C38—C391.389 (3)
C16—C171.402 (3)C38—H380.9500
C17—C181.387 (3)C39—C401.380 (3)
C17—H170.9500C39—H390.9500
C18—C191.387 (3)C40—C411.384 (3)
C18—H180.9500C40—H400.9500
C19—C201.384 (3)C41—C421.387 (3)
C19—H190.9500C41—H410.9500
C20—C211.387 (3)C42—H420.9500
Cl3—Co1—Cl4112.24 (2)C20—C21—C16119.51 (18)
Cl3—Co1—Cl1106.12 (2)C20—C21—H21120.2
Cl4—Co1—Cl1111.19 (2)C16—C21—H21120.2
Cl3—Co1—Cl2111.32 (2)C25—P2—C37111.83 (9)
Cl4—Co1—Cl2109.17 (2)C25—P2—C31107.53 (9)
Cl1—Co1—Cl2106.64 (2)C37—P2—C31108.65 (9)
C10—P1—C4112.22 (8)C25—P2—C22109.59 (10)
C10—P1—C16109.37 (9)C37—P2—C22111.29 (10)
C4—P1—C16106.98 (8)C31—P2—C22107.79 (9)
C10—P1—C1108.21 (9)C23—C22—P2112.85 (15)
C4—P1—C1112.66 (9)C23—C22—H22A109.0
C16—P1—C1107.25 (8)P2—C22—H22A109.0
C2—C1—P1111.90 (13)C23—C22—H22B109.0
C2—C1—H1A109.2P2—C22—H22B109.0
P1—C1—H1A109.2H22A—C22—H22B107.8
C2—C1—H1B109.2O2—C23—C24123.0 (2)
P1—C1—H1B109.2O2—C23—C22120.91 (19)
H1A—C1—H1B107.9C24—C23—C22116.03 (18)
O1—C2—C3123.76 (18)C23—C24—H24A109.5
O1—C2—C1120.53 (17)C23—C24—H24B109.5
C3—C2—C1115.71 (16)H24A—C24—H24B109.5
C2—C3—H3A109.5C23—C24—H24C109.5
C2—C3—H3B109.5H24A—C24—H24C109.5
H3A—C3—H3B109.5H24B—C24—H24C109.5
C2—C3—H3C109.5C26—C25—C30120.0 (2)
H3A—C3—H3C109.5C26—C25—P2120.28 (15)
H3B—C3—H3C109.5C30—C25—P2119.50 (18)
C5—C4—C9120.21 (17)C27—C26—C25119.9 (2)
C5—C4—P1121.30 (14)C27—C26—H26120.0
C9—C4—P1118.38 (14)C25—C26—H26120.0
C4—C5—C6119.42 (19)C28—C27—C26119.7 (3)
C4—C5—H5120.3C28—C27—H27120.1
C6—C5—H5120.3C26—C27—H27120.1
C7—C6—C5120.39 (19)C29—C28—C27120.8 (3)
C7—C6—H6119.8C29—C28—H28119.6
C5—C6—H6119.8C27—C28—H28119.6
C8—C7—C6120.40 (19)C28—C29—C30120.1 (2)
C8—C7—H7119.8C28—C29—H29120.0
C6—C7—H7119.8C30—C29—H29120.0
C7—C8—C9119.93 (19)C29—C30—C25119.5 (3)
C7—C8—H8120.0C29—C30—H30120.3
C9—C8—H8120.0C25—C30—H30120.3
C8—C9—C4119.62 (18)C32—C31—C36120.16 (18)
C8—C9—H9120.2C32—C31—P2117.58 (14)
C4—C9—H9120.2C36—C31—P2122.23 (15)
C15—C10—C11120.19 (17)C33—C32—C31119.79 (19)
C15—C10—P1122.35 (14)C33—C32—H32120.1
C11—C10—P1117.43 (14)C31—C32—H32120.1
C12—C11—C10119.52 (18)C34—C33—C32120.0 (2)
C12—C11—H11120.2C34—C33—H33120.0
C10—C11—H11120.2C32—C33—H33120.0
C11—C12—C13120.16 (18)C35—C34—C33120.5 (2)
C11—C12—H12119.9C35—C34—H34119.8
C13—C12—H12119.9C33—C34—H34119.8
C14—C13—C12120.10 (19)C34—C35—C36120.4 (2)
C14—C13—H13120.0C34—C35—H35119.8
C12—C13—H13120.0C36—C35—H35119.8
C15—C14—C13120.50 (18)C35—C36—C31119.20 (19)
C15—C14—H14119.8C35—C36—H36120.4
C13—C14—H14119.8C31—C36—H36120.4
C14—C15—C10119.51 (17)C42—C37—C38120.29 (18)
C14—C15—H15120.2C42—C37—P2121.68 (15)
C10—C15—H15120.2C38—C37—P2117.94 (14)
C21—C16—C17120.25 (17)C39—C38—C37119.49 (19)
C21—C16—P1120.22 (14)C39—C38—H38120.3
C17—C16—P1119.17 (14)C37—C38—H38120.3
C18—C17—C16119.27 (18)C40—C39—C38119.9 (2)
C18—C17—H17120.4C40—C39—H39120.1
C16—C17—H17120.4C38—C39—H39120.1
C19—C18—C17120.39 (18)C39—C40—C41120.92 (19)
C19—C18—H18119.8C39—C40—H40119.5
C17—C18—H18119.8C41—C40—H40119.5
C20—C19—C18120.18 (18)C40—C41—C42119.92 (19)
C20—C19—H19119.9C40—C41—H41120.0
C18—C19—H19119.9C42—C41—H41120.0
C19—C20—C21120.39 (18)C41—C42—C37119.50 (18)
C19—C20—H20119.8C41—C42—H42120.2
C21—C20—H20119.8C37—C42—H42120.2
C10—P1—C1—C248.98 (15)C25—P2—C22—C2351.93 (18)
C4—P1—C1—C275.68 (15)C37—P2—C22—C2372.28 (18)
C16—P1—C1—C2166.87 (13)C31—P2—C22—C23168.68 (15)
P1—C1—C2—O122.6 (2)P2—C22—C23—O221.0 (3)
P1—C1—C2—C3157.19 (14)P2—C22—C23—C24157.50 (18)
C10—P1—C4—C5129.00 (16)C37—P2—C25—C2633.4 (2)
C16—P1—C4—C5111.05 (16)C31—P2—C25—C2685.80 (19)
C1—P1—C4—C56.56 (19)C22—P2—C25—C26157.29 (18)
C10—P1—C4—C954.84 (17)C37—P2—C25—C30152.48 (17)
C16—P1—C4—C965.11 (16)C31—P2—C25—C3088.33 (19)
C1—P1—C4—C9177.28 (14)C22—P2—C25—C3028.6 (2)
C9—C4—C5—C61.2 (3)C30—C25—C26—C270.8 (4)
P1—C4—C5—C6177.30 (15)P2—C25—C26—C27174.9 (2)
C4—C5—C6—C70.2 (3)C25—C26—C27—C280.1 (4)
C5—C6—C7—C80.8 (3)C26—C27—C28—C290.5 (5)
C6—C7—C8—C90.1 (3)C27—C28—C29—C300.0 (5)
C7—C8—C9—C41.6 (3)C28—C29—C30—C250.9 (4)
C5—C4—C9—C82.1 (3)C26—C25—C30—C291.2 (4)
P1—C4—C9—C8178.31 (15)P2—C25—C30—C29175.4 (2)
C4—P1—C10—C151.85 (18)C25—P2—C31—C3249.08 (17)
C16—P1—C10—C15116.70 (16)C37—P2—C31—C3272.13 (17)
C1—P1—C10—C15126.77 (16)C22—P2—C31—C32167.16 (15)
C4—P1—C10—C11176.27 (14)C25—P2—C31—C36128.93 (16)
C16—P1—C10—C1165.18 (16)C37—P2—C31—C36109.86 (16)
C1—P1—C10—C1151.35 (17)C22—P2—C31—C3610.86 (19)
C15—C10—C11—C121.0 (3)C36—C31—C32—C330.6 (3)
P1—C10—C11—C12179.16 (16)P2—C31—C32—C33177.42 (16)
C10—C11—C12—C130.5 (3)C31—C32—C33—C340.1 (3)
C11—C12—C13—C141.4 (3)C32—C33—C34—C350.6 (3)
C12—C13—C14—C150.6 (3)C33—C34—C35—C360.7 (3)
C13—C14—C15—C100.9 (3)C34—C35—C36—C310.1 (3)
C11—C10—C15—C141.7 (3)C32—C31—C36—C350.5 (3)
P1—C10—C15—C14179.79 (15)P2—C31—C36—C35177.42 (15)
C10—P1—C16—C21150.60 (15)C25—P2—C37—C4228.81 (19)
C4—P1—C16—C2187.64 (16)C31—P2—C37—C42147.34 (16)
C1—P1—C16—C2133.46 (17)C22—P2—C37—C4294.13 (18)
C10—P1—C16—C1736.28 (17)C25—P2—C37—C38154.75 (16)
C4—P1—C16—C1785.48 (16)C31—P2—C37—C3836.22 (19)
C1—P1—C16—C17153.41 (15)C22—P2—C37—C3882.31 (18)
C21—C16—C17—C180.7 (3)C42—C37—C38—C390.1 (3)
P1—C16—C17—C18172.39 (15)P2—C37—C38—C39176.59 (17)
C16—C17—C18—C190.4 (3)C37—C38—C39—C400.7 (3)
C17—C18—C19—C200.7 (3)C38—C39—C40—C410.4 (4)
C18—C19—C20—C211.5 (3)C39—C40—C41—C420.6 (3)
C19—C20—C21—C161.2 (3)C40—C41—C42—C371.4 (3)
C17—C16—C21—C200.1 (3)C38—C37—C42—C411.1 (3)
P1—C16—C21—C20173.14 (14)P2—C37—C42—C41177.50 (15)

Experimental details

Crystal data
Chemical formula(C21H20OP)2[CoCl4]
Mr839.41
Crystal system, space groupOrthorhombic, Pbca
Temperature (K)120
a, b, c (Å)18.758 (3), 15.769 (2), 27.157 (4)
V3)8033 (2)
Z8
Radiation typeMo Kα
µ (mm1)0.81
Crystal size (mm)0.24 × 0.16 × 0.10
Data collection
DiffractometerBruker Kappa X8-APEXII
Absorption correctionNumerical
(SADABS; Krause et al., 2015)
Tmin, Tmax0.813, 0.920
No. of measured, independent and
observed [I > 2σ(I)] reflections
148135, 10073, 8207
Rint0.061
(sin θ/λ)max1)0.669
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.038, 0.097, 1.06
No. of reflections10073
No. of parameters462
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.76, 0.25

Computer programs: APEX2 (Bruker, 2014), SAINT (Bruker, 2014), SHELXT (Sheldrick, 2015a), SHELXL2014 (Sheldrick, 2015b), XP in SHELXTL (Sheldrick, 2008) and Mercury (Macrae et al., 2006), CIFTAB (Sheldrick, 2008) and publCIF (Westrip, 2010).

 

Acknowledgements

The authors acknowledge the Cheikh Anta Diop University of Dakar (Sénégal) and the University of Notre Dame (USA) for financial support and instrumentation use.

References

First citationAdams, C. J., Kurawa, M. A., Lusi, M. & Orpen, A. G. (2008). CrystEngComm, 10, 1790–1795.  Web of Science CSD CrossRef CAS Google Scholar
First citationBoudraa, M., Bouacida, S., Bouchareb, H., Merazig, H. & Chtoun, E. H. (2015). Acta Cryst. E71, m16–m17.  CSD CrossRef IUCr Journals Google Scholar
First citationBronova, A., Glaum, R. & Litterscheid, C. (2013). Acta Cryst. E69, i26.  CrossRef IUCr Journals Google Scholar
First citationBruker. (2014). APEX2 and SAINT. Bruker–Nonius AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationDhieb, A. C., Janzen, D. E., Rzaigui, M. & Smirani Sta, W. (2014). Acta Cryst. E70, m166.  CSD CrossRef IUCr Journals Google Scholar
First citationDiop, T., Diop, L., Kučeráková, M. & Dušek, M. (2013). Acta Cryst. E69, o303.  CSD CrossRef IUCr Journals Google Scholar
First citationDiop, M. B., Diop, L. & Maris, T. (2015). Acta Cryst. E71, 1064–1066.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationEvans, C. (2010). Acta Cryst. E66, o384–o385.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationGueddar, H., Bouhfid, R., Essassi, E. M., El Brahmi, N. & El Ammari, L. (2013). Acta Cryst. E69, m5–m6.  CSD CrossRef IUCr Journals Google Scholar
First citationKavitha, C. N., Yathirajan, H. S., Dayananda, A. S., Gerber, T., Hosten, E. & Betz, R. (2012). Acta Cryst. E68, o3115.  CSD CrossRef IUCr Journals Google Scholar
First citationKrause, L., Herbst-Irmer, R., Sheldrick, G. M. & Stalke, D. (2015). J. Appl. Cryst. 48, 3–10.  Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
First citationLassahn, P.-G., Lozan, V. & Janiak, C. (2003). Dalton Trans. pp. 927–935.  Web of Science CSD CrossRef Google Scholar
First citationLuo, X.-J., Zhang, C.-H., Zhou, J. & Liu, Y.-C. (2013). Acta Cryst. E69, m278–m279.  CSD CrossRef IUCr Journals Google Scholar
First citationMacrae, C. F., Edgington, P. R., McCabe, P., Pidcock, E., Shields, G. P., Taylor, R., Towler, M. & van de Streek, J. (2006). J. Appl. Cryst. 39, 453–457.  Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
First citationMerola, J. S., Ngo, M. & Karpin, G. W. (2013). Acta Cryst. E69, m504.  CSD CrossRef IUCr Journals Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSheldrick, G. M. (2015a). Acta Cryst. A71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar
First citationSheldrick, G. M. (2015b). Acta Cryst. C71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar
First citationWestrip, S. P. (2010). J. Appl. Cryst. 43, 920–925.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds