research communications\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Crystal structure of di-μ-aqua-μ-(pyrazine N,N′-dioxide)-κ2O:O-bis­­(di­aqua­sodium) tetra­phenyl­borate dihydrate pyrazine N,N′-dioxide monosolvate

aChemistry Department, 520 North Main St., Meadville, PA 16335, USA, and bDepartment of Chemistry Mathematics and Physics, Clarion University, 840 Wood Street, Clarion, PA 16214, USA
*Correspondence e-mail: jknaust@clarion.edu

Edited by M. Weil, Vienna University of Technology, Austria (Received 27 October 2015; accepted 1 November 2015; online 7 November 2015)

The search for novel lanthanide coordination networks using pyrazine N,N′-dioxide (pzdo, C4H4N2O2) as a structure-directing unit, led to the synthesis and the structure determination of the title compound, [Na2(C4H4N2O2)(H2O)6][B(C6H5)4]2·C4H4N2O2·2H2O. The crystal structure is comprised of discrete [{Na(H2O)2}2(μ-H2O)2(μ-pzdo)]2+ cations and tetra­phenyl­borate anions, as well as pzdo and H2O solvent mol­ecules. The dinuclear cation is located about a twofold rotation axis, and the symmetry-related NaI atoms display a distorted square-pyramidal coordination sphere defined by two O atoms of terminal water ligands, two O atoms of bridging water ligands and one O atom of a bridging pzdo ligand. In the crystal, O—H⋯O hydrogen bonds link the dinuclear cation and solvent pzdo mol­ecules (point-group symmetry -1) into rectangular grid-like layers parallel to the bc plane. Additional C—H⋯O, O—H⋯O, C—H⋯π and O—H⋯π inter­actions link the anion and solvent water mol­ecules to the layers. The layers are further linked into a three-dimensional network through a combination of C—H⋯π and O—H⋯π hydrogen bonds involving the tetra­phenyl­borate anion.

1. Chemical context

The use of aromatic N,N′-dioxide ligands such as pyrazine N,N′-dioxide (pzdo) and 4,4′-pyridine-N,N′-dioxide (bpydo) in the synthesis of transition metal and lanthanide metal compounds with coordination networks has been of recent inter­est (Hill et al., 2005b[Hill, R. J., Long, D. L., Hubberstey, P., Schröder, M. & Champness, N. R. (2005b). J. Solid State Chem. 178, 2414-2419.]; Ma et al., 2001[Ma, B., Sun, H., Gao, S. & Xu, G. (2001). Inorg. Chem. 40, 6247-6253.]; Mantero et al., 2006[Mantero, D. G., Neels, A. & Stoeckli-Evans, H. (2006). Inorg. Chem. 45, 3287-3294.]; Sun et al., 2004[Sun, H. L., Gao, S., Ma, B. Q., Chang, F. & Fu, W. F. (2004). Microporous Mesoporous Mater. 73, 89-95.]). The coordination modes and hydrogen-bonding modes of N,N′-dioxide ligands are flexible (Ma et al., 2001[Ma, B., Sun, H., Gao, S. & Xu, G. (2001). Inorg. Chem. 40, 6247-6253.]; Mantero et al., 2006[Mantero, D. G., Neels, A. & Stoeckli-Evans, H. (2006). Inorg. Chem. 45, 3287-3294.]). Structure prediction with these ligands can be difficult, in part due to their flexible bonding, but also due to the influences of the anion and solvent (Hill et al., 2005a[Hill, R. J., Long, D. L., Champness, N. R., Hubberstey, P. & Schröder, M. (2005a). Acc. Chem. Res. 38, 335-348.]; Mantero et al., 2006[Mantero, D. G., Neels, A. & Stoeckli-Evans, H. (2006). Inorg. Chem. 45, 3287-3294.]).

[Scheme 1]

We have previously reported the structures of several three-dimensional coordination networks of the type {[Ln(pzdo)4](ClO4)3}n, with Ln = Nd (Quinn-Elmore et al., 2010a[Quinn-Elmore, B. G., Buchner, J. D., Beach, K. B. & Knaust, J. M. (2010a). Acta Cryst. E66, m1104-m1105.]), Dy (Quinn-Elmore et al., 2010b[Quinn-Elmore, B. G., Buchner, J. D., Beach, K. B. & Knaust, J. M. (2010b). Acta Cryst. E66, m1106-m1107.]), Ho (Buchner et al., 2010a[Buchner, J. D., Quinn-Elmore, B. G., Beach, K. B. & Knaust, J. M. (2010a). Acta Cryst. E66, m1110-m1111.]), and Er (Buchner et al., 2010b[Buchner, J. D., Quinn-Elmore, B. G., Beach, K. B. & Knaust, J. M. (2010b). Acta Cryst. E66, m1108-m1109.]), which all are isostructural to the previously reported La, Ce, Pr, Sm, Eu, Gd, Tb and Y coordination networks (Sun et al., 2004[Sun, H. L., Gao, S., Ma, B. Q., Chang, F. & Fu, W. F. (2004). Microporous Mesoporous Mater. 73, 89-95.]). In an attempt to synthesize a novel lanthanide coordination polymer with pzdo ligands and tetra­phenyl­borate (BPh4) anions, crystals of the title compound, [{Na(H2O)2}2(μ-H2O)2(μ-pzdo)][B(C6H5)4]2·2H2O·pzdo, were isolated instead.

2. Structural commentary

The asymmetric unit of the title compound contains one NaI atom, half of a coordinating pzdo ligand, two terminal water ligands, one bridging water ligand, one tetra­phenyl­borate anion, half of a solvent pzdo mol­ecule and one solvent water mol­ecule (Fig. 1[link]). The NaI atom displays a distorted square-pyramidal coordination sphere defined by two O atoms of terminal water ligands, two O atoms of bridging water ligands and one O atom of the bridging pzdo ligand. The bridging water and pzdo ligands link two NaI atoms to form a dinuclear cation, [{Na(H2O)2}2(μ-H2O)2(μ-pzdo)]2+, that is located about a twofold rotation axis. The oxygen and nitro­gen atoms of the coordinating pzdo ligand (O1, O2, N1, and N2) lie on a twofold rotation axis, and the solvent pzdo mol­ecule (C3, C4, N3 O3) is located around an inversion center. The pzdo ligand bridges the NaI atoms in the less commonly seen end-on fashion, while the oxygen atom (O2) of the solvent pzdo mol­ecule is involved in O—H⋯O hydrogen-bonding inter­actions with another [{Na(H2O)2}2(μ-H2O)2(μ-pzdo)]2+ cation.

[Figure 1]
Figure 1
The mol­ecular entities in the crystal structure of [{Na(H2O)2}2(μ-H2O)2(μ-pzdo)][B(Ph)4]2·2H2O·pzdo drawn with displacement ellipsoids at the 50% probability level. Labeled atoms are related to unlabeled atoms by the symmetry operations: −x + 1, y, −z + [{1\over 2}] for [{Na(H2O)2}2(μ-H2O)2(μ-pzdo)]2+ and by −x + 1, −y + 1, −z for the solvent pzdo mol­ecule (C3, C4, N3, and O3). Only those hydrogen atoms whose positions were refined are labeled.

3. Supra­molecular features

Three unique C—H⋯O hydrogen-bonding inter­actions between the [{Na(H2O)2}2(μ-H2O)2(μ-pzdo)]2+ cations and pzdo solvent moieties generate rectangular grid-like layers parallel to the bc plane. These inter­actions involve the bridging water ligand and the solvent pzdo mol­ecule (O4—H4A⋯O3), a terminal water ligand and the solvent pzdo mol­ecule (O5—H5B⋯O3i), and the bridging water ligand and the coordinating pzdo ligand (O4—H4B⋯ O2iii) (see Table 1[link] for symmetry codes; Fig. 2[link]). Additional inter­actions link the anion and solvent water mol­ecule to the layer (Fig. 3[link].). The anion is linked through C—H⋯O and C—H⋯π inter­actions with the solvent pzdo mol­ecule (C19—H19⋯O3iv and C2—H2⋯Cg3v). The solvent water mol­ecule accepts two hydrogen bonds from coordinating water mol­ecules (O5—H5A⋯O7 and O6—H6B⋯O7) and inter­acts with two anions through O—H⋯π inter­actions (O7—H7ACg2v and O7—H7BCg1vii). While all of the aforementioned inter­actions occur within a layer, additional C—H⋯π and O—H⋯π inter­actions with the tetra­phenyl­borate anions (C3—H3⋯Cg1i, O6—H6ACg4i, and C7—H7⋯Cg3vi) link the layers into a complex three-dimensional network (Table 1[link], Fig. 4[link]).

Table 1
Hydrogen-bond geometry (Å, °)

Cg1, Cg2, Cg3 and Cg4 are the centroids of the C5–C10, C11–C16, C17–C22 and C23–C28 rings, respectively.

D—H⋯A D—H H⋯A DA D—H⋯A
O4—H4A⋯O3 0.86 (2) 2.09 (2) 2.8855 (13) 153 (2)
O4—H4B⋯O2iii 0.85 (2) 1.95 (2) 2.6948 (14) 144 (2)
O5—H5B⋯O3i 0.84 (2) 1.95 (2) 2.7655 (14) 163 (2)
O5—H5A⋯O7 0.86 (2) 2.00 (2) 2.8329 (16) 163 (2)
O6—H6B⋯O7 0.88 (2) 2.06 (2) 2.9055 (19) 160 (3)
C19—H19⋯O3iv 0.95 2.55 3.4884 (16) 168
C2—H2⋯Cg3v 0.95 2.40 3.2435 (14) 148
C3—H3⋯Cg1i 0.95 2.46 3.2788 (14) 144
O6—H6ACg4i 0.85 (3) 2.45 (3) 3.1713 (14) 144 (2)
C7—H7⋯Cg3vi 0.95 2.66 3.5365 (14) 153
O7—H7ACg2v 0.86 (2) 2.55 (2) 3.3871 (15) 165 (2)
O7—H7BCg1vii 0.85 (3) 2.59 (2) 3.4337 (15) 171 (3)
Symmetry codes: (i) [-x+1, y, -z+{\script{1\over 2}}]; (iii) x, y-1, z; (iv) [-x+{\script{1\over 2}}, y+{\script{1\over 2}}, -z+{\script{1\over 2}}]; (v) [x+{\script{1\over 2}}, y+{\script{1\over 2}}, z]; (vi) [-x+{\script{1\over 2}}, -y+{\script{3\over 2}}, -z+1]; (vii) [x+{\script{1\over 2}}, y-{\script{1\over 2}}, z].
[Figure 2]
Figure 2
Diagram showing hydrogen-bonded [{Na(H2O)2}2(μ-H2O)2(μ-pzdo)]2+ and pzdo moieties which generate a rectangular grid parallel to the bc plane. Dashed lines represent O—H⋯O inter­actions between coord­inating water mol­ecules and the solvent pzdo mol­ecule (O4—H4A⋯O3 and O5—H5B⋯O3i) and between a coordinating water and the coordinating pzdo ligand (O4—H4B⋯O2iii). [Symmetry codes: (i) −x + 1, y, −z + [{1\over 2}]; (iii) x, y − 1, z; (iv) −x + [{1\over 2}], y + [{1\over 2}], −z + [{1\over 2}].]
[Figure 3]
Figure 3
Diagram showing inter­actions linking the anion and solvent water mol­ecule to the layers. A small portion of a layer is shown with all [{Na(H2O)2}2(μ-H2O)2(μ-pzdo)]2+ and pzdo moieties represented in gray, and the hydrogen-bonding inter­actions within the layer indicated by dashed gray lines. Two solvent water mol­ecules and one anion are shown in blue. The C—H⋯O, O—H⋯O, C—H⋯π, and O—H⋯π inter­actions linking the solvent water mol­ecules and anion to the hydrogen-bonded layers are shown as dashed green lines. [Symmetry codes: (iv) −x + [{1\over 2}], y + [{1\over 2}], −z + [{1\over 2}]; (viii) x − [{1\over 2}], y + [{1\over 2}], z; (ix) x − [{1\over 2}], y − [{1\over 2}], z.]
[Figure 4]
Figure 4
Diagram showing all C—H⋯O, O—H⋯O, C—H⋯π, and O—H⋯π inter­actions that the BPh4 anion participates in. The C—H⋯O, C—H⋯π and O—H⋯π inter­actions responsible for linking the anion to a layer are shown as dashed red lines. The C—H⋯π and O—H⋯π inter­actions responsible for linking the layers into a three-dimensional framework are shown as dashed green lines. [Symmetry codes: (i) −x + 1, y, −z + [{1\over 2}]; (iv) −x + [{1\over 2}], y + [{1\over 2}], −z + [{1\over 2}]; (vi) −x + [{1\over 2}], −y + [{3\over 2}], −z + 1; (viii) x − [{1\over 2}], y + [{1\over 2}], z; (ix) x − [{1\over 2}], y − [{1\over 2}], z.]

4. Database survey

A survey of the Cambridge Structural Database (CSD, Version 5.36, November 2014; Groom & Allen, 2014[Groom, C. R. & Allen, F. H. (2014). Angew. Chem. Int. Ed. 53, 662-671.]) returned hits for 37 structures with pyrazine N,N'-dioxide. Three structures are reported for the pzdo mol­ecule. Five structures are reported for pzdo as part of a co-crystal. Fourteen structures are reported where pzdo coordinates to a transition metal and acts as a bridging ligand in a coordination network. Twelve structures are reported where pzdo coordinates to a lanthanide metal and acts as a bridging ligand in a coordination network. In all 26 reported coordination networks, pzdo bridges metal atoms in an end-to-end fashion. Two structures for mixed metal (NaI/TbIII and NaI/ErIII) coordination networks with p-sulfonato­calix[4]arene are reported where the NaI cation is coordinated by a terminal pzdo ligand, and the structure of the mixed metal coordination network (NaI/LaIII) with sulfonato­calix[4]arene is reported where pzdo is included in the structure as a clathrate (Zheng et al., 2008[Zheng, G., Zhang, F., Li, Y. & Zhang, H. (2008). CrystEngComm, 10, 1560-1564.]). One final structure of note deposited after the November 2014 release of the CSD is that of a mixed metal (NaI/WV) coordination network where pzdo bridges NaI atoms in both end-to-end and end-on modes (Podgajny et al., 2014[Podgajny, R., Pinkowicz, D., Czarnecki, B., Kozieł, M., Chorąży, S., Wis, M., Nitek, W., Rams, M. & Sieklucka, B. (2014). Cryst. Growth Des. 14, 4030-4040.]).

5. Synthesis and crystallization

Pyrazine-N,N′-dioxide was synthesized from pyrazine according to the method of Simpson et al. (1963[Simpson, P. G., Vinciguerra, A. & Quagliano, J. V. (1963). Inorg. Chem. 2, 282-286.]). All other chemicals were obtained from commercial sources and used without further purification. Initially, NaBPh4 (0.0821 g, 0.240 mmol), pzdo (0.0171 g, 0.152 mmol) and 40%wt aqueous Ho(ClO4)3 (14.8 µl, 0.0201 mmol), were combined in 25 ml of methanol to form a cloudy solution, and colorless crystals of the title compound were obtained upon slow evaporation of the solvent. Further studies showed that crystals of the title compound can also be isolated in the absence of the lanthanide salt. In this case, NaBPh4 (0.0257 g, 0.0750 mmol) and pzdo (0.0171 g, 0.152 mmol) were combined in 12.5 ml methanol and 1.1 ml of water to form a cloudy solution which yielded colorless crystals of the title compound upon slow evaporation of the solvent.

6. Refinement

Crystal data, data collection and structure refinement details are summarized in Table 2[link]. All aromatic H atoms were positioned geometrically and refined using a riding model with C—H = 0.95 Å and with Uiso(H) = 1.2 times Ueq(C). The positions of water H atoms were located from difference Fourier maps and the O—H distances in the water mol­ecules were restrained to 0.85 (2) Å. Uiso parameters of water H atoms were refined freely.

Table 2
Experimental details

Crystal data
Chemical formula [Na2(C4H4N2O2)(H2O)6](BC24H20)2·C4H4N2O2·2H2O
Mr 1052.71
Crystal system, space group Monoclinic, C2/c
Temperature (K) 99
a, b, c (Å) 20.4224 (9), 10.1950 (4), 27.2349 (11)
β (°) 102.947 (1)
V3) 5526.3 (4)
Z 4
Radiation type Mo Kα
μ (mm−1) 0.10
Crystal size (mm) 0.50 × 0.40 × 0.25
 
Data collection
Diffractometer Bruker SMART APEX CCD diffractometer
Absorption correction Multi-scan (SADABS; Bruker, 2001[Bruker (2001). SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.])
Tmin, Tmax 0.894, 1.000
No. of measured, independent and observed [I > 2σ(I)] reflections 32437, 8464, 6996
Rint 0.037
(sin θ/λ)max−1) 0.715
 
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.052, 0.140, 1.04
No. of reflections 8464
No. of parameters 377
No. of restraints 8
H-atom treatment H atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å−3) 0.48, −0.21
Computer programs: SMART and SAINT (Bruker, 2007[Bruker (2007). SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]), SHELXS97 and SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]), and X-SEED (Barbour, 2001[Barbour, L. J. (2001). J. Supramol. Chem. 1, 189-191.]).

Supporting information


Computing details top

Data collection: SMART (Bruker, 2007); cell refinement: SAINT (Bruker, 2007); data reduction: SAINT (Bruker, 2007); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: X-SEED (Barbour, 2001); software used to prepare material for publication: X-SEED (Barbour, 2001).

Di-µ-aqua-µ-(pyrazine N,N'-dioxide)-κ2O:O-bis(diaquasodium) tetraphenylborate pyrazine N,N'-dioxide monosolvate dihydrate top
Crystal data top
[Na2(C4H4N2O2)(H2O)6](BC24H20)2·C4H4N2O2·2H2OF(000) = 2224
Mr = 1052.71Dx = 1.265 Mg m3
Monoclinic, C2/cMo Kα radiation, λ = 0.71073 Å
Hall symbol: -C 2ycCell parameters from 14931 reflections
a = 20.4224 (9) Åθ = 2.2–30.5°
b = 10.1950 (4) ŵ = 0.10 mm1
c = 27.2349 (11) ÅT = 99 K
β = 102.947 (1)°Block, colorless
V = 5526.3 (4) Å30.50 × 0.40 × 0.25 mm
Z = 4
Data collection top
Bruker SMART APEX CCD
diffractometer
8464 independent reflections
Radiation source: fine-focus sealed tube6996 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.037
ω scansθmax = 30.5°, θmin = 1.5°
Absorption correction: multi-scan
(SADABS; Bruker, 2001)
h = 2929
Tmin = 0.894, Tmax = 1.000k = 1414
32437 measured reflectionsl = 3738
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.052Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.140H atoms treated by a mixture of independent and constrained refinement
S = 1.04 w = 1/[σ2(Fo2) + (0.0739P)2 + 3.1014P]
where P = (Fo2 + 2Fc2)/3
8464 reflections(Δ/σ)max = 0.001
377 parametersΔρmax = 0.48 e Å3
8 restraintsΔρmin = 0.21 e Å3
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Na10.57681 (3)0.53904 (5)0.27762 (2)0.02408 (12)
O10.50000.70101 (12)0.25000.0302 (3)
O20.50001.22491 (12)0.25000.0253 (3)
O30.48519 (5)0.52324 (10)0.09489 (3)0.0272 (2)
O40.52081 (5)0.44163 (9)0.19893 (4)0.0266 (2)
O50.61154 (5)0.62448 (11)0.35909 (4)0.0316 (2)
O60.68618 (6)0.53238 (14)0.27608 (5)0.0441 (3)
O70.75011 (6)0.56103 (14)0.38213 (5)0.0434 (3)
N10.50000.82883 (14)0.25000.0210 (3)
N20.50001.09705 (14)0.25000.0195 (3)
N30.49248 (5)0.51216 (10)0.04872 (4)0.0196 (2)
C10.53467 (6)0.89566 (12)0.29054 (5)0.0214 (2)
H10.55910.84920.31910.026*
C20.53468 (6)1.02966 (12)0.29060 (5)0.0209 (2)
H20.55911.07600.31920.025*
C30.54999 (6)0.55124 (12)0.03612 (5)0.0215 (2)
H30.58550.58720.06120.026*
C40.44262 (6)0.46070 (12)0.01235 (5)0.0212 (2)
H40.40210.43260.02070.025*
C50.28988 (5)0.68369 (11)0.39692 (4)0.0165 (2)
C60.29439 (6)0.74729 (12)0.44320 (4)0.0204 (2)
H60.26230.72640.46240.024*
C70.34389 (6)0.83982 (13)0.46232 (5)0.0240 (2)
H70.34500.88080.49380.029*
C80.39154 (6)0.87171 (13)0.43493 (5)0.0257 (3)
H80.42580.93370.44780.031*
C90.38860 (6)0.81212 (13)0.38855 (5)0.0249 (3)
H90.42080.83360.36950.030*
C100.33829 (6)0.72066 (12)0.37003 (4)0.0202 (2)
H100.33670.68190.33810.024*
C110.28603 (6)0.43432 (11)0.40579 (4)0.0176 (2)
C120.28816 (6)0.39219 (12)0.45536 (4)0.0203 (2)
H120.25770.43010.47310.024*
C130.33308 (6)0.29710 (13)0.47952 (5)0.0244 (2)
H130.33250.27110.51290.029*
C140.37864 (7)0.24013 (13)0.45489 (5)0.0281 (3)
H140.40940.17540.47120.034*
C150.37846 (6)0.27962 (13)0.40590 (5)0.0264 (3)
H150.40950.24210.38860.032*
C160.33281 (6)0.37423 (12)0.38211 (5)0.0217 (2)
H160.33330.39900.34860.026*
C170.16906 (6)0.57084 (11)0.39863 (4)0.0164 (2)
C180.13473 (6)0.69104 (11)0.39796 (4)0.0186 (2)
H180.15620.76920.39090.022*
C190.07050 (6)0.69938 (12)0.40727 (4)0.0215 (2)
H190.04870.78200.40580.026*
C200.03822 (6)0.58705 (13)0.41870 (5)0.0232 (2)
H200.00520.59270.42570.028*
C210.07032 (6)0.46643 (12)0.41976 (5)0.0211 (2)
H210.04880.38890.42750.025*
C220.13431 (6)0.45933 (11)0.40948 (4)0.0183 (2)
H220.15510.37590.40980.022*
C230.21392 (6)0.54690 (11)0.31871 (4)0.0181 (2)
C240.19493 (6)0.66032 (12)0.28925 (4)0.0209 (2)
H240.20430.74390.30470.025*
C250.16291 (6)0.65426 (14)0.23831 (5)0.0254 (3)
H250.15070.73290.21980.030*
C260.14892 (7)0.53359 (14)0.21466 (5)0.0273 (3)
H260.12700.52900.18000.033*
C270.16730 (7)0.41963 (14)0.24223 (5)0.0268 (3)
H270.15830.33650.22640.032*
C280.19901 (6)0.42686 (12)0.29327 (5)0.0220 (2)
H280.21090.34770.31150.026*
B10.23971 (6)0.55838 (12)0.37996 (5)0.0161 (2)
H4A0.5221 (12)0.451 (2)0.1677 (6)0.057 (7)*
H5A0.6528 (8)0.605 (2)0.3724 (8)0.053 (6)*
H6A0.7091 (14)0.514 (3)0.2547 (9)0.090 (9)*
H5B0.5879 (10)0.597 (2)0.3788 (8)0.059 (7)*
H4B0.5158 (11)0.3594 (16)0.2028 (8)0.059 (6)*
H7A0.7775 (12)0.625 (2)0.3922 (10)0.086 (9)*
H6B0.7144 (13)0.543 (3)0.3054 (8)0.082 (9)*
H7B0.7749 (15)0.496 (2)0.3939 (12)0.101 (11)*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Na10.0223 (2)0.0254 (3)0.0240 (3)0.00197 (19)0.00423 (19)0.00052 (19)
O10.0338 (7)0.0136 (6)0.0365 (7)0.0000.0068 (6)0.000
O20.0339 (7)0.0137 (5)0.0280 (6)0.0000.0063 (5)0.000
O30.0331 (5)0.0334 (5)0.0162 (4)0.0025 (4)0.0080 (4)0.0001 (3)
O40.0377 (5)0.0205 (4)0.0220 (4)0.0011 (4)0.0075 (4)0.0000 (3)
O50.0267 (5)0.0407 (6)0.0266 (5)0.0035 (4)0.0046 (4)0.0008 (4)
O60.0254 (5)0.0644 (8)0.0446 (7)0.0014 (5)0.0124 (5)0.0088 (6)
O70.0276 (6)0.0469 (7)0.0502 (7)0.0008 (5)0.0030 (5)0.0040 (6)
N10.0220 (7)0.0159 (6)0.0225 (7)0.0000.0004 (5)0.000
N20.0217 (7)0.0156 (6)0.0211 (7)0.0000.0046 (5)0.000
N30.0221 (5)0.0196 (5)0.0168 (4)0.0010 (4)0.0037 (4)0.0005 (3)
C10.0214 (5)0.0211 (6)0.0193 (5)0.0001 (4)0.0009 (4)0.0006 (4)
C20.0221 (5)0.0205 (5)0.0183 (5)0.0013 (4)0.0009 (4)0.0007 (4)
C30.0206 (5)0.0217 (5)0.0203 (5)0.0036 (4)0.0003 (4)0.0004 (4)
C40.0180 (5)0.0238 (6)0.0212 (5)0.0020 (4)0.0032 (4)0.0021 (4)
C50.0155 (5)0.0173 (5)0.0158 (5)0.0009 (4)0.0012 (4)0.0021 (4)
C60.0200 (5)0.0217 (5)0.0192 (5)0.0012 (4)0.0037 (4)0.0014 (4)
C70.0254 (6)0.0225 (6)0.0216 (6)0.0020 (4)0.0001 (4)0.0035 (4)
C80.0233 (6)0.0222 (6)0.0283 (6)0.0057 (5)0.0011 (5)0.0019 (5)
C90.0207 (5)0.0278 (6)0.0256 (6)0.0041 (5)0.0039 (4)0.0069 (5)
C100.0205 (5)0.0229 (6)0.0167 (5)0.0013 (4)0.0028 (4)0.0026 (4)
C110.0165 (5)0.0165 (5)0.0193 (5)0.0002 (4)0.0031 (4)0.0009 (4)
C120.0192 (5)0.0210 (5)0.0209 (5)0.0006 (4)0.0052 (4)0.0025 (4)
C130.0256 (6)0.0237 (6)0.0231 (6)0.0010 (5)0.0035 (5)0.0066 (4)
C140.0271 (6)0.0226 (6)0.0328 (7)0.0076 (5)0.0030 (5)0.0053 (5)
C150.0246 (6)0.0253 (6)0.0293 (6)0.0074 (5)0.0064 (5)0.0008 (5)
C160.0217 (5)0.0219 (6)0.0219 (5)0.0028 (4)0.0058 (4)0.0005 (4)
C170.0165 (5)0.0184 (5)0.0139 (5)0.0009 (4)0.0025 (4)0.0006 (4)
C180.0193 (5)0.0177 (5)0.0179 (5)0.0001 (4)0.0021 (4)0.0011 (4)
C190.0202 (5)0.0224 (6)0.0210 (5)0.0050 (4)0.0028 (4)0.0024 (4)
C200.0158 (5)0.0311 (6)0.0231 (6)0.0021 (4)0.0050 (4)0.0006 (5)
C210.0179 (5)0.0240 (6)0.0213 (5)0.0022 (4)0.0037 (4)0.0034 (4)
C220.0180 (5)0.0188 (5)0.0176 (5)0.0002 (4)0.0026 (4)0.0008 (4)
C230.0178 (5)0.0205 (5)0.0168 (5)0.0001 (4)0.0055 (4)0.0008 (4)
C240.0212 (5)0.0228 (6)0.0182 (5)0.0005 (4)0.0036 (4)0.0001 (4)
C250.0235 (6)0.0321 (7)0.0198 (6)0.0011 (5)0.0032 (4)0.0035 (5)
C260.0246 (6)0.0402 (8)0.0165 (5)0.0029 (5)0.0032 (4)0.0028 (5)
C270.0280 (6)0.0308 (7)0.0218 (6)0.0050 (5)0.0063 (5)0.0079 (5)
C280.0228 (6)0.0238 (6)0.0198 (5)0.0004 (4)0.0054 (4)0.0023 (4)
B10.0162 (5)0.0166 (5)0.0152 (5)0.0000 (4)0.0033 (4)0.0004 (4)
Geometric parameters (Å, º) top
Na1—O62.2444 (13)C9—C101.3954 (17)
Na1—O12.2857 (10)C9—H90.9500
Na1—O52.3410 (12)C10—H100.9500
Na1—O42.4059 (11)C11—C161.4070 (16)
Na1—O4i2.4371 (12)C11—C121.4083 (16)
O1—N11.3031 (19)C11—B11.6404 (17)
O1—Na1i2.2857 (10)C12—C131.3942 (17)
O2—N21.3035 (18)C12—H120.9500
O3—N31.3040 (13)C13—C141.3903 (19)
O4—Na1i2.4371 (12)C13—H130.9500
O4—H4A0.862 (16)C14—C151.3927 (19)
O4—H4B0.854 (16)C14—H140.9500
O5—H5A0.863 (15)C15—C161.3959 (17)
O5—H5B0.844 (16)C15—H150.9500
O6—H6A0.844 (17)C16—H160.9500
O6—H6B0.880 (17)C17—C221.4062 (16)
O7—H7A0.861 (17)C17—C181.4100 (16)
O7—H7B0.855 (18)C17—B11.6386 (17)
N1—C1i1.3544 (14)C18—C191.3932 (16)
N1—C11.3544 (14)C18—H180.9500
N2—C2i1.3583 (14)C19—C201.3910 (18)
N2—C21.3584 (14)C19—H190.9500
N3—C31.3552 (16)C20—C211.3909 (18)
N3—C41.3570 (15)C20—H200.9500
C1—C21.3661 (17)C21—C221.3982 (16)
C1—H10.9500C21—H210.9500
C2—H20.9500C22—H220.9500
C3—C4ii1.3673 (17)C23—C281.4056 (17)
C3—H30.9500C23—C241.4113 (16)
C4—C3ii1.3672 (17)C23—B11.6373 (17)
C4—H40.9500C24—C251.3962 (16)
C5—C61.4020 (16)C24—H240.9500
C5—C101.4073 (16)C25—C261.3884 (19)
C5—B11.6381 (17)C25—H250.9500
C6—C71.3953 (17)C26—C271.389 (2)
C6—H60.9500C26—H260.9500
C7—C81.3908 (19)C27—C281.3978 (17)
C7—H70.9500C27—H270.9500
C8—C91.3909 (19)C28—H280.9500
C8—H80.9500
O6—Na1—O1128.92 (5)C9—C10—H10118.8
O6—Na1—O586.41 (5)C5—C10—H10118.8
O1—Na1—O594.76 (4)C16—C11—C12115.36 (10)
O6—Na1—O4104.32 (5)C16—C11—B1121.65 (10)
O1—Na1—O481.42 (3)C12—C11—B1122.49 (10)
O5—Na1—O4168.66 (4)C13—C12—C11122.70 (11)
O6—Na1—O4i150.29 (5)C13—C12—H12118.7
O1—Na1—O4i80.75 (3)C11—C12—H12118.7
O5—Na1—O4i89.72 (4)C14—C13—C12120.24 (12)
O4—Na1—O4i79.15 (4)C14—C13—H13119.9
N1—O1—Na1i136.26 (3)C12—C13—H13119.9
N1—O1—Na1136.26 (3)C13—C14—C15118.88 (12)
Na1i—O1—Na187.49 (5)C13—C14—H14120.6
Na1—O4—Na1i81.48 (4)C15—C14—H14120.6
Na1—O4—H4A136.1 (15)C14—C15—C16120.17 (12)
Na1i—O4—H4A115.0 (15)C14—C15—H15119.9
Na1—O4—H4B109.9 (15)C16—C15—H15119.9
Na1i—O4—H4B103.9 (15)C15—C16—C11122.66 (11)
H4A—O4—H4B105 (2)C15—C16—H16118.7
Na1—O5—H5A111.9 (15)C11—C16—H16118.7
Na1—O5—H5B112.6 (16)C22—C17—C18115.62 (10)
H5A—O5—H5B108 (2)C22—C17—B1121.57 (10)
Na1—O6—H6A137 (2)C18—C17—B1122.22 (10)
Na1—O6—H6B115.5 (19)C19—C18—C17122.44 (11)
H6A—O6—H6B108 (3)C19—C18—H18118.8
H7A—O7—H7B100 (3)C17—C18—H18118.8
O1—N1—C1i120.20 (7)C20—C19—C18120.22 (11)
O1—N1—C1120.20 (7)C20—C19—H19119.9
C1i—N1—C1119.59 (15)C18—C19—H19119.9
O2—N2—C2i120.38 (7)C21—C20—C19119.19 (11)
O2—N2—C2120.38 (7)C21—C20—H20120.4
C2i—N2—C2119.24 (14)C19—C20—H20120.4
O3—N3—C3120.75 (10)C20—C21—C22119.93 (11)
O3—N3—C4120.55 (10)C20—C21—H21120.0
C3—N3—C4118.69 (10)C22—C21—H21120.0
N1—C1—C2120.25 (11)C21—C22—C17122.59 (11)
N1—C1—H1119.9C21—C22—H22118.7
C2—C1—H1119.9C17—C22—H22118.7
N2—C2—C1120.33 (11)C28—C23—C24115.57 (11)
N2—C2—H2119.8C28—C23—B1123.30 (10)
C1—C2—H2119.8C24—C23—B1120.36 (10)
N3—C3—C4ii120.51 (11)C25—C24—C23122.44 (12)
N3—C3—H3119.7C25—C24—H24118.8
C4ii—C3—H3119.7C23—C24—H24118.8
N3—C4—C3ii120.80 (11)C26—C25—C24120.14 (12)
N3—C4—H4119.6C26—C25—H25119.9
C3ii—C4—H4119.6C24—C25—H25119.9
C6—C5—C10115.58 (10)C25—C26—C27119.20 (12)
C6—C5—B1121.67 (10)C25—C26—H26120.4
C10—C5—B1122.01 (10)C27—C26—H26120.4
C7—C6—C5122.97 (11)C26—C27—C28120.17 (12)
C7—C6—H6118.5C26—C27—H27119.9
C5—C6—H6118.5C28—C27—H27119.9
C8—C7—C6119.57 (12)C27—C28—C23122.48 (12)
C8—C7—H7120.2C27—C28—H28118.8
C6—C7—H7120.2C23—C28—H28118.8
C9—C8—C7119.46 (11)C23—B1—C5112.40 (9)
C9—C8—H8120.3C23—B1—C17102.54 (9)
C7—C8—H8120.3C5—B1—C17113.00 (9)
C8—C9—C10119.92 (12)C23—B1—C11113.87 (9)
C8—C9—H9120.0C5—B1—C11102.49 (9)
C10—C9—H9120.0C17—B1—C11112.96 (9)
C9—C10—C5122.48 (11)
Symmetry codes: (i) x+1, y, z+1/2; (ii) x+1, y+1, z.
Hydrogen-bond geometry (Å, º) top
Cg1, Cg2, Cg3 and Cg4 are the centroids of the C5–C10, C11–C16, C17–C22 and C23–C28 rings, respectively.
D—H···AD—HH···AD···AD—H···A
O4—H4A···O30.86 (2)2.09 (2)2.8855 (13)153 (2)
O4—H4B···O2iii0.85 (2)1.95 (2)2.6948 (14)144 (2)
O5—H5B···O3i0.84 (2)1.95 (2)2.7655 (14)163 (2)
O5—H5A···O70.86 (2)2.00 (2)2.8329 (16)163 (2)
O6—H6B···O70.88 (2)2.06 (2)2.9055 (19)160 (3)
C19—H19···O3iv0.952.553.4884 (16)168
C2—H2···Cg3v0.952.403.2435 (14)148
C3—H3···Cg1i0.952.463.2788 (14)144
O6—H6A···Cg4i0.85 (3)2.45 (3)3.1713 (14)144 (2)
C7—H7···Cg3vi0.952.663.5365 (14)153
O7—H7A···Cg2v0.86 (2)2.55 (2)3.3871 (15)165 (2)
O7—H7B···Cg1vii0.85 (3)2.59 (2)3.4337 (15)171 (3)
Symmetry codes: (i) x+1, y, z+1/2; (iii) x, y1, z; (iv) x+1/2, y+1/2, z+1/2; (v) x+1/2, y+1/2, z; (vi) x+1/2, y+3/2, z+1; (vii) x+1/2, y1/2, z.
 

Acknowledgements

The authors are thankful to Clarion University and Allegheny College for providing funding in support of this research. The diffractometer was funded by the NSF (grant No. 0087210), the Ohio Board of Regents (grant No. CAP-491) and by Youngstown State University. The authors would also like to acknowledge Matthias Zeller, Senior Scientist and Crystallographer at the STaRBURSTT CyberInstrumentation Consortium, for assistance with the structure analysis.

References

First citationBarbour, L. J. (2001). J. Supramol. Chem. 1, 189–191.  CrossRef CAS Google Scholar
First citationBruker (2001). SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationBruker (2007). SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationBuchner, J. D., Quinn-Elmore, B. G., Beach, K. B. & Knaust, J. M. (2010a). Acta Cryst. E66, m1110–m1111.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationBuchner, J. D., Quinn-Elmore, B. G., Beach, K. B. & Knaust, J. M. (2010b). Acta Cryst. E66, m1108–m1109.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationGroom, C. R. & Allen, F. H. (2014). Angew. Chem. Int. Ed. 53, 662–671.  Web of Science CSD CrossRef CAS Google Scholar
First citationHill, R. J., Long, D. L., Champness, N. R., Hubberstey, P. & Schröder, M. (2005a). Acc. Chem. Res. 38, 335–348.  Web of Science CrossRef PubMed CAS Google Scholar
First citationHill, R. J., Long, D. L., Hubberstey, P., Schröder, M. & Champness, N. R. (2005b). J. Solid State Chem. 178, 2414–2419.  Web of Science CrossRef CAS Google Scholar
First citationMa, B., Sun, H., Gao, S. & Xu, G. (2001). Inorg. Chem. 40, 6247–6253.  Web of Science CSD CrossRef PubMed CAS Google Scholar
First citationMantero, D. G., Neels, A. & Stoeckli-Evans, H. (2006). Inorg. Chem. 45, 3287–3294.  Web of Science PubMed CAS Google Scholar
First citationPodgajny, R., Pinkowicz, D., Czarnecki, B., Kozieł, M., Chorąży, S., Wis, M., Nitek, W., Rams, M. & Sieklucka, B. (2014). Cryst. Growth Des. 14, 4030–4040.  Web of Science CSD CrossRef CAS Google Scholar
First citationQuinn-Elmore, B. G., Buchner, J. D., Beach, K. B. & Knaust, J. M. (2010a). Acta Cryst. E66, m1104–m1105.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationQuinn-Elmore, B. G., Buchner, J. D., Beach, K. B. & Knaust, J. M. (2010b). Acta Cryst. E66, m1106–m1107.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSimpson, P. G., Vinciguerra, A. & Quagliano, J. V. (1963). Inorg. Chem. 2, 282–286.  CrossRef CAS Web of Science Google Scholar
First citationSun, H. L., Gao, S., Ma, B. Q., Chang, F. & Fu, W. F. (2004). Microporous Mesoporous Mater. 73, 89–95.  Web of Science CSD CrossRef CAS Google Scholar
First citationZheng, G., Zhang, F., Li, Y. & Zhang, H. (2008). CrystEngComm, 10, 1560–1564.  Web of Science CSD CrossRef CAS Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds