research communications\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Crystal structures of two erbium(III) complexes with 4-amino­benzoic acid and 4-chloro-3-nitro­benzoic acid

aScience and Engineering Faculty, Queensland University of Technology, GPO Box 2434, Brisbane, Queensland 4001, Australia, and bExilica Limited, The Technocentre, Puma Way, Coventry CV1 2TT, England
*Correspondence e-mail: g.smith@qut.edu.au

Edited by M. Weil, Vienna University of Technology, Austria (Received 8 October 2015; accepted 27 October 2015; online 7 November 2015)

The crystal structures of two erbium(III) complexes with 4-amino­benzoic acid (4-ABAH), namely bis­(μ2-4-amino­benzoato-κ2O:O′)bis­[bis(4-amino­benzoato-κ2O,O′)di­aqua­erbium(III)] dihydrate, [Er2(C7H6NO2)6(H2O)4]·2H2O, (I), and 4-chloro-3-nitro­benzoic acid (CLNBAH), namely poly[hexa­kis­(μ2-4-chloro-3-nitro­benzoato-κ2O:O′)bis­(dimethyl sulfoxide-κO)dierbium(III)], [Er2(C7H3ClNO4)6(C2H6OS)2]n, (II), have been determined. In the structure of solvatomorphic compound (I), the symmetry-related irregular ErO8 coordination polyhedra in the discrete centrosymmetric dinuclear complex comprise two monodentate water mol­ecules and six carboxyl­ate O-atom donors, four from two bidentate carboxyl­ate O,O′-chelate groups and two from the bis-monodentate O:O′-bridging group of the third 4-ABA anion. The Er—O bond-length range is 2.232 (3)–2.478 (3) Å and the Er⋯Er separation in the dinuclear complex unit is 4.7527 (4) Å. One of the coordinating water mol­ecules is involved in an intra-unit O—H⋯O hydrogen-bonding association with an inversion-related carboxyl­ate O-atom acceptor. In contrast, the anhydrous compound (II) is polymeric, based on centrosymmetric dinuclear repeat units comprising ErO7 coordination polyhedra which involve four O-atom donors from two bidentate O:O′-bridging carboxyl­ate groups, one O-atom donor from the monodentate dimethyl sulfoxide ligand and two O-atom donors from the third bridging CLNBA anion. The latter provides the inter-unit link in the one-dimensional coordination polymer extending along [100]. The Er—O bond-length range in (II) is 2.239 (6)–2.348 (6) Å and the Er⋯Er separation within the dinuclear unit is 4.4620 (6) Å. In the crystal of (I), extensive inter-dimer O—H⋯O and N—H⋯O hydrogen-bonding inter­actions involving both the coordinating water mol­ecules and the solvent water mol­ecules, as well as the amine groups of the 4-ABA anions, give an overall three-dimensional network structure. Within this structure are also weak ππ ring inter­actions between two of the coordinating ligands [ring-centroid separations = 3.676 (3) and 3.711 (2) Å]. With (II), only weak intra-polymer C—H⋯O, C—H⋯Cl and C—H⋯S inter­actions are present.

1. Chemical context

The coordination chemistry of the rare earth (RE) metals has been investigated extensively and the structures of a large number of complexes with various ligand types are known (Sastri et al., 2003[Sastri, V. S., Bünzli, J.-C., Ramachandra Rao, V., Rayudi, G. V. S. & Perumareddi, J. R. (2003). In Modern Aspects of Rare Earths and Their Complexes. Amsterdam: Elsevier.]). Of inter­est is the lanthanide contraction across the series and 4-amino­benzoic acid (4-ABAH) has provided a valuable ligand for this purpose in a comprehensive study of this effect with the RE3+ (La–Y) series of complexes (Sun et al., 2004[Sun, H.-L., Ye, C.-H., Wang, X.-Y., Li, J.-R., Gao, S. & Yu, K.-B. (2004). J. Mol. Struct. 702, 77-83.]). Within this series there are two sub-sets of isotypic complexes, one monoclinic (P21/n) (La–Tb as well as Dy and Er), in which the structures are two-dimensional, the second triclinic (P[\overline{1}]) forming dinuclear structures (Yb, Lu, Y, as well as Tb). The solvatomorphism of the Tb member {monoclinic, [Tb2(4-ABA)6(H2O)2]; triclinic [[Tb2(4-ABA)6(H2O)2]·2H2O]} is of inter­est and its occurrence was indicated as being dependent on pH control in the preparation.

[Scheme 1]
[Scheme 2]

It was considered that some of the other later members of the RE series (predominantly triclinic) might also show the same effect so this was tested with Er in a reaction of erbium(III) acetate with 4-ABA in aqueous ethanol under mild reaction conditions, with no additional pH control. The title triclinic complex [Er2(C7H6NO2)6(H2O)4]·2H2O, (I)[link], was obtained. For (I)[link], the preliminary unit-cell data (Table 1[link]) suggested a possible solvatomorphic variant of the previously reported polymeric monoclinic Er3+ complex with 4-ABA (Sun et al., 2004[Sun, H.-L., Ye, C.-H., Wang, X.-Y., Li, J.-R., Gao, S. & Yu, K.-B. (2004). J. Mol. Struct. 702, 77-83.]), and this was confirmed in the X-ray structural analysis. The comparative cell data for the triclinic Tb3+ complex with 4-ABA are a = 9.0964 (1), b = 11.0117 (1), c = 12.7430 (2) Å, α = 89.372 (5), β = 72.0360 (6), γ = 75.0730 (7)°, V = 1169.97 (2) Å3, confirming that the two are isotypic.

Table 1
Selected bond lengths (Å) for (I)[link]

Er1—O1W 2.373 (2) Er1—O12A 2.333 (3)
Er1—O2W 2.295 (3) Er1—O12B 2.385 (3)
Er1—O11A 2.477 (3) Er1—O12C 2.232 (3)
Er1—O11B 2.478 (3) Er1—O11Ci 2.233 (4)
Symmetry code: (i) -x+1, -y+1, -z+1.

Complex (II)[link], anhydrous [Er2(C7H3ClNO4)6(C2H6OS)2]n, was obtained in a similar reaction to (I)[link], using erbium(III) acetate and 4-chloro-3-nitro­benzoic acid (CLNBAH), with subsequent recrystallization using DMSO. The structures of both complexes are reported herein.

2. Structural commentary

In the title centrosymmetric dinuclear structure of compound (I)[link] (Fig. 1[link]), the two identical irregular ErO8 complex units [Er—O bond length range, 2.232 (3)–2.478 (3) Å] (Table 1[link]), comprise two monodentate water mol­ecules (O1W, O2W), four O-atom donors from two slightly asymmetric bidentate O,O' chelate carboxyl­ate groups (the A and B 4-ABA ligands) and two bridging O-atom donors from two symmetry-related ligands (C). The Er⋯Eri separation in the dinuclear unit is 4.7527 (4) Å. Unlike the polymeric solvatomorphic ErIII complex [Er2(4-ABA)6(H2O)2]n·nH2O (Sun et al., 2004[Sun, H.-L., Ye, C.-H., Wang, X.-Y., Li, J.-R., Gao, S. & Yu, K.-B. (2004). J. Mol. Struct. 702, 77-83.]), in which the extending Er—N bond is somewhat elongated at 2.660 (3) Å, with (I)[link], there is no reasonable Er—N bonding contact. The monodentate water mol­ecule O2W in (I)[link] replaces the bridging amino N-donor site which is present in the 8-coordination sphere about Er in the solvatopolymorph. Within the dinuclear complex unit of (I)[link], an intra-dimer O—H⋯Ocarboxyl­ate hydrogen bond is present between one of the the coordinating water mol­ecules (O1W) and an inversion-related carboxyl­ate O-atom (O11Ai) (Table 2[link]). This structure is similar to the triclinic isotypic Tb3+ complex with 4-ABA (Sun et al., 2004[Sun, H.-L., Ye, C.-H., Wang, X.-Y., Li, J.-R., Gao, S. & Yu, K.-B. (2004). J. Mol. Struct. 702, 77-83.]).

Table 2
Hydrogen-bond geometry (Å, °) for (I)[link]

D—H⋯A D—H H⋯A DA D—H⋯A
O1W—H11W⋯O11Ai 0.82 (4) 1.95 (4) 2.757 (4) 166 (4)
O1W—H12W⋯O11Bii 0.82 (3) 1.98 (3) 2.777 (4) 163 (4)
O2W—H21W⋯N4Biii 0.84 (4) 2.09 (4) 2.902 (5) 162 (5)
O2W—H22W⋯N4Civ 0.86 (4) 1.89 (4) 2.735 (6) 168 (5)
O3W—H31W⋯O12B 0.83 (4) 1.99 (4) 2.777 (4) 160 (5)
O3W—H32W⋯O12Av 0.85 (5) 2.07 (5) 2.841 (5) 151 (5)
N4A—H42A⋯O3Wvi 0.88 (4) 2.08 (4) 2.902 (6) 156 (4)
N4B—H41B⋯O3Wvii 0.86 (4) 2.18 (4) 3.014 (6) 164 (4)
N4C—H42C⋯O11Bviii 0.86 (3) 2.49 (4) 3.341 (5) 170 (5)
Symmetry codes: (i) -x+1, -y+1, -z+1; (ii) -x+2, -y+1, -z+1; (iii) x, y-1, z; (iv) x+1, y-1, z; (v) -x+1, -y+1, -z+2; (vi) -x, -y+1, -z+2; (vii) -x+1, -y+2, -z+2; (viii) -x+1, -y+2, -z+1.
[Figure 1]
Figure 1
The mol­ecular configuration and atom-naming scheme for the centrosymmetric dinuclear title complex and water mol­ecules of solvation in (I)[link], with displacement ellipsoids drawn at the 40% probability level. For symmetry code (i), see Table 1[link].

In (I)[link], the 4-ABA ligand species show some variation in the conformation of the carboxyl­ate groups. In one of the bidentate O,O′-chelate ligands (A) and the bridging ligand (C), the groups are essentially coplanar with the benzene ring [torsion angles C2A/C—C1A/C—C11A/C—O11A/C = 171.2 (4) and 174.8 (4)°, respectively], while in the second bidentate chelate ligand (B) the group is rotated out of the plane [corresponding torsion angle = 155.9 (4)°]. Such a 'planar' conformation is also found in the structure of the parent acid (Gracin & Fischer, 2005[Gracin, S. & Fischer, A. (2005). Acta Cryst. E61, o1242-o1244.]) and in mol­ecular adducts with aromatic carb­oxy­lic acids (Chadwick et al., 2009[Chadwick, K., Sadiq, G., Davey, R. J., Seaton, C. C., Pritchard, R. G. & Parkin, A. (2009). Cryst. Growth Des. 9, 1278-1279.]).

In the crystal structure of complex (II)[link], a centrosymmetric dinuclear repeat unit is present with the two inversion-related ErIII atoms (Fig. 2[link]) being seven-coordinated through four bridging carboxyl­ate O,O1 groups (the A and B ligands), a monodentate DMSO O-atom and O-donors (O12Ci) and O11Ci from the C ligand which extends the dinuclear unit into a one-dimensional coordination polymer lying along [100] (Fig. 3[link]). The Er—O bond length range is 2.239 (6)–2.348 (6) (Table 3[link]) and the Er⋯Erii separation within the dimeric unit is 4.4620 (6) Å. Also present within the repeat unit are a C2B—H⋯O11 hydrogen bond [3.298 (13) Å] and a C2A—H⋯S1 inter­action [3.743 (10) Å] (Table 4[link]).

Table 3
Selected bond lengths (Å) for (II)[link]

Er1—O11 2.306 (7) Er1—O12Ci 2.287 (6)
Er1—O11C 2.312 (8) Er1—O11Aii 2.300 (6)
Er1—O12A 2.317 (7) Er1—O11Bii 2.348 (6)
Er1—O12B 2.239 (6)    
Symmetry codes: (i) -x, -y+1, -z+1; (ii) -x+1, -y+1, -z+1.

Table 4
Hydrogen-bond geometry (Å, °) for (II)[link]

D—H⋯A D—H H⋯A DA D—H⋯A
C2A—H2A⋯S1 0.95 2.86 3.743 (10) 155
C2B—H2B⋯O11 0.95 2.56 3.298 (13) 135
C11—H111⋯Cl4Aiii 0.98 2.79 3.486 (11) 129
C12—H123⋯O32Aiv 0.98 2.44 3.376 (15) 158
Symmetry codes: (iii) -x+1, -y+1, -z; (iv) -x, -y+1, -z.
[Figure 2]
Figure 2
The mol­ecular configuration and atom-naming scheme for the centrosymmetric dinuclear repeat unit in the polymeric complex (II)[link], with displacement ellipsoids drawn at the 40% probability level. [Symmetry code: (v) x + 1, y, z; for other symmetry codes, see Table 3[link].]
[Figure 3]
Figure 3
The packing of the one-dimensional polymeric chain structure of (II)[link] in the unit cell, viewed approximately along [001]. H atoms have been omitted.

The torsion angles defining the conformation of the carboxyl­ate groups of the CLNBA ligands in (II)[link] are C2A/B/C—C1A/B/C—C11A/B/C—O11A/B/C = 158.7 (9), 177.2 (9) and 160.3 (8)°, respectively. The torsion angles of the nitro groups C2A/B/C—C3A/B/C—N3A/B/C—O32A/B/C are −150.4 (12), 174.1 (16) and 120.3 (13)°, respectively. In the structure of the parent CLNBAH acid (Ishida & Fukunaga, 2003[Ishida, H. & Fukunaga, T. (2003). Acta Cryst. E59, o1984-o1986.]), the corresponding torsion angles are 174.02 (17) and −132.61 (18)° compared to 179.7 (2) and −137.8 (2)° in the Na–CLNBA monohydrate salt (Smith, 2013[Smith, G. (2013). Acta Cryst. C69, 1472-1477.]).

3. Supra­molecular features

In the crystal structure of compound (I)[link], extensive inter-unit O—H⋯O and O—H⋯N hydrogen-bonding inter­actions are present, involving both the coordinating water mol­ecules as well as the solvent water mol­ecules, with carboxyl­ate O-atom acceptors and amine N-atom acceptors (Table 2[link]). These, together with amine N—H⋯Owater and Ocarbox­yl hydrogen bonds give a three-dimensional network structure (Figs. 4[link] and 5[link]). One H atom of each of the amine groups on the three 4-ABA ligand components of the complex is not involved in hydrogen-bonding. Also present in the supra­molecular structure are weak ππ inter­actions between A ligands [ring-centroid separation AAvii = 3.711 (3) Å] and C ligands [CCviii = 3.676 (3) Å] (for symmetry codes, see Table 2[link]). This dimeric carboxyl­ate-bridged complex mode is similar to that found in the erbium acetate complex [Er2(CH3CO2)6(H2O)4]2·6H2O (Sawase et al., 1984[Sawase, H., Koizumi, Y., Suzuki, Y., Shimoi, M. & Ouchi, Z. (1984). Bull. Chem. Soc. Jpn, 57, 2730-2737.]).

[Figure 4]
Figure 4
The dimeric complex (I)[link] in the unit cell, viewed approximately down [100], showing intra- and inter­dimer hydrogen-bonding extensions as dashed lines. Non-associative H atoms have been omitted. For symmetry codes, see Table 2[link].
[Figure 5]
Figure 5
The three-dimensional hydrogen-bonded structure of (I)[link] in the unit cell, viewed along [100]. Non-associative H atoms have been omitted.

With (II)[link], present are two weak intra-polymer C—H⋯O hydrogen bonds involving methyl H atoms and both a DMSO O-atom acceptor and a Cl-atom acceptor (Table 4[link]).

4. Synthesis and crystallization

The title compounds were synthesized by warming together for 10 min, a solution obtained by mixing 5 ml of ethano­lic 4-amino­benzoic acid (1 mmol: 135 mg) [for (I)] or 4-chloro-3-nitro­benzoic acid (1 mmol: 200 mg) [for (II)], with 10 ml of aqueous erbium(III) acetate hexa­hydrate (0.3 mmol: 216 mg). Partial room-temperature evaporation of these solutions provided pale-pink block-like single crystals of (I)[link], suitable for X-ray analysis while a colourless powder was obtained from the preparation of (II)[link]. Recrystallization using the slow diffusion of water into a DMSO solution gave minor small crystals of (II)[link], suitable for X-ray analysis.

5. Refinement details

Crystal data, data collection and structure refinements for (I)[link] and (II)[link] are summarized in Table 5[link]. Hydrogen atoms on all water mol­ecules and the amine groups of the 4-ABA ligands in (I)[link] were located by difference methods and positional parameters were refined with restraints [O—H bond length = 0.85 (2) Å and N—H = 0.88 (2) Å], with Uiso(H) = 1.5Ueq(O) or 1.2Ueq(N). Other H atoms were included in the refinement at calculated positions [C—H(aromatic) = 0.95 Å or C—H(meth­yl) = 0.96 Å, with Uiso(H) = 1.2Ueq(C)(aromatic) or 1.5Ueq(C)(meth­yl)], using a riding-model approximation. In the refinement of (II)[link], a number of large difference electron density residual peaks (5–7 e Å−3) located within 1.0 Å of the Er1 site were present. These are possibly due to poor crystal quality coupled to effects of an insufficient absorption correction.

Table 5
Experimental details

  (I) (II)
Crystal data
Chemical formula [Er2(C7H6NO2)6(H2O)4]·2H2O [Er2(C7H3ClNO4)6(C2H6OS)2]
Mr 1259.38 1694.10
Crystal system, space group Triclinic, P[\overline{1}] Triclinic, P[\overline{1}]
Temperature (K) 200 200
a, b, c (Å) 9.0332 (5), 10.9363 (6), 12.6194 (6) 8.2408 (3), 12.4040 (8), 15.3409 (10)
α, β, γ (°) 89.015 (4), 72.105 (5), 74.814 (5) 111.443 (6), 98.063 (4), 96.684 (4)
V3) 1142.21 (10) 1421.04 (14)
Z 1 1
Radiation type Mo Kα Mo Kα
μ (mm−1) 3.73 3.38
Crystal size (mm) 0.30 × 0.30 × 0.25 0.25 × 0.12 × 0.04
 
Data collection
Diffractometer Oxford Diffraction Gemini-S CCD detector Oxford Diffraction Gemini-S CCD detector
Absorption correction Multi-scan (CrysAlis PRO; Agilent, 2013[Agilent (2013). CrysAlis PRO. Agilent Technologies Ltd, Yarnton, England.]) Multi-scan (CrysAlis PRO; Agilent, 2013[Agilent (2013). CrysAlis PRO. Agilent Technologies Ltd, Yarnton, England.])
Tmin, Tmax 0.713, 0.980 0.494, 0.980
No. of measured, independent and observed [I > 2σ(I)] reflections 7274, 4480, 4137 10041, 5566, 4814
Rint 0.035 0.055
(sin θ/λ)max−1) 0.617 0.617
 
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.029, 0.058, 1.05 0.067, 0.181, 1.06
No. of reflections 4480 5566
No. of parameters 343 397
No. of restraints 12 0
H-atom treatment H atoms treated by a mixture of independent and constrained refinement H-atom parameters constrained
Δρmax, Δρmin (e Å−3) 1.03, −0.71 6.83, −2.41
Computer programs: CrysAlis PRO (Agilent, 2013[Agilent (2013). CrysAlis PRO. Agilent Technologies Ltd, Yarnton, England.]), SIR92 (Altomare et al., 1993[Altomare, A., Cascarano, G., Giacovazzo, C. & Guagliardi, A. (1993). J. Appl. Cryst. 26, 343-350.]), SHELXS97 and SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]) within WinGX (Farrugia, 2012[Farrugia, L. J. (2012). J. Appl. Cryst. 45, 849-854.]) and PLATON (Spek, 2009[Spek, A. L. (2009). Acta Cryst. D65, 148-155.]).

Supporting information


Computing details top

For both compounds, data collection: CrysAlis PRO (Agilent, 2013); cell refinement: CrysAlis PRO (Agilent, 2013); data reduction: CrysAlis PRO (Agilent, 2013). Program(s) used to solve structure: SIR92 (Altomare et al., 1993) for (I); SHELXS97 (Sheldrick, 2008) for (II). For both compounds, program(s) used to refine structure: SHELXL97 (Sheldrick, 2008) within WinGX (Farrugia, 2012); molecular graphics: PLATON (Spek, 2009); software used to prepare material for publication: PLATON (Spek, 2009).

(I) Bis(µ2-4-aminobenzoato-κ2O:O')bis[bis(4-aminobenzoato-κ2O,O')diaquaerbium(III)] dihydrate top
Crystal data top
[Er2(C7H6NO2)6(H2O)4]·2H2OZ = 1
Mr = 1259.38F(000) = 622
Triclinic, P1Dx = 1.831 Mg m3
Hall symbol: -P 1Mo Kα radiation, λ = 0.71073 Å
a = 9.0332 (5) ÅCell parameters from 3598 reflections
b = 10.9363 (6) Åθ = 3.6–28.8°
c = 12.6194 (6) ŵ = 3.73 mm1
α = 89.015 (4)°T = 200 K
β = 72.105 (5)°Block, pink
γ = 74.814 (5)°0.30 × 0.30 × 0.25 mm
V = 1142.21 (10) Å3
Data collection top
Oxford Diffraction Gemini-S CCD-detector
diffractometer
4480 independent reflections
Radiation source: Enhance (Mo) X-ray source4137 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.035
Detector resolution: 16.077 pixels mm-1θmax = 26.0°, θmin = 3.4°
ω scansh = 1111
Absorption correction: multi-scan
(CrysAlis PRO; Agilent, 2013)
k = 1013
Tmin = 0.713, Tmax = 0.980l = 1514
7274 measured reflections
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.029Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.058H atoms treated by a mixture of independent and constrained refinement
S = 1.05 w = 1/[σ2(Fo2) + (0.011P)2]
where P = (Fo2 + 2Fc2)/3
4480 reflections(Δ/σ)max = 0.002
343 parametersΔρmax = 1.03 e Å3
12 restraintsΔρmin = 0.71 e Å3
Special details top

Geometry. Bond distances, angles etc. have been calculated using the rounded fractional coordinates. All su's are estimated from the variances of the (full) variance-covariance matrix. The cell e.s.d.'s are taken into account in the estimation of distances, angles and torsion angles

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Er10.63868 (2)0.48651 (2)0.63400 (1)0.0172 (1)
O1W0.8216 (3)0.4689 (3)0.4504 (2)0.0236 (9)
O2W0.8310 (4)0.3257 (3)0.6738 (3)0.0310 (10)
O3W0.4420 (4)0.6614 (4)1.0062 (3)0.0450 (13)
O11A0.3424 (3)0.5182 (3)0.7029 (2)0.0229 (9)
O11B0.8438 (3)0.5973 (3)0.6381 (2)0.0226 (9)
O11C0.4044 (4)0.6642 (3)0.4607 (3)0.0393 (11)
O12A0.4967 (3)0.3977 (3)0.7885 (2)0.0279 (10)
O12B0.6239 (4)0.6268 (3)0.7818 (2)0.0297 (10)
O12C0.5398 (3)0.6760 (3)0.5771 (2)0.0326 (10)
N4A0.1513 (5)0.2669 (5)1.0592 (3)0.0420 (16)
N4B0.8254 (5)1.1355 (4)0.8371 (3)0.0338 (14)
N4C0.1613 (5)1.2581 (4)0.5966 (4)0.0408 (14)
C1A0.2234 (5)0.3912 (4)0.8436 (3)0.0205 (12)
C1B0.7719 (5)0.7812 (4)0.7614 (3)0.0209 (11)
C1C0.3588 (4)0.8633 (4)0.5499 (3)0.0173 (11)
C2A0.2533 (5)0.2916 (4)0.9109 (3)0.0259 (12)
C2B0.6425 (5)0.8743 (4)0.8302 (3)0.0245 (12)
C2C0.3840 (5)0.9328 (4)0.6308 (3)0.0239 (12)
C3A0.1314 (5)0.2489 (4)0.9799 (3)0.0286 (16)
C3B0.6601 (5)0.9903 (4)0.8557 (3)0.0269 (12)
C3C0.3173 (5)1.0619 (4)0.6478 (3)0.0297 (14)
C4A0.0285 (5)0.3068 (4)0.9855 (3)0.0272 (16)
C4B0.8090 (5)1.0165 (4)0.8158 (3)0.0238 (14)
C4C0.2265 (5)1.1253 (4)0.5836 (4)0.0264 (14)
C5A0.0601 (5)0.4036 (4)0.9147 (3)0.0284 (14)
C5B0.9399 (5)0.9232 (4)0.7501 (3)0.0263 (12)
C5C0.1958 (5)1.0556 (4)0.5055 (3)0.0295 (14)
C6A0.0656 (5)0.4452 (4)0.8453 (3)0.0240 (12)
C6B0.9214 (5)0.8076 (4)0.7221 (3)0.0243 (12)
C6C0.2620 (5)0.9257 (4)0.4890 (3)0.0272 (14)
C11A0.3588 (5)0.4394 (4)0.7749 (3)0.0205 (12)
C11B0.7480 (5)0.6613 (4)0.7262 (3)0.0222 (12)
C11C0.4396 (5)0.7246 (4)0.5278 (3)0.0209 (12)
H2A0.359100.253200.908700.0310*
H2B0.542400.857700.859400.0290*
H2C0.446600.891600.673900.0290*
H3A0.154600.181201.023100.0350*
H3B0.571201.051900.900000.0320*
H3C0.333601.107000.703200.0350*
H5A0.165400.439700.914400.0340*
H5B1.041100.938500.724600.0310*
H5C0.130501.096600.464100.0350*
H6A0.044100.510300.799200.0290*
H6B1.009800.746700.676500.0290*
H6C0.241100.879900.436500.0330*
H11W0.788 (5)0.467 (4)0.397 (3)0.0350*
H12W0.917 (3)0.463 (4)0.417 (3)0.0350*
H21W0.807 (6)0.278 (4)0.726 (3)0.0460*
H22W0.934 (3)0.314 (5)0.655 (4)0.0460*
H41A0.136 (6)0.223 (4)1.115 (3)0.0500*
H41B0.750 (4)1.182 (4)0.891 (3)0.0400*
H41C0.198 (6)1.289 (5)0.645 (3)0.0490*
H42A0.248 (3)0.305 (4)1.056 (4)0.0500*
H42B0.919 (3)1.130 (5)0.843 (4)0.0400*
H42C0.171 (6)1.288 (5)0.532 (2)0.0490*
H31W0.507 (5)0.634 (5)0.944 (3)0.0680*
H32W0.489 (6)0.624 (5)1.051 (4)0.0680*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Er10.0190 (1)0.0146 (1)0.0170 (1)0.0037 (1)0.0048 (1)0.0002 (1)
O1W0.0247 (16)0.0303 (17)0.0135 (14)0.0055 (14)0.0043 (12)0.0005 (13)
O2W0.0219 (16)0.0321 (19)0.0371 (19)0.0049 (15)0.0093 (15)0.0164 (15)
O11A0.0254 (15)0.0245 (16)0.0175 (14)0.0052 (13)0.0063 (12)0.0069 (12)
O11B0.0220 (15)0.0253 (16)0.0201 (14)0.0065 (13)0.0057 (12)0.0061 (12)
O11C0.044 (2)0.0294 (19)0.0392 (19)0.0148 (16)0.0004 (16)0.0138 (15)
O12A0.0244 (16)0.0355 (18)0.0277 (16)0.0105 (14)0.0123 (13)0.0103 (14)
O12B0.0364 (18)0.0329 (18)0.0211 (15)0.0207 (15)0.0009 (13)0.0038 (13)
O12C0.0249 (17)0.0214 (17)0.047 (2)0.0014 (13)0.0095 (15)0.0120 (15)
N4A0.042 (3)0.062 (3)0.030 (2)0.030 (3)0.010 (2)0.015 (2)
N4B0.049 (3)0.022 (2)0.030 (2)0.013 (2)0.009 (2)0.0008 (17)
N4C0.028 (2)0.020 (2)0.061 (3)0.0033 (18)0.002 (2)0.005 (2)
C1A0.024 (2)0.020 (2)0.017 (2)0.0060 (18)0.0057 (17)0.0019 (17)
C1B0.028 (2)0.021 (2)0.0153 (19)0.0092 (19)0.0069 (17)0.0001 (17)
C1C0.0153 (19)0.016 (2)0.019 (2)0.0049 (16)0.0023 (16)0.0001 (16)
C2A0.024 (2)0.028 (2)0.028 (2)0.0071 (19)0.0114 (19)0.0045 (19)
C2B0.025 (2)0.025 (2)0.021 (2)0.0074 (19)0.0033 (18)0.0024 (18)
C2C0.026 (2)0.022 (2)0.026 (2)0.0041 (19)0.0133 (18)0.0007 (18)
C3A0.036 (3)0.028 (3)0.027 (2)0.013 (2)0.014 (2)0.011 (2)
C3B0.031 (2)0.021 (2)0.022 (2)0.0007 (19)0.0041 (18)0.0032 (18)
C3C0.033 (3)0.024 (2)0.032 (2)0.007 (2)0.010 (2)0.010 (2)
C4A0.034 (3)0.034 (3)0.020 (2)0.021 (2)0.0077 (19)0.0017 (19)
C4B0.040 (3)0.016 (2)0.015 (2)0.0080 (19)0.0080 (18)0.0036 (17)
C4C0.020 (2)0.013 (2)0.038 (3)0.0043 (18)0.0024 (19)0.0033 (19)
C5A0.019 (2)0.045 (3)0.023 (2)0.012 (2)0.0061 (18)0.004 (2)
C5B0.032 (2)0.026 (2)0.022 (2)0.013 (2)0.0057 (19)0.0028 (19)
C5C0.030 (2)0.027 (3)0.029 (2)0.001 (2)0.012 (2)0.011 (2)
C6A0.028 (2)0.026 (2)0.018 (2)0.0065 (19)0.0082 (18)0.0033 (18)
C6B0.031 (2)0.018 (2)0.021 (2)0.0050 (19)0.0052 (18)0.0007 (17)
C6C0.030 (2)0.032 (3)0.022 (2)0.007 (2)0.0127 (19)0.0006 (19)
C11A0.026 (2)0.020 (2)0.018 (2)0.0092 (18)0.0077 (17)0.0001 (17)
C11B0.027 (2)0.024 (2)0.021 (2)0.0107 (19)0.0117 (18)0.0001 (18)
C11C0.019 (2)0.019 (2)0.021 (2)0.0110 (18)0.0039 (17)0.0000 (17)
O3W0.031 (2)0.071 (3)0.0254 (18)0.0003 (19)0.0093 (15)0.0010 (18)
Geometric parameters (Å, º) top
Er1—O1W2.373 (2)C1A—C2A1.391 (6)
Er1—O2W2.295 (3)C1B—C2B1.393 (6)
Er1—O11A2.477 (3)C1B—C6B1.393 (7)
Er1—O11B2.478 (3)C1B—C11B1.480 (6)
Er1—O12A2.333 (3)C1C—C11C1.490 (6)
Er1—O12B2.385 (3)C1C—C6C1.380 (6)
Er1—O12C2.232 (3)C1C—C2C1.390 (6)
Er1—O11Ci2.233 (4)C2A—C3A1.362 (6)
O11A—C11A1.257 (5)C2B—C3B1.375 (6)
O11B—C11B1.262 (5)C2C—C3C1.374 (6)
O11C—C11C1.245 (6)C3A—C4A1.397 (7)
O12A—C11A1.273 (6)C3B—C4B1.388 (7)
O12B—C11B1.273 (6)C3C—C4C1.379 (6)
O12C—C11C1.254 (5)C4A—C5A1.402 (6)
O1W—H12W0.82 (3)C4B—C5B1.386 (6)
O1W—H11W0.82 (4)C4C—C5C1.391 (6)
O2W—H21W0.84 (4)C5A—C6A1.382 (6)
O2W—H22W0.86 (4)C5B—C6B1.383 (6)
O3W—H31W0.83 (4)C5C—C6C1.381 (6)
O3W—H32W0.85 (5)C2A—H2A0.9300
N4A—C4A1.375 (6)C2B—H2B0.9300
N4B—C4B1.388 (6)C2C—H2C0.9300
N4C—C4C1.409 (6)C3A—H3A0.9300
N4A—H41A0.87 (4)C3B—H3B0.9300
N4A—H42A0.88 (4)C3C—H3C0.9300
N4B—H41B0.86 (4)C5A—H5A0.9300
N4B—H42B0.86 (3)C5B—H5B0.9300
N4C—H41C0.89 (5)C5C—H5C0.9300
N4C—H42C0.86 (3)C6A—H6A0.9300
C1A—C11A1.482 (6)C6B—H6B0.9300
C1A—C6A1.386 (7)C6C—H6C0.9300
O1W—Er1—O2W87.02 (12)C2C—C1C—C6C118.8 (4)
O1W—Er1—O11A131.43 (9)C6C—C1C—C11C121.1 (4)
O1W—Er1—O11B72.20 (9)C1A—C2A—C3A121.6 (4)
O1W—Er1—O12A151.62 (11)C1B—C2B—C3B121.2 (4)
O1W—Er1—O12B124.33 (11)C1C—C2C—C3C120.6 (4)
O1W—Er1—O12C79.98 (10)C2A—C3A—C4A119.9 (4)
O1W—Er1—O11Ci73.68 (12)C2B—C3B—C4B120.7 (4)
O2W—Er1—O11A126.78 (12)C2C—C3C—C4C120.6 (4)
O2W—Er1—O11B78.50 (12)C3A—C4A—C5A119.1 (4)
O2W—Er1—O12A75.02 (12)N4A—C4A—C5A121.4 (4)
O2W—Er1—O12B93.16 (12)N4A—C4A—C3A119.5 (4)
O2W—Er1—O12C156.11 (12)C3B—C4B—C5B118.7 (4)
O2W—Er1—O11Ci85.80 (13)N4B—C4B—C5B120.5 (4)
O11A—Er1—O11B140.04 (10)N4B—C4B—C3B120.8 (4)
O11A—Er1—O12A53.86 (10)C3C—C4C—C5C118.9 (4)
O11A—Er1—O12B91.09 (11)N4C—C4C—C3C121.9 (4)
O11A—Er1—O12C76.09 (10)N4C—C4C—C5C119.2 (4)
O11A—Er1—O11Ci75.35 (12)C4A—C5A—C6A119.8 (4)
O11B—Er1—O12A123.63 (9)C4B—C5B—C6B120.6 (4)
O11B—Er1—O12B53.56 (10)C4C—C5C—C6C120.3 (4)
O11B—Er1—O12C78.48 (10)C1A—C6A—C5A120.8 (4)
O11B—Er1—O11Ci142.95 (11)C1B—C6B—C5B120.8 (4)
O12A—Er1—O12B79.21 (10)C1C—C6C—C5C120.6 (4)
O12A—Er1—O12C123.94 (10)O11A—C11A—C1A122.2 (4)
O11Ci—Er1—O12A83.11 (12)O12A—C11A—C1A118.5 (4)
O12B—Er1—O12C78.15 (10)O11A—C11A—O12A119.2 (4)
O11Ci—Er1—O12B161.93 (12)O11B—C11B—C1B120.7 (4)
O11Ci—Er1—O12C109.26 (11)O12B—C11B—C1B119.4 (3)
Er1—O11A—C11A90.0 (3)O11B—C11B—O12B119.8 (4)
Er1—O11B—C11B90.2 (3)O11C—C11C—O12C124.0 (4)
Er1i—O11C—C11C165.0 (3)O11C—C11C—C1C117.9 (4)
Er1—O12A—C11A96.3 (2)O12C—C11C—C1C118.1 (4)
Er1—O12B—C11B94.2 (2)C1A—C2A—H2A119.00
Er1—O12C—C11C138.1 (3)C3A—C2A—H2A119.00
H11W—O1W—H12W100 (4)C3B—C2B—H2B119.00
Er1—O1W—H11W119 (3)C1B—C2B—H2B119.00
Er1—O1W—H12W141 (2)C1C—C2C—H2C120.00
H21W—O2W—H22W107 (5)C3C—C2C—H2C120.00
Er1—O2W—H21W122 (4)C4A—C3A—H3A120.00
Er1—O2W—H22W130 (3)C2A—C3A—H3A120.00
H31W—O3W—H32W104 (5)C2B—C3B—H3B120.00
C4A—N4A—H41A121 (4)C4B—C3B—H3B120.00
H41A—N4A—H42A122 (5)C4C—C3C—H3C120.00
C4A—N4A—H42A115 (3)C2C—C3C—H3C120.00
C4B—N4B—H42B111 (4)C4A—C5A—H5A120.00
H41B—N4B—H42B112 (4)C6A—C5A—H5A120.00
C4B—N4B—H41B116 (3)C6B—C5B—H5B120.00
C4C—N4C—H41C108 (3)C4B—C5B—H5B120.00
H41C—N4C—H42C121 (5)C4C—C5C—H5C120.00
C4C—N4C—H42C110 (3)C6C—C5C—H5C120.00
C2A—C1A—C6A118.6 (4)C5A—C6A—H6A120.00
C6A—C1A—C11A121.7 (4)C1A—C6A—H6A120.00
C2A—C1A—C11A119.7 (4)C1B—C6B—H6B120.00
C2B—C1B—C11B120.6 (4)C5B—C6B—H6B120.00
C6B—C1B—C11B121.3 (4)C1C—C6C—H6C120.00
C2B—C1B—C6B118.0 (4)C5C—C6C—H6C120.00
C2C—C1C—C11C120.1 (4)
O1W—Er1—O11A—C11A139.1 (2)Er1—O12C—C11C—C1C153.5 (3)
O2W—Er1—O11A—C11A14.1 (3)C2A—C1A—C6A—C5A1.9 (6)
O11B—Er1—O11A—C11A106.2 (3)C6A—C1A—C2A—C3A1.8 (6)
O12A—Er1—O11A—C11A4.9 (2)C11A—C1A—C2A—C3A176.4 (4)
O12B—Er1—O11A—C11A80.7 (2)C6A—C1A—C11A—O11A10.6 (6)
O12C—Er1—O11A—C11A158.2 (2)C6A—C1A—C11A—O12A170.5 (4)
O11Ci—Er1—O11A—C11A87.3 (2)C11A—C1A—C6A—C5A176.3 (4)
O1W—Er1—O11B—C11B158.2 (3)C2A—C1A—C11A—O11A171.2 (4)
O2W—Er1—O11B—C11B111.2 (2)C2A—C1A—C11A—O12A7.7 (6)
O11A—Er1—O11B—C11B23.9 (3)C6B—C1B—C2B—C3B2.1 (6)
O12A—Er1—O11B—C11B48.1 (3)C11B—C1B—C2B—C3B174.4 (4)
O12B—Er1—O11B—C11B8.5 (2)C2B—C1B—C6B—C5B0.5 (6)
O12C—Er1—O11B—C11B75.2 (2)C2B—C1B—C11B—O11B155.9 (4)
O11Ci—Er1—O11B—C11B178.1 (2)C2B—C1B—C11B—O12B19.8 (6)
O1W—Er1—O12A—C11A107.0 (3)C6B—C1B—C11B—O11B20.5 (6)
O2W—Er1—O12A—C11A159.5 (3)C6B—C1B—C11B—O12B163.9 (4)
O11A—Er1—O12A—C11A4.9 (2)C11B—C1B—C6B—C5B176.0 (4)
O11B—Er1—O12A—C11A135.7 (2)C6C—C1C—C2C—C3C1.7 (6)
O12B—Er1—O12A—C11A104.2 (3)C11C—C1C—C2C—C3C176.5 (4)
O12C—Er1—O12A—C11A36.6 (3)C2C—C1C—C11C—O12C5.8 (6)
O11Ci—Er1—O12A—C11A72.0 (2)C6C—C1C—C11C—O11C7.1 (6)
O1W—Er1—O12B—C11B6.9 (3)C6C—C1C—C11C—O12C172.3 (4)
O2W—Er1—O12B—C11B81.7 (3)C2C—C1C—C6C—C5C2.2 (6)
O11A—Er1—O12B—C11B151.4 (3)C11C—C1C—C6C—C5C176.0 (4)
O11B—Er1—O12B—C11B8.5 (2)C2C—C1C—C11C—O11C174.8 (4)
O12A—Er1—O12B—C11B155.8 (3)C1A—C2A—C3A—C4A1.0 (6)
O12C—Er1—O12B—C11B75.9 (3)C1B—C2B—C3B—C4B1.8 (6)
O1W—Er1—O12C—C11C88.7 (4)C1C—C2C—C3C—C4C1.2 (7)
O2W—Er1—O12C—C11C146.8 (4)C2A—C3A—C4A—C5A3.7 (6)
O11A—Er1—O12C—C11C48.7 (4)C2A—C3A—C4A—N4A177.0 (4)
O11B—Er1—O12C—C11C162.4 (4)C2B—C3B—C4B—C5B0.3 (6)
O12A—Er1—O12C—C11C74.6 (4)C2B—C3B—C4B—N4B177.0 (4)
O12B—Er1—O12C—C11C142.8 (4)C2C—C3C—C4C—N4C177.8 (4)
O11Ci—Er1—O12C—C11C20.1 (4)C2C—C3C—C4C—C5C3.6 (7)
Er1—O11A—C11A—O12A8.3 (4)N4A—C4A—C5A—C6A177.1 (4)
Er1—O11A—C11A—C1A170.6 (3)C3A—C4A—C5A—C6A3.7 (6)
Er1—O11B—C11B—O12B14.9 (4)C3B—C4B—C5B—C6B1.9 (6)
Er1—O11B—C11B—C1B160.7 (4)N4B—C4B—C5B—C6B175.4 (4)
Er1—O12A—C11A—O11A8.9 (4)C3C—C4C—C5C—C6C3.1 (7)
Er1—O12A—C11A—C1A170.1 (3)N4C—C4C—C5C—C6C178.2 (4)
Er1—O12B—C11B—O11B15.5 (4)C4A—C5A—C6A—C1A0.9 (6)
Er1—O12B—C11B—C1B160.1 (3)C4B—C5B—C6B—C1B1.5 (6)
Er1—O12C—C11C—O11C27.1 (6)C4C—C5C—C6C—C1C0.2 (7)
Symmetry code: (i) x+1, y+1, z+1.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O1W—H11W···O11Ai0.82 (4)1.95 (4)2.757 (4)166 (4)
O1W—H12W···O11Bii0.82 (3)1.98 (3)2.777 (4)163 (4)
O2W—H21W···N4Biii0.84 (4)2.09 (4)2.902 (5)162 (5)
O2W—H22W···N4Civ0.86 (4)1.89 (4)2.735 (6)168 (5)
O3W—H31W···O12B0.83 (4)1.99 (4)2.777 (4)160 (5)
O3W—H32W···O12Av0.85 (5)2.07 (5)2.841 (5)151 (5)
N4A—H42A···O3Wvi0.88 (4)2.08 (4)2.902 (6)156 (4)
N4B—H41B···O3Wvii0.86 (4)2.18 (4)3.014 (6)164 (4)
N4C—H42C···O11Bviii0.86 (3)2.49 (4)3.341 (5)170 (5)
Symmetry codes: (i) x+1, y+1, z+1; (ii) x+2, y+1, z+1; (iii) x, y1, z; (iv) x+1, y1, z; (v) x+1, y+1, z+2; (vi) x, y+1, z+2; (vii) x+1, y+2, z+2; (viii) x+1, y+2, z+1.
(II) Poly[hexakis(µ2-4-chloro-3-nitrobenzoato-κ2O:O')bis(dimethyl sulfoxide-κO)dierbium(III)] top
Crystal data top
[Er2(C7H3ClNO4)6(C2H6OS)2]Z = 1
Mr = 1694.10F(000) = 826
Triclinic, P1Dx = 1.980 Mg m3
Hall symbol: -P 1Mo Kα radiation, λ = 0.71073 Å
a = 8.2408 (3) ÅCell parameters from 4326 reflections
b = 12.4040 (8) Åθ = 3.6–28.8°
c = 15.3409 (10) ŵ = 3.38 mm1
α = 111.443 (6)°T = 200 K
β = 98.063 (4)°Prism, colourless
γ = 96.684 (4)°0.25 × 0.12 × 0.04 mm
V = 1421.04 (14) Å3
Data collection top
Oxford Diffraction Gemini-S CCD-detector
diffractometer
5566 independent reflections
Radiation source: fine-focus sealed tube4814 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.055
Detector resolution: 16.077 pixels mm-1θmax = 26.0°, θmin = 3.1°
ω scansh = 1010
Absorption correction: multi-scan
(CrysAlis PRO; Agilent, 2013)
k = 1513
Tmin = 0.494, Tmax = 0.980l = 1618
10041 measured reflections
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.067Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.181H-atom parameters constrained
S = 1.06 w = 1/[σ2(Fo2) + (0.1243P)2]
where P = (Fo2 + 2Fc2)/3
5566 reflections(Δ/σ)max = 0.001
397 parametersΔρmax = 6.83 e Å3
0 restraintsΔρmin = 2.41 e Å3
Special details top

Geometry. Bond distances, angles etc. have been calculated using the rounded fractional coordinates. All su's are estimated from the variances of the (full) variance-covariance matrix. The cell e.s.d.'s are taken into account in the estimation of distances, angles and torsion angles

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Er10.24949 (4)0.48443 (3)0.46092 (2)0.0175 (1)
Cl4A0.6408 (5)0.7116 (4)0.0335 (3)0.0699 (16)
Cl4B0.2887 (4)0.1334 (3)0.0200 (2)0.0627 (10)
Cl4C0.3399 (4)0.1283 (2)0.5158 (2)0.0452 (9)
S10.0342 (3)0.4386 (2)0.23184 (16)0.0269 (7)
O110.1349 (8)0.3972 (6)0.2999 (5)0.0294 (19)
O11A0.6659 (7)0.5633 (6)0.4105 (4)0.0250 (19)
O11B0.6883 (7)0.3352 (5)0.4066 (4)0.0256 (17)
O11C0.0768 (7)0.3102 (6)0.4347 (5)0.027 (2)
O12A0.3978 (7)0.5899 (6)0.3912 (4)0.0259 (17)
O12B0.4342 (7)0.3679 (5)0.4117 (4)0.0239 (17)
O12C0.0361 (7)0.4170 (5)0.5538 (5)0.0231 (19)
O31A0.1634 (13)0.6185 (12)0.0929 (8)0.079 (5)
O31B0.0284 (11)0.0741 (13)0.1852 (10)0.128 (6)
O31C0.1757 (16)0.1537 (14)0.7463 (8)0.112 (6)
O32A0.3085 (15)0.5798 (10)0.0175 (7)0.075 (4)
O32B0.0018 (15)0.0583 (16)0.0725 (12)0.174 (7)
O32C0.4244 (12)0.0843 (11)0.6745 (8)0.074 (4)
N3A0.2942 (15)0.6108 (9)0.0664 (7)0.050 (4)
N3B0.0575 (12)0.0190 (9)0.1417 (8)0.050 (3)
N3C0.2816 (13)0.1149 (8)0.6759 (7)0.043 (3)
C1A0.5617 (11)0.6222 (8)0.2856 (6)0.023 (2)
C1B0.4672 (11)0.1949 (8)0.2879 (6)0.023 (3)
C1C0.0974 (10)0.2075 (8)0.5005 (6)0.023 (3)
C2A0.4248 (11)0.6144 (8)0.2190 (6)0.025 (3)
C2B0.2996 (11)0.1571 (9)0.2529 (7)0.029 (3)
C2C0.1560 (10)0.2099 (8)0.5823 (7)0.024 (3)
C3A0.4480 (14)0.6353 (9)0.1384 (7)0.036 (3)
C3B0.2401 (12)0.0547 (9)0.1717 (7)0.033 (3)
C3C0.2293 (12)0.1085 (9)0.5859 (7)0.031 (3)
C4A0.6027 (15)0.6725 (10)0.1270 (8)0.038 (3)
C4B0.3490 (13)0.0081 (9)0.1221 (7)0.036 (3)
C4C0.2491 (11)0.0009 (8)0.5095 (8)0.029 (3)
C5A0.7399 (13)0.6842 (10)0.1966 (8)0.038 (3)
C5B0.5197 (13)0.0283 (9)0.1574 (8)0.036 (3)
C5C0.1928 (13)0.0026 (8)0.4290 (8)0.034 (3)
C6A0.7202 (11)0.6582 (9)0.2742 (8)0.033 (3)
C6B0.5809 (12)0.1291 (8)0.2402 (7)0.028 (3)
C6C0.1147 (12)0.1003 (8)0.4245 (7)0.026 (3)
C110.0742 (13)0.3526 (11)0.1178 (7)0.041 (4)
C11A0.5391 (10)0.5897 (7)0.3704 (6)0.018 (2)
C11B0.5342 (10)0.3057 (7)0.3743 (6)0.018 (3)
C11C0.0137 (10)0.3191 (8)0.4954 (6)0.021 (3)
C120.1761 (12)0.3732 (10)0.2168 (7)0.035 (3)
H2A0.315400.594900.228400.0300*
H2B0.223200.201300.284500.0350*
H2C0.144400.282500.635300.0280*
H5A0.848700.710600.189900.0460*
H5B0.595200.015800.124800.0430*
H5C0.207100.075400.376000.0400*
H6A0.814900.664800.320300.0400*
H6B0.697500.153400.264400.0340*
H6C0.072900.097100.369100.0310*
H1110.189200.378800.114500.0610*
H1120.002800.362500.067600.0610*
H1130.058000.269400.108800.0610*
H1210.217700.411400.275300.0530*
H1220.183200.289100.203500.0530*
H1230.243800.383000.163300.0530*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Er10.0131 (2)0.0219 (2)0.0184 (2)0.0064 (2)0.0031 (2)0.0079 (2)
Cl4A0.092 (3)0.105 (3)0.061 (2)0.055 (2)0.052 (2)0.063 (2)
Cl4B0.0548 (18)0.0484 (17)0.0474 (18)0.0099 (14)0.0065 (14)0.0183 (14)
Cl4C0.0525 (17)0.0285 (13)0.0578 (18)0.0038 (12)0.0126 (13)0.0231 (12)
S10.0227 (11)0.0357 (13)0.0211 (11)0.0059 (9)0.0017 (8)0.0105 (9)
O110.031 (3)0.031 (3)0.026 (4)0.016 (3)0.002 (3)0.009 (3)
O11A0.017 (3)0.035 (4)0.025 (3)0.010 (3)0.005 (2)0.012 (3)
O11B0.016 (3)0.033 (3)0.028 (3)0.005 (3)0.004 (2)0.012 (3)
O11C0.016 (3)0.035 (4)0.028 (4)0.000 (3)0.005 (3)0.012 (3)
O12A0.021 (3)0.035 (3)0.028 (3)0.008 (3)0.006 (3)0.018 (3)
O12B0.020 (3)0.026 (3)0.027 (3)0.010 (3)0.008 (2)0.009 (3)
O12C0.015 (3)0.017 (3)0.034 (4)0.005 (2)0.001 (2)0.007 (3)
O31A0.048 (6)0.135 (10)0.064 (7)0.021 (6)0.010 (5)0.057 (7)
O31B0.017 (4)0.158 (13)0.111 (10)0.001 (6)0.005 (5)0.052 (9)
O31C0.094 (9)0.168 (13)0.041 (6)0.061 (9)0.002 (6)0.035 (7)
O32A0.106 (8)0.081 (7)0.034 (5)0.026 (6)0.011 (5)0.025 (5)
O32B0.039 (6)0.176 (15)0.154 (14)0.001 (8)0.016 (7)0.092 (12)
O32C0.051 (6)0.119 (9)0.081 (7)0.017 (6)0.039 (5)0.064 (7)
N3A0.060 (7)0.058 (6)0.033 (6)0.020 (5)0.009 (5)0.022 (5)
N3B0.032 (5)0.055 (6)0.046 (6)0.008 (5)0.006 (4)0.004 (5)
N3C0.059 (6)0.035 (5)0.034 (5)0.001 (4)0.015 (5)0.014 (4)
C1A0.022 (4)0.027 (4)0.020 (4)0.005 (4)0.005 (3)0.010 (4)
C1B0.017 (4)0.027 (4)0.023 (5)0.005 (3)0.002 (3)0.007 (4)
C1C0.017 (4)0.026 (4)0.025 (5)0.004 (3)0.005 (3)0.010 (4)
C2A0.021 (4)0.032 (5)0.020 (4)0.006 (4)0.002 (3)0.009 (4)
C2B0.022 (5)0.033 (5)0.027 (5)0.008 (4)0.000 (4)0.007 (4)
C2C0.015 (4)0.028 (5)0.030 (5)0.001 (3)0.003 (3)0.015 (4)
C3A0.044 (6)0.036 (5)0.028 (5)0.012 (5)0.000 (4)0.014 (4)
C3B0.022 (5)0.032 (5)0.035 (6)0.003 (4)0.001 (4)0.007 (4)
C3C0.021 (5)0.047 (6)0.031 (5)0.013 (4)0.010 (4)0.020 (5)
C4A0.050 (6)0.047 (6)0.030 (5)0.018 (5)0.021 (5)0.023 (5)
C4B0.038 (6)0.034 (5)0.030 (5)0.003 (4)0.006 (4)0.007 (4)
C4C0.025 (5)0.023 (5)0.042 (6)0.004 (4)0.001 (4)0.022 (4)
C5A0.031 (5)0.050 (6)0.046 (7)0.014 (5)0.020 (5)0.027 (5)
C5B0.033 (5)0.034 (5)0.036 (6)0.013 (4)0.010 (4)0.004 (4)
C5C0.041 (6)0.020 (4)0.041 (6)0.008 (4)0.005 (5)0.014 (4)
C6A0.015 (4)0.045 (6)0.042 (6)0.007 (4)0.007 (4)0.018 (5)
C6B0.027 (5)0.031 (5)0.026 (5)0.012 (4)0.009 (4)0.008 (4)
C6C0.029 (5)0.019 (4)0.031 (5)0.002 (4)0.010 (4)0.011 (4)
C110.028 (5)0.069 (8)0.023 (5)0.014 (5)0.007 (4)0.014 (5)
C11A0.016 (4)0.024 (4)0.016 (4)0.001 (3)0.005 (3)0.009 (3)
C11B0.010 (4)0.021 (4)0.027 (5)0.007 (3)0.004 (3)0.012 (3)
C11C0.008 (4)0.029 (5)0.028 (5)0.006 (3)0.002 (3)0.016 (4)
C120.021 (5)0.048 (6)0.034 (6)0.002 (4)0.006 (4)0.014 (5)
Geometric parameters (Å, º) top
Er1—O112.306 (7)C1B—C6B1.419 (14)
Er1—O11C2.312 (8)C1B—C11B1.496 (13)
Er1—O12A2.317 (7)C1C—C2C1.398 (13)
Er1—O12B2.239 (6)C1C—C6C1.387 (14)
Er1—O12Ci2.287 (6)C1C—C11C1.507 (14)
Er1—O11Aii2.300 (6)C2A—C3A1.386 (14)
Er1—O11Bii2.348 (6)C2B—C3B1.390 (15)
Cl4A—C4A1.729 (13)C2C—C3C1.354 (16)
Cl4B—C4B1.714 (11)C3A—C4A1.361 (17)
Cl4C—C4C1.730 (11)C3B—C4B1.383 (15)
S1—O111.514 (8)C3C—C4C1.391 (15)
S1—C111.785 (10)C4A—C5A1.396 (16)
S1—C121.772 (11)C4B—C5B1.391 (15)
O11A—C11A1.274 (11)C4C—C5C1.367 (15)
O11B—C11B1.255 (10)C5A—C6A1.368 (16)
O11C—C11C1.255 (11)C5B—C6B1.394 (15)
O12A—C11A1.250 (10)C5C—C6C1.391 (15)
O12B—C11B1.249 (10)C2A—H2A0.9500
O12C—C11C1.271 (12)C2B—H2B0.9500
O31A—N3A1.206 (17)C2C—H2C0.9500
O31B—N3B1.151 (16)C5A—H5A0.9500
O31C—N3C1.191 (16)C5B—H5B0.9500
O32A—N3A1.229 (14)C5C—H5C0.9500
O32B—N3B1.13 (2)C6A—H6A0.9500
O32C—N3C1.188 (15)C6B—H6B0.9500
N3A—C3A1.480 (16)C6C—H6C0.9500
N3B—C3B1.474 (14)C11—H1110.9800
N3C—C3C1.481 (14)C11—H1120.9800
C1A—C2A1.380 (13)C11—H1130.9800
C1A—C6A1.386 (14)C12—H1210.9800
C1A—C11A1.524 (13)C12—H1220.9800
C1B—C2B1.369 (13)C12—H1230.9800
O11—Er1—O11C72.5 (3)N3C—C3C—C2C117.7 (9)
O11—Er1—O12A74.7 (2)N3C—C3C—C4C120.7 (10)
O11—Er1—O12B80.6 (2)C2C—C3C—C4C121.5 (9)
O11—Er1—O12Ci77.0 (3)Cl4A—C4A—C3A124.2 (9)
O11—Er1—O11Aii140.9 (3)Cl4A—C4A—C5A117.3 (9)
O11—Er1—O11Bii143.3 (2)C3A—C4A—C5A118.5 (11)
O11C—Er1—O12A145.4 (2)Cl4B—C4B—C3B124.4 (8)
O11C—Er1—O12B84.1 (2)Cl4B—C4B—C5B116.3 (8)
O11C—Er1—O12Ci94.7 (2)C3B—C4B—C5B119.3 (10)
O11Aii—Er1—O11C73.9 (2)Cl4C—C4C—C3C121.1 (8)
O11Bii—Er1—O11C130.3 (2)Cl4C—C4C—C5C119.7 (9)
O12A—Er1—O12B80.0 (2)C3C—C4C—C5C119.2 (10)
O12A—Er1—O12Ci88.4 (2)C4A—C5A—C6A121.0 (10)
O11Aii—Er1—O12A130.5 (2)C4B—C5B—C6B120.5 (10)
O11Bii—Er1—O12A83.5 (2)C4C—C5C—C6C120.1 (10)
O12B—Er1—O12Ci156.8 (2)C1A—C6A—C5A119.9 (9)
O11Aii—Er1—O12B76.7 (2)C1B—C6B—C5B119.3 (9)
O11Bii—Er1—O12B124.6 (2)C1C—C6C—C5C120.3 (9)
O11Aii—Er1—O12Ci125.3 (2)O11A—C11A—O12A127.7 (8)
O11Bii—Er1—O12Ci73.2 (2)O11A—C11A—C1A116.0 (7)
O11Aii—Er1—O11Bii75.2 (2)O12A—C11A—C1A116.3 (8)
O11—S1—C11103.9 (5)O11B—C11B—O12B121.6 (8)
O11—S1—C12106.0 (5)O11B—C11B—C1B119.8 (8)
C11—S1—C1299.3 (5)O12B—C11B—C1B118.6 (8)
Er1—O11—S1133.1 (4)O11C—C11C—O12C123.6 (9)
Er1ii—O11A—C11A140.3 (6)O11C—C11C—C1C118.1 (8)
Er1ii—O11B—C11B110.9 (5)O12C—C11C—C1C118.3 (8)
Er1—O11C—C11C113.9 (6)C1A—C2A—H2A120.00
Er1—O12A—C11A132.8 (6)C3A—C2A—H2A120.00
Er1—O12B—C11B172.3 (6)C1B—C2B—H2B120.00
Er1i—O12C—C11C128.2 (6)C3B—C2B—H2B120.00
O31A—N3A—O32A124.3 (12)C1C—C2C—H2C120.00
O31A—N3A—C3A118.5 (10)C3C—C2C—H2C120.00
O32A—N3A—C3A117.1 (12)C4A—C5A—H5A119.00
O31B—N3B—O32B118.3 (13)C6A—C5A—H5A120.00
O31B—N3B—C3B120.3 (12)C4B—C5B—H5B120.00
O32B—N3B—C3B121.2 (11)C6B—C5B—H5B120.00
O31C—N3C—O32C124.1 (12)C4C—C5C—H5C120.00
O31C—N3C—C3C116.7 (11)C6C—C5C—H5C120.00
O32C—N3C—C3C119.2 (10)C1A—C6A—H6A120.00
C2A—C1A—C6A119.6 (9)C5A—C6A—H6A120.00
C2A—C1A—C11A120.3 (8)C1B—C6B—H6B120.00
C6A—C1A—C11A120.1 (8)C5B—C6B—H6B120.00
C2B—C1B—C6B119.5 (9)C1C—C6C—H6C120.00
C2B—C1B—C11B121.6 (8)C5C—C6C—H6C120.00
C6B—C1B—C11B118.9 (8)S1—C11—H111109.00
C2C—C1C—C6C119.0 (9)S1—C11—H112109.00
C2C—C1C—C11C120.7 (8)S1—C11—H113109.00
C6C—C1C—C11C120.3 (8)H111—C11—H112109.00
C1A—C2A—C3A119.6 (9)H111—C11—H113110.00
C1B—C2B—C3B120.6 (9)H112—C11—H113110.00
C1C—C2C—C3C119.8 (9)S1—C12—H121109.00
N3A—C3A—C2A115.0 (10)S1—C12—H122109.00
N3A—C3A—C4A123.6 (10)S1—C12—H123109.00
C2A—C3A—C4A121.4 (10)H121—C12—H122110.00
N3B—C3B—C2B116.5 (9)H121—C12—H123109.00
N3B—C3B—C4B122.7 (10)H122—C12—H123109.00
C2B—C3B—C4B120.7 (9)
O11C—Er1—O11—S1123.8 (6)O31C—N3C—C3C—C2C58.0 (16)
O12A—Er1—O11—S167.4 (6)C6A—C1A—C11A—O11A20.4 (13)
O12B—Er1—O11—S1149.5 (6)C2A—C1A—C11A—O11A158.7 (9)
O12Ci—Er1—O11—S124.6 (5)C2A—C1A—C11A—O12A20.0 (13)
O11Aii—Er1—O11—S1155.6 (4)C2A—C1A—C6A—C5A0.8 (16)
O11Bii—Er1—O11—S111.7 (8)C11A—C1A—C6A—C5A178.3 (10)
O11—Er1—O11C—C11C136.0 (7)C11A—C1A—C2A—C3A175.0 (9)
O12A—Er1—O11C—C11C155.2 (6)C6A—C1A—C2A—C3A4.1 (15)
O12B—Er1—O11C—C11C142.1 (6)C6A—C1A—C11A—O12A160.9 (9)
O12Ci—Er1—O11C—C11C61.2 (6)C2B—C1B—C11B—O12B4.0 (14)
O11Aii—Er1—O11C—C11C64.2 (6)C2B—C1B—C11B—O11B177.2 (9)
O11Bii—Er1—O11C—C11C10.6 (7)C6B—C1B—C11B—O11B4.2 (14)
O11—Er1—O12A—C11A102.6 (8)C11B—C1B—C6B—C5B177.4 (9)
O11C—Er1—O12A—C11A83.6 (8)C2B—C1B—C6B—C5B1.2 (15)
O12B—Er1—O12A—C11A19.8 (7)C6B—C1B—C2B—C3B0.5 (16)
O12Ci—Er1—O12A—C11A179.6 (8)C11B—C1B—C2B—C3B179.1 (10)
O11Aii—Er1—O12A—C11A43.0 (8)C6B—C1B—C11B—O12B174.7 (9)
O11Bii—Er1—O12A—C11A107.2 (8)C6C—C1C—C11C—O11C18.6 (13)
O11—Er1—O12Ci—C11Ci162.8 (8)C2C—C1C—C11C—O11C160.3 (8)
O11C—Er1—O12Ci—C11Ci126.4 (8)C2C—C1C—C11C—O12C18.5 (12)
O12A—Er1—O12Ci—C11Ci88.1 (8)C11C—C1C—C2C—C3C179.3 (9)
O12B—Er1—O12Ci—C11Ci147.7 (7)C6C—C1C—C11C—O12C162.7 (9)
O11—Er1—O11Aii—C11Aii85.7 (10)C2C—C1C—C6C—C5C1.5 (14)
O11C—Er1—O11Aii—C11Aii117.2 (10)C6C—C1C—C2C—C3C0.5 (14)
O12A—Er1—O11Aii—C11Aii34.5 (11)C11C—C1C—C6C—C5C179.6 (9)
O12B—Er1—O11Aii—C11Aii29.6 (9)C1A—C2A—C3A—C4A5.3 (17)
O11—Er1—O11Bii—C11Bii118.1 (6)C1A—C2A—C3A—N3A173.0 (10)
O11C—Er1—O11Bii—C11Bii123.2 (6)C1B—C2B—C3B—C4B3.0 (17)
O12A—Er1—O11Bii—C11Bii64.8 (6)C1B—C2B—C3B—N3B177.8 (10)
O12B—Er1—O11Bii—C11Bii8.3 (7)C1C—C2C—C3C—N3C177.0 (9)
C11—S1—O11—Er1154.8 (6)C1C—C2C—C3C—C4C0.4 (15)
C12—S1—O11—Er1101.1 (6)C2A—C3A—C4A—Cl4A174.7 (9)
Er1ii—O11A—C11A—O12A5.6 (16)C2A—C3A—C4A—C5A2.9 (18)
Er1ii—O11A—C11A—C1A175.9 (7)N3A—C3A—C4A—C5A175.2 (11)
Er1ii—O11B—C11B—O12B0.5 (11)N3A—C3A—C4A—Cl4A7.2 (18)
Er1ii—O11B—C11B—C1B178.3 (7)N3B—C3B—C4B—C5B177.1 (11)
Er1—O11C—C11C—O12C14.1 (11)C2B—C3B—C4B—Cl4B178.6 (9)
Er1—O11C—C11C—C1C164.6 (6)C2B—C3B—C4B—C5B3.8 (17)
Er1—O12A—C11A—O11A27.7 (14)N3B—C3B—C4B—Cl4B0.6 (17)
Er1—O12A—C11A—C1A150.8 (6)N3C—C3C—C4C—Cl4C1.6 (14)
Er1i—O12C—C11C—O11C95.6 (9)N3C—C3C—C4C—C5C177.1 (10)
Er1i—O12C—C11C—C1C85.7 (9)C2C—C3C—C4C—Cl4C178.9 (8)
O32A—N3A—C3A—C2A150.4 (12)C2C—C3C—C4C—C5C0.2 (15)
O31A—N3A—C3A—C4A154.6 (14)Cl4A—C4A—C5A—C6A178.2 (10)
O32A—N3A—C3A—C4A27.9 (18)C3A—C4A—C5A—C6A0.5 (19)
O31A—N3A—C3A—C2A27.2 (17)Cl4B—C4B—C5B—C6B179.9 (9)
O32B—N3B—C3B—C4B5 (2)C3B—C4B—C5B—C6B2.0 (17)
O31B—N3B—C3B—C2B0.8 (19)Cl4C—C4C—C5C—C6C177.9 (8)
O31B—N3B—C3B—C4B179.9 (14)C3C—C4C—C5C—C6C0.9 (16)
O32B—N3B—C3B—C2B174.1 (16)C4A—C5A—C6A—C1A1.5 (18)
O32C—N3C—C3C—C4C62.2 (16)C4B—C5B—C6B—C1B0.5 (16)
O31C—N3C—C3C—C4C119.4 (14)C4C—C5C—C6C—C1C1.7 (16)
O32C—N3C—C3C—C2C120.3 (13)
Symmetry codes: (i) x, y+1, z+1; (ii) x+1, y+1, z+1.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C2A—H2A···S10.952.863.743 (10)155
C2B—H2B···O110.952.563.298 (13)135
C11—H111···Cl4Aiii0.982.793.486 (11)129
C12—H123···O32Aiv0.982.443.376 (15)158
Symmetry codes: (iii) x+1, y+1, z; (iv) x, y+1, z.
 

Acknowledgements

The author acknowledges support from the Science and Engineering Faculty, Queensland University of Technology.

References

First citationAgilent (2013). CrysAlis PRO. Agilent Technologies Ltd, Yarnton, England.  Google Scholar
First citationAltomare, A., Cascarano, G., Giacovazzo, C. & Guagliardi, A. (1993). J. Appl. Cryst. 26, 343–350.  CrossRef Web of Science IUCr Journals Google Scholar
First citationChadwick, K., Sadiq, G., Davey, R. J., Seaton, C. C., Pritchard, R. G. & Parkin, A. (2009). Cryst. Growth Des. 9, 1278–1279.  Web of Science CSD CrossRef CAS Google Scholar
First citationFarrugia, L. J. (2012). J. Appl. Cryst. 45, 849–854.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationGracin, S. & Fischer, A. (2005). Acta Cryst. E61, o1242–o1244.  Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
First citationIshida, H. & Fukunaga, T. (2003). Acta Cryst. E59, o1984–o1986.  Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
First citationSastri, V. S., Bünzli, J.-C., Ramachandra Rao, V., Rayudi, G. V. S. & Perumareddi, J. R. (2003). In Modern Aspects of Rare Earths and Their Complexes. Amsterdam: Elsevier.  Google Scholar
First citationSawase, H., Koizumi, Y., Suzuki, Y., Shimoi, M. & Ouchi, Z. (1984). Bull. Chem. Soc. Jpn, 57, 2730–2737.  CrossRef CAS Web of Science Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSmith, G. (2013). Acta Cryst. C69, 1472–1477.  Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
First citationSpek, A. L. (2009). Acta Cryst. D65, 148–155.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSun, H.-L., Ye, C.-H., Wang, X.-Y., Li, J.-R., Gao, S. & Yu, K.-B. (2004). J. Mol. Struct. 702, 77–83.  Web of Science CSD CrossRef CAS Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds