research communications
μ-aqua-μ-(pyrazine N,N′-dioxide)-κ2O:O-bis(diaquasodium) tetraphenylborate dihydrate pyrazine N,N′-dioxide monosolvate
of di-aChemistry Department, 520 North Main St., Meadville, PA 16335, USA, and bDepartment of Chemistry Mathematics and Physics, Clarion University, 840 Wood Street, Clarion, PA 16214, USA
*Correspondence e-mail: jknaust@clarion.edu
The search for novel lanthanide coordination networks using pyrazine N,N′-dioxide (pzdo, C4H4N2O2) as a structure-directing unit, led to the synthesis and the of the title compound, [Na2(C4H4N2O2)(H2O)6][B(C6H5)4]2·C4H4N2O2·2H2O. The is comprised of discrete [{Na(H2O)2}2(μ-H2O)2(μ-pzdo)]2+ cations and tetraphenylborate anions, as well as pzdo and H2O solvent molecules. The dinuclear cation is located about a twofold rotation axis, and the symmetry-related NaI atoms display a distorted square-pyramidal coordination sphere defined by two O atoms of terminal water ligands, two O atoms of bridging water ligands and one O atom of a bridging pzdo ligand. In the crystal, O—H⋯O hydrogen bonds link the dinuclear cation and solvent pzdo molecules (point-group symmetry -1) into rectangular grid-like layers parallel to the bc plane. Additional C—H⋯O, O—H⋯O, C—H⋯π and O—H⋯π interactions link the anion and solvent water molecules to the layers. The layers are further linked into a three-dimensional network through a combination of C—H⋯π and O—H⋯π hydrogen bonds involving the tetraphenylborate anion.
Keywords: crystal structure; sodium coordination compound; pyrazine N,N′-dioxide (pzdo); C—H⋯O interactions; O—H⋯O interactions; C—H⋯π interactions; O—H⋯π interactions.
CCDC reference: 1434594
1. Chemical context
The use of aromatic N,N′-dioxide ligands such as pyrazine N,N′-dioxide (pzdo) and 4,4′-pyridine-N,N′-dioxide (bpydo) in the synthesis of transition metal and lanthanide metal compounds with coordination networks has been of recent interest (Hill et al., 2005b; Ma et al., 2001; Mantero et al., 2006; Sun et al., 2004). The coordination modes and hydrogen-bonding modes of N,N′-dioxide ligands are flexible (Ma et al., 2001; Mantero et al., 2006). Structure prediction with these ligands can be difficult, in part due to their flexible bonding, but also due to the influences of the anion and solvent (Hill et al., 2005a; Mantero et al., 2006).
We have previously reported the structures of several three-dimensional coordination networks of the type {[Ln(pzdo)4](ClO4)3}n, with Ln = Nd (Quinn-Elmore et al., 2010a), Dy (Quinn-Elmore et al., 2010b), Ho (Buchner et al., 2010a), and Er (Buchner et al., 2010b), which all are isostructural to the previously reported La, Ce, Pr, Sm, Eu, Gd, Tb and Y coordination networks (Sun et al., 2004). In an attempt to synthesize a novel lanthanide coordination polymer with pzdo ligands and tetraphenylborate (BPh4−) anions, crystals of the title compound, [{Na(H2O)2}2(μ-H2O)2(μ-pzdo)][B(C6H5)4]2·2H2O·pzdo, were isolated instead.
2. Structural commentary
The I atom, half of a coordinating pzdo ligand, two terminal water ligands, one bridging water ligand, one tetraphenylborate anion, half of a solvent pzdo molecule and one solvent water molecule (Fig. 1). The NaI atom displays a distorted square-pyramidal coordination sphere defined by two O atoms of terminal water ligands, two O atoms of bridging water ligands and one O atom of the bridging pzdo ligand. The bridging water and pzdo ligands link two NaI atoms to form a dinuclear cation, [{Na(H2O)2}2(μ-H2O)2(μ-pzdo)]2+, that is located about a twofold rotation axis. The oxygen and nitrogen atoms of the coordinating pzdo ligand (O1, O2, N1, and N2) lie on a twofold rotation axis, and the solvent pzdo molecule (C3, C4, N3 O3) is located around an inversion center. The pzdo ligand bridges the NaI atoms in the less commonly seen end-on fashion, while the oxygen atom (O2) of the solvent pzdo molecule is involved in O—H⋯O hydrogen-bonding interactions with another [{Na(H2O)2}2(μ-H2O)2(μ-pzdo)]2+ cation.
of the title compound contains one Na3. Supramolecular features
Three unique C—H⋯O hydrogen-bonding interactions between the [{Na(H2O)2}2(μ-H2O)2(μ-pzdo)]2+ cations and pzdo solvent moieties generate rectangular grid-like layers parallel to the bc plane. These interactions involve the bridging water ligand and the solvent pzdo molecule (O4—H4A⋯O3), a terminal water ligand and the solvent pzdo molecule (O5—H5B⋯O3i), and the bridging water ligand and the coordinating pzdo ligand (O4—H4B⋯ O2iii) (see Table 1 for symmetry codes; Fig. 2). Additional interactions link the anion and solvent water molecule to the layer (Fig. 3.). The anion is linked through C—H⋯O and C—H⋯π interactions with the solvent pzdo molecule (C19—H19⋯O3iv and C2—H2⋯Cg3v). The solvent water molecule accepts two hydrogen bonds from coordinating water molecules (O5—H5A⋯O7 and O6—H6B⋯O7) and interacts with two anions through O—H⋯π interactions (O7—H7A⋯Cg2v and O7—H7B⋯ Cg1vii). While all of the aforementioned interactions occur within a layer, additional C—H⋯π and O—H⋯π interactions with the tetraphenylborate anions (C3—H3⋯Cg1i, O6—H6A⋯Cg4i, and C7—H7⋯Cg3vi) link the layers into a complex three-dimensional network (Table 1, Fig. 4).
4. Database survey
A survey of the Cambridge Structural Database (CSD, Version 5.36, November 2014; Groom & Allen, 2014) returned hits for 37 structures with pyrazine N,N'-dioxide. Three structures are reported for the pzdo molecule. Five structures are reported for pzdo as part of a Fourteen structures are reported where pzdo coordinates to a transition metal and acts as a bridging ligand in a coordination network. Twelve structures are reported where pzdo coordinates to a lanthanide metal and acts as a bridging ligand in a coordination network. In all 26 reported coordination networks, pzdo bridges metal atoms in an end-to-end fashion. Two structures for mixed metal (NaI/TbIII and NaI/ErIII) coordination networks with p-sulfonatocalix[4]arene are reported where the NaI cation is coordinated by a terminal pzdo ligand, and the structure of the mixed metal coordination network (NaI/LaIII) with sulfonatocalix[4]arene is reported where pzdo is included in the structure as a clathrate (Zheng et al., 2008). One final structure of note deposited after the November 2014 release of the CSD is that of a mixed metal (NaI/WV) coordination network where pzdo bridges NaI atoms in both end-to-end and end-on modes (Podgajny et al., 2014).
5. Synthesis and crystallization
Pyrazine-N,N′-dioxide was synthesized from pyrazine according to the method of Simpson et al. (1963). All other chemicals were obtained from commercial sources and used without further purification. Initially, NaBPh4 (0.0821 g, 0.240 mmol), pzdo (0.0171 g, 0.152 mmol) and 40%wt aqueous Ho(ClO4)3 (14.8 µl, 0.0201 mmol), were combined in 25 ml of methanol to form a cloudy solution, and colorless crystals of the title compound were obtained upon slow evaporation of the solvent. Further studies showed that crystals of the title compound can also be isolated in the absence of the lanthanide salt. In this case, NaBPh4 (0.0257 g, 0.0750 mmol) and pzdo (0.0171 g, 0.152 mmol) were combined in 12.5 ml methanol and 1.1 ml of water to form a cloudy solution which yielded colorless crystals of the title compound upon slow evaporation of the solvent.
6. Refinement
Crystal data, data collection and structure . All aromatic H atoms were positioned geometrically and refined using a riding model with C—H = 0.95 Å and with Uiso(H) = 1.2 times Ueq(C). The positions of water H atoms were located from difference Fourier maps and the O—H distances in the water molecules were restrained to 0.85 (2) Å. Uiso parameters of water H atoms were refined freely.
details are summarized in Table 2
|
Supporting information
CCDC reference: 1434594
https://doi.org/10.1107/S205698901502071X/wm5232sup1.cif
contains datablock I. DOI:Structure factors: contains datablock I. DOI: https://doi.org/10.1107/S205698901502071X/wm5232Isup2.hkl
Data collection: SMART (Bruker, 2007); cell
SAINT (Bruker, 2007); data reduction: SAINT (Bruker, 2007); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: X-SEED (Barbour, 2001); software used to prepare material for publication: X-SEED (Barbour, 2001).[Na2(C4H4N2O2)(H2O)6](BC24H20)2·C4H4N2O2·2H2O | F(000) = 2224 |
Mr = 1052.71 | Dx = 1.265 Mg m−3 |
Monoclinic, C2/c | Mo Kα radiation, λ = 0.71073 Å |
Hall symbol: -C 2yc | Cell parameters from 14931 reflections |
a = 20.4224 (9) Å | θ = 2.2–30.5° |
b = 10.1950 (4) Å | µ = 0.10 mm−1 |
c = 27.2349 (11) Å | T = 99 K |
β = 102.947 (1)° | Block, colorless |
V = 5526.3 (4) Å3 | 0.50 × 0.40 × 0.25 mm |
Z = 4 |
Bruker SMART APEX CCD diffractometer | 8464 independent reflections |
Radiation source: fine-focus sealed tube | 6996 reflections with I > 2σ(I) |
Graphite monochromator | Rint = 0.037 |
ω scans | θmax = 30.5°, θmin = 1.5° |
Absorption correction: multi-scan (SADABS; Bruker, 2001) | h = −29→29 |
Tmin = 0.894, Tmax = 1.000 | k = −14→14 |
32437 measured reflections | l = −37→38 |
Refinement on F2 | Primary atom site location: structure-invariant direct methods |
Least-squares matrix: full | Secondary atom site location: difference Fourier map |
R[F2 > 2σ(F2)] = 0.052 | Hydrogen site location: inferred from neighbouring sites |
wR(F2) = 0.140 | H atoms treated by a mixture of independent and constrained refinement |
S = 1.04 | w = 1/[σ2(Fo2) + (0.0739P)2 + 3.1014P] where P = (Fo2 + 2Fc2)/3 |
8464 reflections | (Δ/σ)max = 0.001 |
377 parameters | Δρmax = 0.48 e Å−3 |
8 restraints | Δρmin = −0.21 e Å−3 |
Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes. |
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger. |
x | y | z | Uiso*/Ueq | ||
Na1 | 0.57681 (3) | 0.53904 (5) | 0.27762 (2) | 0.02408 (12) | |
O1 | 0.5000 | 0.70101 (12) | 0.2500 | 0.0302 (3) | |
O2 | 0.5000 | 1.22491 (12) | 0.2500 | 0.0253 (3) | |
O3 | 0.48519 (5) | 0.52324 (10) | 0.09489 (3) | 0.0272 (2) | |
O4 | 0.52081 (5) | 0.44163 (9) | 0.19893 (4) | 0.0266 (2) | |
O5 | 0.61154 (5) | 0.62448 (11) | 0.35909 (4) | 0.0316 (2) | |
O6 | 0.68618 (6) | 0.53238 (14) | 0.27608 (5) | 0.0441 (3) | |
O7 | 0.75011 (6) | 0.56103 (14) | 0.38213 (5) | 0.0434 (3) | |
N1 | 0.5000 | 0.82883 (14) | 0.2500 | 0.0210 (3) | |
N2 | 0.5000 | 1.09705 (14) | 0.2500 | 0.0195 (3) | |
N3 | 0.49248 (5) | 0.51216 (10) | 0.04872 (4) | 0.0196 (2) | |
C1 | 0.53467 (6) | 0.89566 (12) | 0.29054 (5) | 0.0214 (2) | |
H1 | 0.5591 | 0.8492 | 0.3191 | 0.026* | |
C2 | 0.53468 (6) | 1.02966 (12) | 0.29060 (5) | 0.0209 (2) | |
H2 | 0.5591 | 1.0760 | 0.3192 | 0.025* | |
C3 | 0.54999 (6) | 0.55124 (12) | 0.03612 (5) | 0.0215 (2) | |
H3 | 0.5855 | 0.5872 | 0.0612 | 0.026* | |
C4 | 0.44262 (6) | 0.46070 (12) | 0.01235 (5) | 0.0212 (2) | |
H4 | 0.4021 | 0.4326 | 0.0207 | 0.025* | |
C5 | 0.28988 (5) | 0.68369 (11) | 0.39692 (4) | 0.0165 (2) | |
C6 | 0.29439 (6) | 0.74729 (12) | 0.44320 (4) | 0.0204 (2) | |
H6 | 0.2623 | 0.7264 | 0.4624 | 0.024* | |
C7 | 0.34389 (6) | 0.83982 (13) | 0.46232 (5) | 0.0240 (2) | |
H7 | 0.3450 | 0.8808 | 0.4938 | 0.029* | |
C8 | 0.39154 (6) | 0.87171 (13) | 0.43493 (5) | 0.0257 (3) | |
H8 | 0.4258 | 0.9337 | 0.4478 | 0.031* | |
C9 | 0.38860 (6) | 0.81212 (13) | 0.38855 (5) | 0.0249 (3) | |
H9 | 0.4208 | 0.8336 | 0.3695 | 0.030* | |
C10 | 0.33829 (6) | 0.72066 (12) | 0.37003 (4) | 0.0202 (2) | |
H10 | 0.3367 | 0.6819 | 0.3381 | 0.024* | |
C11 | 0.28603 (6) | 0.43432 (11) | 0.40579 (4) | 0.0176 (2) | |
C12 | 0.28816 (6) | 0.39219 (12) | 0.45536 (4) | 0.0203 (2) | |
H12 | 0.2577 | 0.4301 | 0.4731 | 0.024* | |
C13 | 0.33308 (6) | 0.29710 (13) | 0.47952 (5) | 0.0244 (2) | |
H13 | 0.3325 | 0.2711 | 0.5129 | 0.029* | |
C14 | 0.37864 (7) | 0.24013 (13) | 0.45489 (5) | 0.0281 (3) | |
H14 | 0.4094 | 0.1754 | 0.4712 | 0.034* | |
C15 | 0.37846 (6) | 0.27962 (13) | 0.40590 (5) | 0.0264 (3) | |
H15 | 0.4095 | 0.2421 | 0.3886 | 0.032* | |
C16 | 0.33281 (6) | 0.37423 (12) | 0.38211 (5) | 0.0217 (2) | |
H16 | 0.3333 | 0.3990 | 0.3486 | 0.026* | |
C17 | 0.16906 (6) | 0.57084 (11) | 0.39863 (4) | 0.0164 (2) | |
C18 | 0.13473 (6) | 0.69104 (11) | 0.39796 (4) | 0.0186 (2) | |
H18 | 0.1562 | 0.7692 | 0.3909 | 0.022* | |
C19 | 0.07050 (6) | 0.69938 (12) | 0.40727 (4) | 0.0215 (2) | |
H19 | 0.0487 | 0.7820 | 0.4058 | 0.026* | |
C20 | 0.03822 (6) | 0.58705 (13) | 0.41870 (5) | 0.0232 (2) | |
H20 | −0.0052 | 0.5927 | 0.4257 | 0.028* | |
C21 | 0.07032 (6) | 0.46643 (12) | 0.41976 (5) | 0.0211 (2) | |
H21 | 0.0488 | 0.3889 | 0.4275 | 0.025* | |
C22 | 0.13431 (6) | 0.45933 (11) | 0.40948 (4) | 0.0183 (2) | |
H22 | 0.1551 | 0.3759 | 0.4098 | 0.022* | |
C23 | 0.21392 (6) | 0.54690 (11) | 0.31871 (4) | 0.0181 (2) | |
C24 | 0.19493 (6) | 0.66032 (12) | 0.28925 (4) | 0.0209 (2) | |
H24 | 0.2043 | 0.7439 | 0.3047 | 0.025* | |
C25 | 0.16291 (6) | 0.65426 (14) | 0.23831 (5) | 0.0254 (3) | |
H25 | 0.1507 | 0.7329 | 0.2198 | 0.030* | |
C26 | 0.14892 (7) | 0.53359 (14) | 0.21466 (5) | 0.0273 (3) | |
H26 | 0.1270 | 0.5290 | 0.1800 | 0.033* | |
C27 | 0.16730 (7) | 0.41963 (14) | 0.24223 (5) | 0.0268 (3) | |
H27 | 0.1583 | 0.3365 | 0.2264 | 0.032* | |
C28 | 0.19901 (6) | 0.42686 (12) | 0.29327 (5) | 0.0220 (2) | |
H28 | 0.2109 | 0.3477 | 0.3115 | 0.026* | |
B1 | 0.23971 (6) | 0.55838 (12) | 0.37996 (5) | 0.0161 (2) | |
H4A | 0.5221 (12) | 0.451 (2) | 0.1677 (6) | 0.057 (7)* | |
H5A | 0.6528 (8) | 0.605 (2) | 0.3724 (8) | 0.053 (6)* | |
H6A | 0.7091 (14) | 0.514 (3) | 0.2547 (9) | 0.090 (9)* | |
H5B | 0.5879 (10) | 0.597 (2) | 0.3788 (8) | 0.059 (7)* | |
H4B | 0.5158 (11) | 0.3594 (16) | 0.2028 (8) | 0.059 (6)* | |
H7A | 0.7775 (12) | 0.625 (2) | 0.3922 (10) | 0.086 (9)* | |
H6B | 0.7144 (13) | 0.543 (3) | 0.3054 (8) | 0.082 (9)* | |
H7B | 0.7749 (15) | 0.496 (2) | 0.3939 (12) | 0.101 (11)* |
U11 | U22 | U33 | U12 | U13 | U23 | |
Na1 | 0.0223 (2) | 0.0254 (3) | 0.0240 (3) | 0.00197 (19) | 0.00423 (19) | 0.00052 (19) |
O1 | 0.0338 (7) | 0.0136 (6) | 0.0365 (7) | 0.000 | −0.0068 (6) | 0.000 |
O2 | 0.0339 (7) | 0.0137 (5) | 0.0280 (6) | 0.000 | 0.0063 (5) | 0.000 |
O3 | 0.0331 (5) | 0.0334 (5) | 0.0162 (4) | 0.0025 (4) | 0.0080 (4) | −0.0001 (3) |
O4 | 0.0377 (5) | 0.0205 (4) | 0.0220 (4) | 0.0011 (4) | 0.0075 (4) | 0.0000 (3) |
O5 | 0.0267 (5) | 0.0407 (6) | 0.0266 (5) | −0.0035 (4) | 0.0046 (4) | 0.0008 (4) |
O6 | 0.0254 (5) | 0.0644 (8) | 0.0446 (7) | −0.0014 (5) | 0.0124 (5) | −0.0088 (6) |
O7 | 0.0276 (6) | 0.0469 (7) | 0.0502 (7) | 0.0008 (5) | −0.0030 (5) | 0.0040 (6) |
N1 | 0.0220 (7) | 0.0159 (6) | 0.0225 (7) | 0.000 | −0.0004 (5) | 0.000 |
N2 | 0.0217 (7) | 0.0156 (6) | 0.0211 (7) | 0.000 | 0.0046 (5) | 0.000 |
N3 | 0.0221 (5) | 0.0196 (5) | 0.0168 (4) | 0.0010 (4) | 0.0037 (4) | 0.0005 (3) |
C1 | 0.0214 (5) | 0.0211 (6) | 0.0193 (5) | −0.0001 (4) | −0.0009 (4) | 0.0006 (4) |
C2 | 0.0221 (5) | 0.0205 (5) | 0.0183 (5) | −0.0013 (4) | 0.0009 (4) | −0.0007 (4) |
C3 | 0.0206 (5) | 0.0217 (5) | 0.0203 (5) | −0.0036 (4) | 0.0003 (4) | 0.0004 (4) |
C4 | 0.0180 (5) | 0.0238 (6) | 0.0212 (5) | −0.0020 (4) | 0.0032 (4) | 0.0021 (4) |
C5 | 0.0155 (5) | 0.0173 (5) | 0.0158 (5) | 0.0009 (4) | 0.0012 (4) | 0.0021 (4) |
C6 | 0.0200 (5) | 0.0217 (5) | 0.0192 (5) | −0.0012 (4) | 0.0037 (4) | −0.0014 (4) |
C7 | 0.0254 (6) | 0.0225 (6) | 0.0216 (6) | −0.0020 (4) | 0.0001 (4) | −0.0035 (4) |
C8 | 0.0233 (6) | 0.0222 (6) | 0.0283 (6) | −0.0057 (5) | −0.0011 (5) | 0.0019 (5) |
C9 | 0.0207 (5) | 0.0278 (6) | 0.0256 (6) | −0.0041 (5) | 0.0039 (4) | 0.0069 (5) |
C10 | 0.0205 (5) | 0.0229 (6) | 0.0167 (5) | −0.0013 (4) | 0.0028 (4) | 0.0026 (4) |
C11 | 0.0165 (5) | 0.0165 (5) | 0.0193 (5) | −0.0002 (4) | 0.0031 (4) | 0.0009 (4) |
C12 | 0.0192 (5) | 0.0210 (5) | 0.0209 (5) | 0.0006 (4) | 0.0052 (4) | 0.0025 (4) |
C13 | 0.0256 (6) | 0.0237 (6) | 0.0231 (6) | 0.0010 (5) | 0.0035 (5) | 0.0066 (4) |
C14 | 0.0271 (6) | 0.0226 (6) | 0.0328 (7) | 0.0076 (5) | 0.0030 (5) | 0.0053 (5) |
C15 | 0.0246 (6) | 0.0253 (6) | 0.0293 (6) | 0.0074 (5) | 0.0064 (5) | −0.0008 (5) |
C16 | 0.0217 (5) | 0.0219 (6) | 0.0219 (5) | 0.0028 (4) | 0.0058 (4) | 0.0005 (4) |
C17 | 0.0165 (5) | 0.0184 (5) | 0.0139 (5) | 0.0009 (4) | 0.0025 (4) | −0.0006 (4) |
C18 | 0.0193 (5) | 0.0177 (5) | 0.0179 (5) | 0.0001 (4) | 0.0021 (4) | −0.0011 (4) |
C19 | 0.0202 (5) | 0.0224 (6) | 0.0210 (5) | 0.0050 (4) | 0.0028 (4) | −0.0024 (4) |
C20 | 0.0158 (5) | 0.0311 (6) | 0.0231 (6) | 0.0021 (4) | 0.0050 (4) | 0.0006 (5) |
C21 | 0.0179 (5) | 0.0240 (6) | 0.0213 (5) | −0.0022 (4) | 0.0037 (4) | 0.0034 (4) |
C22 | 0.0180 (5) | 0.0188 (5) | 0.0176 (5) | 0.0002 (4) | 0.0026 (4) | 0.0008 (4) |
C23 | 0.0178 (5) | 0.0205 (5) | 0.0168 (5) | −0.0001 (4) | 0.0055 (4) | −0.0008 (4) |
C24 | 0.0212 (5) | 0.0228 (6) | 0.0182 (5) | 0.0005 (4) | 0.0036 (4) | 0.0001 (4) |
C25 | 0.0235 (6) | 0.0321 (7) | 0.0198 (6) | 0.0011 (5) | 0.0032 (4) | 0.0035 (5) |
C26 | 0.0246 (6) | 0.0402 (8) | 0.0165 (5) | −0.0029 (5) | 0.0032 (4) | −0.0028 (5) |
C27 | 0.0280 (6) | 0.0308 (7) | 0.0218 (6) | −0.0050 (5) | 0.0063 (5) | −0.0079 (5) |
C28 | 0.0228 (6) | 0.0238 (6) | 0.0198 (5) | −0.0004 (4) | 0.0054 (4) | −0.0023 (4) |
B1 | 0.0162 (5) | 0.0166 (5) | 0.0152 (5) | 0.0000 (4) | 0.0033 (4) | −0.0004 (4) |
Na1—O6 | 2.2444 (13) | C9—C10 | 1.3954 (17) |
Na1—O1 | 2.2857 (10) | C9—H9 | 0.9500 |
Na1—O5 | 2.3410 (12) | C10—H10 | 0.9500 |
Na1—O4 | 2.4059 (11) | C11—C16 | 1.4070 (16) |
Na1—O4i | 2.4371 (12) | C11—C12 | 1.4083 (16) |
O1—N1 | 1.3031 (19) | C11—B1 | 1.6404 (17) |
O1—Na1i | 2.2857 (10) | C12—C13 | 1.3942 (17) |
O2—N2 | 1.3035 (18) | C12—H12 | 0.9500 |
O3—N3 | 1.3040 (13) | C13—C14 | 1.3903 (19) |
O4—Na1i | 2.4371 (12) | C13—H13 | 0.9500 |
O4—H4A | 0.862 (16) | C14—C15 | 1.3927 (19) |
O4—H4B | 0.854 (16) | C14—H14 | 0.9500 |
O5—H5A | 0.863 (15) | C15—C16 | 1.3959 (17) |
O5—H5B | 0.844 (16) | C15—H15 | 0.9500 |
O6—H6A | 0.844 (17) | C16—H16 | 0.9500 |
O6—H6B | 0.880 (17) | C17—C22 | 1.4062 (16) |
O7—H7A | 0.861 (17) | C17—C18 | 1.4100 (16) |
O7—H7B | 0.855 (18) | C17—B1 | 1.6386 (17) |
N1—C1i | 1.3544 (14) | C18—C19 | 1.3932 (16) |
N1—C1 | 1.3544 (14) | C18—H18 | 0.9500 |
N2—C2i | 1.3583 (14) | C19—C20 | 1.3910 (18) |
N2—C2 | 1.3584 (14) | C19—H19 | 0.9500 |
N3—C3 | 1.3552 (16) | C20—C21 | 1.3909 (18) |
N3—C4 | 1.3570 (15) | C20—H20 | 0.9500 |
C1—C2 | 1.3661 (17) | C21—C22 | 1.3982 (16) |
C1—H1 | 0.9500 | C21—H21 | 0.9500 |
C2—H2 | 0.9500 | C22—H22 | 0.9500 |
C3—C4ii | 1.3673 (17) | C23—C28 | 1.4056 (17) |
C3—H3 | 0.9500 | C23—C24 | 1.4113 (16) |
C4—C3ii | 1.3672 (17) | C23—B1 | 1.6373 (17) |
C4—H4 | 0.9500 | C24—C25 | 1.3962 (16) |
C5—C6 | 1.4020 (16) | C24—H24 | 0.9500 |
C5—C10 | 1.4073 (16) | C25—C26 | 1.3884 (19) |
C5—B1 | 1.6381 (17) | C25—H25 | 0.9500 |
C6—C7 | 1.3953 (17) | C26—C27 | 1.389 (2) |
C6—H6 | 0.9500 | C26—H26 | 0.9500 |
C7—C8 | 1.3908 (19) | C27—C28 | 1.3978 (17) |
C7—H7 | 0.9500 | C27—H27 | 0.9500 |
C8—C9 | 1.3909 (19) | C28—H28 | 0.9500 |
C8—H8 | 0.9500 | ||
O6—Na1—O1 | 128.92 (5) | C9—C10—H10 | 118.8 |
O6—Na1—O5 | 86.41 (5) | C5—C10—H10 | 118.8 |
O1—Na1—O5 | 94.76 (4) | C16—C11—C12 | 115.36 (10) |
O6—Na1—O4 | 104.32 (5) | C16—C11—B1 | 121.65 (10) |
O1—Na1—O4 | 81.42 (3) | C12—C11—B1 | 122.49 (10) |
O5—Na1—O4 | 168.66 (4) | C13—C12—C11 | 122.70 (11) |
O6—Na1—O4i | 150.29 (5) | C13—C12—H12 | 118.7 |
O1—Na1—O4i | 80.75 (3) | C11—C12—H12 | 118.7 |
O5—Na1—O4i | 89.72 (4) | C14—C13—C12 | 120.24 (12) |
O4—Na1—O4i | 79.15 (4) | C14—C13—H13 | 119.9 |
N1—O1—Na1i | 136.26 (3) | C12—C13—H13 | 119.9 |
N1—O1—Na1 | 136.26 (3) | C13—C14—C15 | 118.88 (12) |
Na1i—O1—Na1 | 87.49 (5) | C13—C14—H14 | 120.6 |
Na1—O4—Na1i | 81.48 (4) | C15—C14—H14 | 120.6 |
Na1—O4—H4A | 136.1 (15) | C14—C15—C16 | 120.17 (12) |
Na1i—O4—H4A | 115.0 (15) | C14—C15—H15 | 119.9 |
Na1—O4—H4B | 109.9 (15) | C16—C15—H15 | 119.9 |
Na1i—O4—H4B | 103.9 (15) | C15—C16—C11 | 122.66 (11) |
H4A—O4—H4B | 105 (2) | C15—C16—H16 | 118.7 |
Na1—O5—H5A | 111.9 (15) | C11—C16—H16 | 118.7 |
Na1—O5—H5B | 112.6 (16) | C22—C17—C18 | 115.62 (10) |
H5A—O5—H5B | 108 (2) | C22—C17—B1 | 121.57 (10) |
Na1—O6—H6A | 137 (2) | C18—C17—B1 | 122.22 (10) |
Na1—O6—H6B | 115.5 (19) | C19—C18—C17 | 122.44 (11) |
H6A—O6—H6B | 108 (3) | C19—C18—H18 | 118.8 |
H7A—O7—H7B | 100 (3) | C17—C18—H18 | 118.8 |
O1—N1—C1i | 120.20 (7) | C20—C19—C18 | 120.22 (11) |
O1—N1—C1 | 120.20 (7) | C20—C19—H19 | 119.9 |
C1i—N1—C1 | 119.59 (15) | C18—C19—H19 | 119.9 |
O2—N2—C2i | 120.38 (7) | C21—C20—C19 | 119.19 (11) |
O2—N2—C2 | 120.38 (7) | C21—C20—H20 | 120.4 |
C2i—N2—C2 | 119.24 (14) | C19—C20—H20 | 120.4 |
O3—N3—C3 | 120.75 (10) | C20—C21—C22 | 119.93 (11) |
O3—N3—C4 | 120.55 (10) | C20—C21—H21 | 120.0 |
C3—N3—C4 | 118.69 (10) | C22—C21—H21 | 120.0 |
N1—C1—C2 | 120.25 (11) | C21—C22—C17 | 122.59 (11) |
N1—C1—H1 | 119.9 | C21—C22—H22 | 118.7 |
C2—C1—H1 | 119.9 | C17—C22—H22 | 118.7 |
N2—C2—C1 | 120.33 (11) | C28—C23—C24 | 115.57 (11) |
N2—C2—H2 | 119.8 | C28—C23—B1 | 123.30 (10) |
C1—C2—H2 | 119.8 | C24—C23—B1 | 120.36 (10) |
N3—C3—C4ii | 120.51 (11) | C25—C24—C23 | 122.44 (12) |
N3—C3—H3 | 119.7 | C25—C24—H24 | 118.8 |
C4ii—C3—H3 | 119.7 | C23—C24—H24 | 118.8 |
N3—C4—C3ii | 120.80 (11) | C26—C25—C24 | 120.14 (12) |
N3—C4—H4 | 119.6 | C26—C25—H25 | 119.9 |
C3ii—C4—H4 | 119.6 | C24—C25—H25 | 119.9 |
C6—C5—C10 | 115.58 (10) | C25—C26—C27 | 119.20 (12) |
C6—C5—B1 | 121.67 (10) | C25—C26—H26 | 120.4 |
C10—C5—B1 | 122.01 (10) | C27—C26—H26 | 120.4 |
C7—C6—C5 | 122.97 (11) | C26—C27—C28 | 120.17 (12) |
C7—C6—H6 | 118.5 | C26—C27—H27 | 119.9 |
C5—C6—H6 | 118.5 | C28—C27—H27 | 119.9 |
C8—C7—C6 | 119.57 (12) | C27—C28—C23 | 122.48 (12) |
C8—C7—H7 | 120.2 | C27—C28—H28 | 118.8 |
C6—C7—H7 | 120.2 | C23—C28—H28 | 118.8 |
C9—C8—C7 | 119.46 (11) | C23—B1—C5 | 112.40 (9) |
C9—C8—H8 | 120.3 | C23—B1—C17 | 102.54 (9) |
C7—C8—H8 | 120.3 | C5—B1—C17 | 113.00 (9) |
C8—C9—C10 | 119.92 (12) | C23—B1—C11 | 113.87 (9) |
C8—C9—H9 | 120.0 | C5—B1—C11 | 102.49 (9) |
C10—C9—H9 | 120.0 | C17—B1—C11 | 112.96 (9) |
C9—C10—C5 | 122.48 (11) |
Symmetry codes: (i) −x+1, y, −z+1/2; (ii) −x+1, −y+1, −z. |
Cg1, Cg2, Cg3 and Cg4 are the centroids of the C5–C10, C11–C16, C17–C22 and C23–C28 rings, respectively. |
D—H···A | D—H | H···A | D···A | D—H···A |
O4—H4A···O3 | 0.86 (2) | 2.09 (2) | 2.8855 (13) | 153 (2) |
O4—H4B···O2iii | 0.85 (2) | 1.95 (2) | 2.6948 (14) | 144 (2) |
O5—H5B···O3i | 0.84 (2) | 1.95 (2) | 2.7655 (14) | 163 (2) |
O5—H5A···O7 | 0.86 (2) | 2.00 (2) | 2.8329 (16) | 163 (2) |
O6—H6B···O7 | 0.88 (2) | 2.06 (2) | 2.9055 (19) | 160 (3) |
C19—H19···O3iv | 0.95 | 2.55 | 3.4884 (16) | 168 |
C2—H2···Cg3v | 0.95 | 2.40 | 3.2435 (14) | 148 |
C3—H3···Cg1i | 0.95 | 2.46 | 3.2788 (14) | 144 |
O6—H6A···Cg4i | 0.85 (3) | 2.45 (3) | 3.1713 (14) | 144 (2) |
C7—H7···Cg3vi | 0.95 | 2.66 | 3.5365 (14) | 153 |
O7—H7A···Cg2v | 0.86 (2) | 2.55 (2) | 3.3871 (15) | 165 (2) |
O7—H7B···Cg1vii | 0.85 (3) | 2.59 (2) | 3.4337 (15) | 171 (3) |
Symmetry codes: (i) −x+1, y, −z+1/2; (iii) x, y−1, z; (iv) −x+1/2, y+1/2, −z+1/2; (v) x+1/2, y+1/2, z; (vi) −x+1/2, −y+3/2, −z+1; (vii) x+1/2, y−1/2, z. |
Acknowledgements
The authors are thankful to Clarion University and Allegheny College for providing funding in support of this research. The diffractometer was funded by the NSF (grant No. 0087210), the Ohio Board of Regents (grant No. CAP-491) and by Youngstown State University. The authors would also like to acknowledge Matthias Zeller, Senior Scientist and Crystallographer at the STaRBURSTT CyberInstrumentation Consortium, for assistance with the structure analysis.
References
Barbour, L. J. (2001). J. Supramol. Chem. 1, 189–191. CrossRef CAS Google Scholar
Bruker (2001). SADABS. Bruker AXS Inc., Madison, Wisconsin, USA. Google Scholar
Bruker (2007). SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA. Google Scholar
Buchner, J. D., Quinn-Elmore, B. G., Beach, K. B. & Knaust, J. M. (2010a). Acta Cryst. E66, m1110–m1111. Web of Science CSD CrossRef IUCr Journals Google Scholar
Buchner, J. D., Quinn-Elmore, B. G., Beach, K. B. & Knaust, J. M. (2010b). Acta Cryst. E66, m1108–m1109. Web of Science CSD CrossRef IUCr Journals Google Scholar
Groom, C. R. & Allen, F. H. (2014). Angew. Chem. Int. Ed. 53, 662–671. Web of Science CSD CrossRef CAS Google Scholar
Hill, R. J., Long, D. L., Champness, N. R., Hubberstey, P. & Schröder, M. (2005a). Acc. Chem. Res. 38, 335–348. Web of Science CrossRef PubMed CAS Google Scholar
Hill, R. J., Long, D. L., Hubberstey, P., Schröder, M. & Champness, N. R. (2005b). J. Solid State Chem. 178, 2414–2419. Web of Science CrossRef CAS Google Scholar
Ma, B., Sun, H., Gao, S. & Xu, G. (2001). Inorg. Chem. 40, 6247–6253. Web of Science CSD CrossRef PubMed CAS Google Scholar
Mantero, D. G., Neels, A. & Stoeckli-Evans, H. (2006). Inorg. Chem. 45, 3287–3294. Web of Science PubMed CAS Google Scholar
Podgajny, R., Pinkowicz, D., Czarnecki, B., Kozieł, M., Chorąży, S., Wis, M., Nitek, W., Rams, M. & Sieklucka, B. (2014). Cryst. Growth Des. 14, 4030–4040. Web of Science CSD CrossRef CAS Google Scholar
Quinn-Elmore, B. G., Buchner, J. D., Beach, K. B. & Knaust, J. M. (2010a). Acta Cryst. E66, m1104–m1105. Web of Science CSD CrossRef IUCr Journals Google Scholar
Quinn-Elmore, B. G., Buchner, J. D., Beach, K. B. & Knaust, J. M. (2010b). Acta Cryst. E66, m1106–m1107. Web of Science CSD CrossRef IUCr Journals Google Scholar
Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. Web of Science CrossRef CAS IUCr Journals Google Scholar
Simpson, P. G., Vinciguerra, A. & Quagliano, J. V. (1963). Inorg. Chem. 2, 282–286. CrossRef CAS Web of Science Google Scholar
Sun, H. L., Gao, S., Ma, B. Q., Chang, F. & Fu, W. F. (2004). Microporous Mesoporous Mater. 73, 89–95. Web of Science CSD CrossRef CAS Google Scholar
Zheng, G., Zhang, F., Li, Y. & Zhang, H. (2008). CrystEngComm, 10, 1560–1564. Web of Science CSD CrossRef CAS Google Scholar
This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.