metal-organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Crystal structure of bis­­{μ2-[(2-imino­cyclo­pentyl­­idene)methyl­­idene]aza­nido-κ2N:N′}bis­­[(η5-penta­methyl­cyclo­penta­dien­yl)zirconium(IV)] hexane monosolvate

aLeibniz-Institut für Katalyse e. V. an der Universität Rostock, Albert-Einstein-Strasse 29a, 18059 Rostock, Germany
*Correspondence e-mail: lisanne.becker@catalysis.de

Edited by M. Weil, Vienna University of Technology, Austria (Received 29 October 2015; accepted 9 November 2015; online 14 November 2015)

The title compound, [Zr2(C10H15)4(C6H6N2)2]·C6H14, was obtained by the stoichiometric reaction of adipo­nitrile with [Zr(C10H15)2(η2-Me3SiC2SiMe3)]. Intra­molecular nitrile–nitrile couplings and deprotonation of the substrate produced the (1-imino-2-enimino)­cyclo­pentane ligand, which functions as a five-membered bridge between the two metal atoms. The ZrIV atom exhibits a distorted tetra­hedral coordination sphere defined by two penta­methyl­cyclo­penta­dienyl ligands, by the imino unit of one (1-imino-2-enimino)­cyclo­pentane and by the enimino unit of the second (1-imino-2-enimino)­cyclo­pentane. The cyclo­pentane ring of the ligand shows an envelope conformation. The asymmetric unit contains one half of the complex and one half of the hexane solvent mol­ecule, both being completed by the application of inversion symmetry. One of the penta­methyl­cyclo­penta­dienyl ligands is disordered over two sets of sites with a refined occupancy ratio of 0.8111 (3):0.189 (3). In the crystal, the complex mol­ecules are packed into rods extending along [100], with the solvent mol­ecules located in between. The rods are arranged in a distorted hexa­gonal packing.

1. Related literature

For more information about group 4 metallocene chemistry with di­cyano compounds, see: Becker, Arndt et al. (2015[Becker, L., Arndt, P., Spannenberg, A., Jiao, H. & Rosenthal, U. (2015). Angew. Chem. Int. Ed. 54, 5523-5526.]). For group 4 complexes with comparable five-membered en–dimine ligands, see: Becker, Haehnel et al. (2015[Becker, L., Haehnel, M., Spannenberg, A., Arndt, P. & Rosenthal, U. (2015). Chem. Eur. J. 21, 3242-3248.]). For intra­molecular C—C coupling reactions of adipo­nitrile, see: Thorpe (1909[Thorpe, J. F. (1909). J. Chem. Soc. Trans. 95, 1901-1903.]); Schroeder & Rigby (1949[Schroeder, H. E. & Rigby, G. W. (1949). J. Am. Chem. Soc. 71, 2205-2209.]).

[Scheme 1]

2. Experimental

2.1. Crystal data

  • [Zr2(C10H15)4(C6H6N2)2]·C6H14

  • Mr = 1021.74

  • Monoclinic, P 21 /c

  • a = 13.4862 (8) Å

  • b = 16.9048 (11) Å

  • c = 13.0151 (8) Å

  • β = 117.7232 (15)°

  • V = 2626.6 (3) Å3

  • Z = 2

  • Mo Kα radiation

  • μ = 0.44 mm−1

  • T = 150 K

  • 0.35 × 0.27 × 0.18 mm

2.2. Data collection

  • Bruker APEXII CCD diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 2014[Bruker (2014). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]) Tmin = 0.88, Tmax = 0.93

  • 60472 measured reflections

  • 6341 independent reflections

  • 5621 reflections with I > 2σ(I)

  • Rint = 0.028

2.3. Refinement

  • R[F2 > 2σ(F2)] = 0.035

  • wR(F2) = 0.094

  • S = 1.06

  • 6341 reflections

  • 386 parameters

  • 239 restraints

  • H-atom parameters constrained

  • Δρmax = 0.88 e Å−3

  • Δρmin = −0.43 e Å−3

Data collection: APEX2 (Bruker, 2014[Bruker (2014). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2014[Bruker (2014). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL2014 (Sheldrick, 2015[Sheldrick, G. M. (2015). Acta Cryst. C71, 3-8.]); molecular graphics: XP in SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]) and Mercury (Macrae et al., 2006[Macrae, C. F., Edgington, P. R., McCabe, P., Pidcock, E., Shields, G. P., Taylor, R., Towler, M. & van de Streek, J. (2006). J. Appl. Cryst. 39, 453-457.]); software used to prepare material for publication: publCIF (Westrip, 2010[Westrip, S. P. (2010). J. Appl. Cryst. 43, 920-925.]).

Supporting information


Synthesis and crystallization top

To a solution of [Zr(C10H15)2(η2-Me3SiC2SiMe3)] (0.266 g, 0.5 mmol) in 10 ml of toluene, adipo­nitrile (0.056 ml, 0.5 mmol) was added dropwise under stirring. The color changed to yellow and during 24 h to orange. All volatiles were removed in vacuo and the orange residue extracted with n-hexane. Red crystals formed within three weeks at ambient temperature. MS: m/z (EI): 932 (6) [M]+, 799 (4) [M-Cp*]+, 360 (4) [Cp*2Zr]+, 135 (15) [Cp*]+.

Refinement top

H atoms were placed in idealized positions with d(C—H) = 0.99 Å (CH2), 0.98 Å (CH3) and refined using a riding model with Uiso(H) fixed at 1.2Ueq(C) for CH2 and 1.5Ueq(C) for CH3. A rotating model was used for fully occupied methyl groups. One cyclo­penta­dienyl ligand is disordered over two sets of sites with refined occupacies of 0.8111 (3):0.189 (3). DANG and SAME instructions were used to improve the geometry of the penta­methyl­cyclo­penta­dienyl ring C17B–C26B. Additionally, anisotropic displacement parameters of atoms C17A–C21A, C17B–C21B and C22A–C26A, C22B–C26B were restrained to be equal (SIMU), respectively. The maximum remaining electron density in the final difference Fourier map is located 0.77 Å from Zr1 and the minimum electron density 0.39 Å from C24B.

Related literature top

For more information about group 4 metallocene chemistry with dicyano compounds, see: Becker, Arndt et al. (2015). For group 4 complexes with comparable five-membered en–dimine ligands, see: Becker, Haehnel et al. (2015). For intramolecular C—C coupling reactions of adiponitrile, see: Thorpe (1909); Schroeder & Rigby (1949).

Structure description top

For more information about group 4 metallocene chemistry with dicyano compounds, see: Becker, Arndt et al. (2015). For group 4 complexes with comparable five-membered en–dimine ligands, see: Becker, Haehnel et al. (2015). For intramolecular C—C coupling reactions of adiponitrile, see: Thorpe (1909); Schroeder & Rigby (1949).

Synthesis and crystallization top

To a solution of [Zr(C10H15)2(η2-Me3SiC2SiMe3)] (0.266 g, 0.5 mmol) in 10 ml of toluene, adipo­nitrile (0.056 ml, 0.5 mmol) was added dropwise under stirring. The color changed to yellow and during 24 h to orange. All volatiles were removed in vacuo and the orange residue extracted with n-hexane. Red crystals formed within three weeks at ambient temperature. MS: m/z (EI): 932 (6) [M]+, 799 (4) [M-Cp*]+, 360 (4) [Cp*2Zr]+, 135 (15) [Cp*]+.

Refinement details top

H atoms were placed in idealized positions with d(C—H) = 0.99 Å (CH2), 0.98 Å (CH3) and refined using a riding model with Uiso(H) fixed at 1.2Ueq(C) for CH2 and 1.5Ueq(C) for CH3. A rotating model was used for fully occupied methyl groups. One cyclo­penta­dienyl ligand is disordered over two sets of sites with refined occupacies of 0.8111 (3):0.189 (3). DANG and SAME instructions were used to improve the geometry of the penta­methyl­cyclo­penta­dienyl ring C17B–C26B. Additionally, anisotropic displacement parameters of atoms C17A–C21A, C17B–C21B and C22A–C26A, C22B–C26B were restrained to be equal (SIMU), respectively. The maximum remaining electron density in the final difference Fourier map is located 0.77 Å from Zr1 and the minimum electron density 0.39 Å from C24B.

Computing details top

Data collection: APEX2 (Bruker, 2014); cell refinement: SAINT (Bruker, 2014); data reduction: SAINT (Bruker, 2014); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL2014 (Sheldrick, 2015); molecular graphics: XP in SHELXTL (Sheldrick, 2008) and Mercury (Macrae et al., 2006); software used to prepare material for publication: publCIF (Westrip, 2010).

Figures top
[Figure 1] Fig. 1. The molecular structure of the title compound. The minor occupied atoms of the disordered pentamethylcyclopentadienyl ligands, hydrogen atoms and the solvent molecule are omitted for clarity. Displacement ellipsoids are drawn at the 30% probability level. [Symmetry code: (i) -x + 2, -y + 1, -z + 2.]
[Figure 2] Fig. 2. Crystal packing of the title compound (capped sticks) in a projection along [011].
Bis{µ2-[(2-iminocyclopentylidene)methylidene]azanido-κ2N:N'}bis[(η5-pentamethylcyclopentadienyl)zirconium(IV)] hexane monosolvate top
Crystal data top
[Zr2(C10H15)4(C6H6N2)2]·C6H14F(000) = 1084
Mr = 1021.74Dx = 1.292 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
a = 13.4862 (8) ÅCell parameters from 9621 reflections
b = 16.9048 (11) Åθ = 3.0–28.8°
c = 13.0151 (8) ŵ = 0.44 mm1
β = 117.7232 (15)°T = 150 K
V = 2626.6 (3) Å3Prism, red
Z = 20.35 × 0.27 × 0.18 mm
Data collection top
Bruker APEXII CCD
diffractometer
6341 independent reflections
Radiation source: fine-focus sealed tube5621 reflections with I > 2σ(I)
Detector resolution: 8.3333 pixels mm-1Rint = 0.028
φ and ω scansθmax = 28.0°, θmin = 1.7°
Absorption correction: multi-scan
(SADABS; Bruker, 2014)
h = 1717
Tmin = 0.88, Tmax = 0.93k = 2222
60472 measured reflectionsl = 1617
Refinement top
Refinement on F2239 restraints
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.035H-atom parameters constrained
wR(F2) = 0.094 w = 1/[σ2(Fo2) + (0.0437P)2 + 3.0941P]
where P = (Fo2 + 2Fc2)/3
S = 1.06(Δ/σ)max = 0.001
6341 reflectionsΔρmax = 0.88 e Å3
386 parametersΔρmin = 0.43 e Å3
Crystal data top
[Zr2(C10H15)4(C6H6N2)2]·C6H14V = 2626.6 (3) Å3
Mr = 1021.74Z = 2
Monoclinic, P21/cMo Kα radiation
a = 13.4862 (8) ŵ = 0.44 mm1
b = 16.9048 (11) ÅT = 150 K
c = 13.0151 (8) Å0.35 × 0.27 × 0.18 mm
β = 117.7232 (15)°
Data collection top
Bruker APEXII CCD
diffractometer
6341 independent reflections
Absorption correction: multi-scan
(SADABS; Bruker, 2014)
5621 reflections with I > 2σ(I)
Tmin = 0.88, Tmax = 0.93Rint = 0.028
60472 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.035239 restraints
wR(F2) = 0.094H-atom parameters constrained
S = 1.06Δρmax = 0.88 e Å3
6341 reflectionsΔρmin = 0.43 e Å3
386 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/UeqOcc. (<1)
Zr10.74138 (2)0.57267 (2)0.87471 (2)0.01961 (7)
N10.91400 (14)0.59393 (11)1.01612 (16)0.0266 (4)
N20.78112 (14)0.48191 (10)0.80846 (15)0.0269 (4)
C10.99978 (17)0.60769 (12)1.09499 (18)0.0236 (4)
C21.09941 (17)0.62794 (13)1.18946 (18)0.0269 (4)
C31.1146 (2)0.70152 (14)1.2619 (2)0.0370 (5)
H3A1.08250.69431.31600.044*
H3B1.07960.74831.21230.044*
C40.80110 (18)0.41727 (12)0.76840 (19)0.0268 (4)
C50.7144 (2)0.37526 (15)0.6595 (2)0.0385 (6)
H5A0.63950.37660.65580.046*
H5B0.70980.40020.58850.046*
C60.7577 (2)0.29049 (16)0.6724 (3)0.0472 (7)
H6A0.73370.26580.59550.057*
H6B0.73000.25800.71700.057*
C70.6755 (2)0.63050 (14)0.67304 (19)0.0354 (5)
C80.7897 (2)0.64930 (14)0.7346 (2)0.0327 (5)
C90.80379 (18)0.70401 (13)0.82182 (19)0.0308 (5)
C100.6973 (2)0.71903 (13)0.8136 (2)0.0346 (5)
C110.61826 (19)0.67272 (14)0.7208 (2)0.0367 (5)
C120.6217 (3)0.57888 (18)0.5670 (2)0.0609 (9)
H12A0.56530.54500.57240.091*
H12B0.67900.54580.56200.091*
H12C0.58570.61220.49760.091*
C130.8791 (3)0.6204 (2)0.7062 (3)0.0585 (8)
H13A0.86640.56430.68460.088*
H13B0.95260.62680.77410.088*
H13C0.87670.65110.64120.088*
C140.9082 (2)0.74771 (18)0.9002 (3)0.0543 (8)
H14A0.97370.71610.91240.081*
H14B0.90920.75730.97500.081*
H14C0.91010.79840.86470.081*
C150.6731 (3)0.78178 (17)0.8802 (3)0.0634 (9)
H15A0.68820.83400.85770.095*
H15B0.72090.77370.96350.095*
H15C0.59420.77870.86280.095*
C160.4921 (2)0.6800 (2)0.6629 (3)0.0680 (11)
H16A0.46660.71060.59110.102*
H16B0.46950.70700.71530.102*
H16C0.45850.62710.64480.102*
C17A0.7126 (3)0.56342 (19)1.0548 (3)0.0319 (5)0.811 (3)
C18A0.6044 (3)0.58128 (18)0.9616 (3)0.0337 (5)0.811 (3)
C19A0.5710 (3)0.51561 (19)0.8842 (3)0.0351 (5)0.811 (3)
C20A0.6543 (3)0.45762 (18)0.9317 (3)0.0334 (5)0.811 (3)
C21A0.7415 (2)0.48706 (18)1.0345 (2)0.0311 (5)0.811 (3)
C22A0.7769 (4)0.6134 (3)1.1598 (4)0.0651 (11)0.811 (3)
H22A0.73790.66371.15110.098*0.811 (3)
H22B0.78310.58571.22870.098*0.811 (3)
H22C0.85200.62341.16850.098*0.811 (3)
C23A0.5301 (5)0.6474 (3)0.9602 (6)0.091 (2)0.811 (3)
H23A0.57360.68491.02240.137*0.811 (3)
H23B0.49930.67460.88510.137*0.811 (3)
H23C0.46870.62600.97220.137*0.811 (3)
C24A0.4575 (3)0.5009 (4)0.7824 (4)0.085 (2)0.811 (3)
H24A0.41290.54950.76390.127*0.811 (3)
H24B0.46670.48470.71510.127*0.811 (3)
H24C0.41920.45890.80210.127*0.811 (3)
C25A0.6508 (4)0.3744 (2)0.8886 (4)0.0628 (11)0.811 (3)
H25A0.72100.34730.93920.094*0.811 (3)
H25B0.58790.34580.88940.094*0.811 (3)
H25C0.64110.37600.80920.094*0.811 (3)
C26A0.8461 (4)0.4421 (3)1.1119 (4)0.0615 (10)0.811 (3)
H26A0.89430.47521.17830.092*0.811 (3)
H26B0.82600.39391.13970.092*0.811 (3)
H26C0.88620.42791.06810.092*0.811 (3)
C17B0.6671 (9)0.5907 (6)1.0239 (9)0.0311 (8)0.189 (3)
C18B0.5724 (9)0.5715 (6)0.9191 (10)0.0315 (8)0.189 (3)
C19B0.5851 (10)0.4934 (6)0.8913 (12)0.0327 (8)0.189 (3)
C20B0.6885 (9)0.4642 (6)0.9776 (9)0.0333 (7)0.189 (3)
C21B0.7376 (9)0.5240 (6)1.0608 (10)0.0326 (7)0.189 (3)
C22B0.6830 (13)0.6651 (7)1.0924 (12)0.072 (3)0.189 (3)
H22D0.62250.70231.04730.109*0.189 (3)
H22E0.68170.65261.16530.109*0.189 (3)
H22F0.75520.68901.10940.109*0.189 (3)
C23B0.4652 (10)0.6185 (9)0.8646 (14)0.093 (3)0.189 (3)
H23D0.47860.67140.89920.139*0.189 (3)
H23E0.43920.62310.78090.139*0.189 (3)
H23F0.40800.59160.87810.139*0.189 (3)
C24B0.5026 (12)0.4475 (8)0.7885 (12)0.088 (3)0.189 (3)
H24D0.43770.48090.74170.133*0.189 (3)
H24E0.53820.43070.74130.133*0.189 (3)
H24F0.47810.40080.81520.133*0.189 (3)
C25B0.7292 (13)0.3811 (6)0.9867 (13)0.067 (2)0.189 (3)
H25D0.80330.37631.05420.100*0.189 (3)
H25E0.67680.34520.99570.100*0.189 (3)
H25F0.73430.36730.91620.100*0.189 (3)
C26B0.8391 (10)0.5150 (9)1.1768 (9)0.068 (2)0.189 (3)
H26D0.87350.46321.18090.102*0.189 (3)
H26E0.89310.55681.18680.102*0.189 (3)
H26F0.81690.51891.23840.102*0.189 (3)
C270.8172 (3)0.1359 (2)0.9157 (3)0.0627 (9)
H27A0.87070.17940.94920.094*
H27B0.74970.14730.92340.094*
H27C0.79710.13000.83340.094*
C280.8691 (3)0.0609 (2)0.9785 (3)0.0600 (8)
H28A0.81350.01770.94620.072*
H28B0.88840.06711.06140.072*
C290.9735 (3)0.0376 (2)0.9703 (3)0.0538 (7)
H29A0.95420.03280.88720.065*
H29B1.02920.08071.00370.065*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Zr10.01503 (10)0.01940 (10)0.02077 (10)0.00053 (6)0.00526 (7)0.00055 (7)
N10.0203 (8)0.0255 (8)0.0282 (9)0.0002 (7)0.0063 (7)0.0009 (7)
N20.0216 (8)0.0258 (8)0.0264 (9)0.0013 (7)0.0054 (7)0.0023 (7)
C10.0228 (10)0.0220 (9)0.0252 (9)0.0009 (7)0.0105 (8)0.0002 (8)
C20.0206 (9)0.0270 (10)0.0256 (10)0.0014 (8)0.0045 (8)0.0057 (8)
C30.0300 (11)0.0338 (12)0.0358 (12)0.0050 (9)0.0056 (10)0.0119 (10)
C40.0216 (10)0.0265 (10)0.0249 (10)0.0000 (8)0.0046 (8)0.0032 (8)
C50.0252 (11)0.0395 (13)0.0328 (12)0.0039 (9)0.0017 (9)0.0122 (10)
C60.0344 (13)0.0370 (13)0.0458 (15)0.0015 (10)0.0019 (11)0.0184 (11)
C70.0397 (13)0.0300 (11)0.0233 (10)0.0055 (9)0.0035 (9)0.0065 (9)
C80.0348 (12)0.0337 (11)0.0322 (11)0.0020 (9)0.0178 (10)0.0098 (9)
C90.0273 (11)0.0285 (10)0.0289 (10)0.0077 (8)0.0067 (9)0.0076 (8)
C100.0429 (13)0.0220 (10)0.0417 (13)0.0045 (9)0.0221 (11)0.0081 (9)
C110.0239 (11)0.0331 (12)0.0425 (13)0.0020 (9)0.0066 (10)0.0174 (10)
C120.084 (2)0.0494 (17)0.0263 (13)0.0163 (16)0.0060 (14)0.0002 (11)
C130.063 (2)0.0630 (19)0.072 (2)0.0142 (16)0.0507 (18)0.0194 (16)
C140.0448 (15)0.0492 (16)0.0435 (15)0.0241 (13)0.0010 (12)0.0156 (12)
C150.099 (3)0.0283 (13)0.086 (2)0.0079 (15)0.062 (2)0.0024 (14)
C160.0274 (14)0.066 (2)0.088 (3)0.0063 (13)0.0080 (15)0.0405 (19)
C17A0.0322 (10)0.0368 (10)0.0330 (9)0.0056 (8)0.0206 (8)0.0031 (8)
C18A0.0305 (10)0.0373 (10)0.0390 (10)0.0041 (8)0.0210 (8)0.0020 (9)
C19A0.0307 (10)0.0371 (11)0.0371 (10)0.0101 (9)0.0154 (8)0.0053 (10)
C20A0.0357 (10)0.0337 (10)0.0315 (10)0.0093 (8)0.0164 (8)0.0029 (9)
C21A0.0340 (10)0.0346 (10)0.0287 (9)0.0043 (8)0.0181 (8)0.0020 (8)
C22A0.075 (2)0.085 (3)0.056 (2)0.034 (2)0.0481 (19)0.0336 (19)
C23A0.105 (4)0.069 (3)0.167 (6)0.039 (3)0.120 (5)0.043 (3)
C24A0.037 (2)0.123 (5)0.061 (2)0.043 (3)0.0060 (19)0.038 (3)
C25A0.105 (3)0.0362 (17)0.069 (2)0.0208 (19)0.059 (2)0.0029 (16)
C26A0.067 (2)0.071 (2)0.0519 (19)0.0103 (18)0.0324 (17)0.0281 (17)
C17B0.0321 (12)0.0355 (12)0.0320 (12)0.0052 (11)0.0202 (11)0.0008 (11)
C18B0.0303 (12)0.0366 (12)0.0336 (12)0.0058 (11)0.0200 (11)0.0008 (11)
C19B0.0312 (12)0.0354 (12)0.0351 (12)0.0079 (11)0.0185 (11)0.0020 (12)
C20B0.0329 (11)0.0351 (11)0.0339 (11)0.0072 (10)0.0173 (10)0.0023 (11)
C21B0.0330 (11)0.0354 (12)0.0329 (11)0.0060 (10)0.0182 (10)0.0018 (11)
C22B0.086 (4)0.087 (5)0.059 (4)0.035 (4)0.046 (4)0.031 (4)
C23B0.105 (6)0.075 (5)0.165 (7)0.041 (5)0.119 (6)0.043 (5)
C24B0.044 (4)0.127 (6)0.063 (4)0.043 (4)0.002 (4)0.033 (5)
C25B0.089 (3)0.054 (3)0.066 (3)0.003 (3)0.045 (3)0.013 (3)
C26B0.073 (3)0.082 (3)0.057 (3)0.011 (3)0.036 (3)0.002 (3)
C270.0449 (17)0.088 (3)0.0529 (18)0.0055 (16)0.0207 (14)0.0056 (17)
C280.0496 (18)0.081 (2)0.0554 (19)0.0051 (16)0.0295 (15)0.0038 (17)
C290.0528 (17)0.069 (2)0.0460 (16)0.0117 (15)0.0282 (14)0.0030 (14)
Geometric parameters (Å, º) top
Zr1—N21.9532 (18)C18A—C23A1.496 (5)
Zr1—N12.2248 (17)C19A—C20A1.400 (4)
Zr1—C21A2.533 (3)C19A—C24A1.507 (4)
Zr1—C72.543 (2)C20A—C21A1.399 (4)
Zr1—C19A2.548 (4)C20A—C25A1.507 (5)
Zr1—C17A2.552 (3)C21A—C26A1.503 (5)
Zr1—C20A2.554 (3)C22A—H22A0.9800
Zr1—C82.556 (2)C22A—H22B0.9800
Zr1—C112.556 (2)C22A—H22C0.9800
Zr1—C20B2.560 (13)C23A—H23A0.9800
Zr1—C92.579 (2)C23A—H23B0.9800
Zr1—C21B2.581 (12)C23A—H23C0.9800
N1—C11.158 (3)C24A—H24A0.9800
N2—C41.292 (3)C24A—H24B0.9800
C1—C21.377 (3)C24A—H24C0.9800
C2—C4i1.414 (3)C25A—H25A0.9800
C2—C31.516 (3)C25A—H25B0.9800
C3—C6i1.531 (3)C25A—H25C0.9800
C3—H3A0.9900C26A—H26A0.9800
C3—H3B0.9900C26A—H26B0.9800
C4—C2i1.414 (3)C26A—H26C0.9800
C4—C51.529 (3)C17B—C21B1.407 (11)
C5—C61.527 (3)C17B—C18B1.405 (11)
C5—H5A0.9900C17B—C22B1.499 (11)
C5—H5B0.9900C18B—C19B1.399 (11)
C6—C3i1.531 (3)C18B—C23B1.508 (11)
C6—H6A0.9900C19B—C20B1.412 (11)
C6—H6B0.9900C19B—C24B1.499 (11)
C7—C111.392 (4)C20B—C21B1.402 (11)
C7—C81.402 (3)C20B—C25B1.494 (11)
C7—C121.503 (4)C21B—C26B1.501 (11)
C8—C91.407 (3)C22B—H22D0.9800
C8—C131.498 (4)C22B—H22E0.9800
C9—C101.413 (3)C22B—H22F0.9800
C9—C141.494 (3)C23B—H23D0.9800
C10—C111.418 (4)C23B—H23E0.9800
C10—C151.498 (4)C23B—H23F0.9800
C11—C161.511 (3)C24B—H24D0.9800
C12—H12A0.9800C24B—H24E0.9800
C12—H12B0.9800C24B—H24F0.9800
C12—H12C0.9800C25B—H25D0.9800
C13—H13A0.9800C25B—H25E0.9800
C13—H13B0.9800C25B—H25F0.9800
C13—H13C0.9800C26B—H26D0.9800
C14—H14A0.9800C26B—H26E0.9800
C14—H14B0.9800C26B—H26F0.9800
C14—H14C0.9800C27—C281.495 (5)
C15—H15A0.9800C27—H27A0.9800
C15—H15B0.9800C27—H27B0.9800
C15—H15C0.9800C27—H27C0.9800
C16—H16A0.9800C28—C291.513 (4)
C16—H16B0.9800C28—H28A0.9900
C16—H16C0.9800C28—H28B0.9900
C17A—C21A1.408 (4)C29—C29ii1.486 (7)
C17A—C18A1.430 (5)C29—H29A0.9900
C17A—C22A1.494 (5)C29—H29B0.9900
C18A—C19A1.424 (5)
N2—Zr1—N195.49 (7)C11—C16—H16C109.5
N2—Zr1—C21A91.04 (9)H16A—C16—H16C109.5
N1—Zr1—C21A79.18 (8)H16B—C16—H16C109.5
N2—Zr1—C783.23 (8)C21A—C17A—C18A107.3 (3)
N1—Zr1—C7121.36 (7)C21A—C17A—C22A126.6 (3)
C21A—Zr1—C7159.03 (9)C18A—C17A—C22A125.9 (3)
N2—Zr1—C19A99.38 (10)C21A—C17A—Zr173.18 (16)
N1—Zr1—C19A129.90 (9)C18A—C17A—Zr174.91 (17)
C21A—Zr1—C19A53.14 (10)C22A—C17A—Zr1122.3 (2)
C7—Zr1—C19A107.80 (10)C19A—C18A—C17A107.3 (3)
N2—Zr1—C17A123.19 (9)C19A—C18A—C23A125.7 (4)
N1—Zr1—C17A78.34 (9)C17A—C18A—C23A125.6 (4)
C21A—Zr1—C17A32.16 (10)C19A—C18A—Zr172.6 (2)
C7—Zr1—C17A147.37 (10)C17A—C18A—Zr172.74 (17)
C19A—Zr1—C17A53.59 (10)C23A—C18A—Zr1130.5 (2)
N2—Zr1—C20A77.76 (9)C20A—C19A—C18A108.0 (3)
N1—Zr1—C20A109.17 (9)C20A—C19A—C24A123.4 (4)
C21A—Zr1—C20A31.92 (9)C18A—C19A—C24A127.5 (4)
C7—Zr1—C20A127.27 (9)C20A—C19A—Zr174.33 (19)
C19A—Zr1—C20A31.84 (10)C18A—C19A—Zr175.12 (18)
C17A—Zr1—C20A53.10 (10)C24A—C19A—Zr1126.1 (3)
N2—Zr1—C882.51 (8)C19A—C20A—C21A108.6 (3)
N1—Zr1—C889.57 (7)C19A—C20A—C25A127.6 (3)
C21A—Zr1—C8166.47 (9)C21A—C20A—C25A123.7 (3)
C7—Zr1—C831.92 (8)C19A—C20A—Zr173.83 (19)
C19A—Zr1—C8139.59 (9)C21A—C20A—Zr173.19 (16)
C17A—Zr1—C8152.17 (9)C25A—C20A—Zr1122.8 (2)
C20A—Zr1—C8153.83 (9)C20A—C21A—C17A108.8 (3)
N2—Zr1—C11112.67 (8)C20A—C21A—C26A124.8 (3)
N1—Zr1—C11126.12 (7)C17A—C21A—C26A126.4 (3)
C21A—Zr1—C11140.67 (9)C20A—C21A—Zr174.88 (16)
C7—Zr1—C1131.69 (9)C17A—C21A—Zr174.66 (16)
C19A—Zr1—C1190.96 (9)C26A—C21A—Zr1118.8 (2)
C17A—Zr1—C11116.05 (10)C17A—C22A—H22A109.5
C20A—Zr1—C11120.83 (9)C17A—C22A—H22B109.5
C8—Zr1—C1152.69 (8)H22A—C22A—H22B109.5
N2—Zr1—C20B82.5 (3)C17A—C22A—H22C109.5
N1—Zr1—C20B97.0 (2)H22A—C22A—H22C109.5
C7—Zr1—C20B140.1 (2)H22B—C22A—H22C109.5
C8—Zr1—C20B164.1 (3)C18A—C23A—H23A109.5
C11—Zr1—C20B130.3 (2)C18A—C23A—H23B109.5
N2—Zr1—C9111.58 (8)H23A—C23A—H23B109.5
N1—Zr1—C974.68 (7)C18A—C23A—H23C109.5
C21A—Zr1—C9146.65 (9)H23A—C23A—H23C109.5
C7—Zr1—C952.71 (7)H23B—C23A—H23C109.5
C19A—Zr1—C9138.82 (9)C19A—C24A—H24A109.5
C17A—Zr1—C9120.38 (9)C19A—C24A—H24B109.5
C20A—Zr1—C9169.86 (9)H24A—C24A—H24B109.5
C8—Zr1—C931.80 (8)C19A—C24A—H24C109.5
C11—Zr1—C952.77 (7)H24A—C24A—H24C109.5
C20B—Zr1—C9164.0 (2)H24B—C24A—H24C109.5
N2—Zr1—C21B107.1 (2)C20A—C25A—H25A109.5
N1—Zr1—C21B75.2 (2)C20A—C25A—H25B109.5
C7—Zr1—C21B160.3 (3)H25A—C25A—H25B109.5
C8—Zr1—C21B162.5 (2)C20A—C25A—H25C109.5
C11—Zr1—C21B131.1 (2)H25A—C25A—H25C109.5
C20B—Zr1—C21B31.6 (3)H25B—C25A—H25C109.5
C9—Zr1—C21B132.5 (2)C21A—C26A—H26A109.5
C1—N1—Zr1174.30 (18)C21A—C26A—H26B109.5
C4—N2—Zr1173.79 (17)H26A—C26A—H26B109.5
N1—C1—C2176.8 (2)C21A—C26A—H26C109.5
C1—C2—C4i124.56 (19)H26A—C26A—H26C109.5
C1—C2—C3123.53 (19)H26B—C26A—H26C109.5
C4i—C2—C3111.91 (18)C21B—C17B—C18B108.1 (9)
C2—C3—C6i102.16 (19)C21B—C17B—C22B125.6 (8)
C2—C3—H3A111.3C18B—C17B—C22B125.9 (8)
C6i—C3—H3A111.3C21B—C17B—Zr174.1 (7)
C2—C3—H3B111.3C18B—C17B—Zr174.8 (7)
C6i—C3—H3B111.3C22B—C17B—Zr1123.2 (10)
H3A—C3—H3B109.2C19B—C18B—C17B107.7 (10)
N2—C4—C2i129.70 (19)C19B—C18B—C23B125.5 (8)
N2—C4—C5123.64 (19)C17B—C18B—C23B125.0 (8)
C2i—C4—C5106.65 (18)C19B—C18B—Zr174.0 (8)
C6—C5—C4104.20 (18)C17B—C18B—Zr173.7 (7)
C6—C5—H5A110.9C23B—C18B—Zr1129.7 (10)
C4—C5—H5A110.9C20B—C19B—C18B108.5 (10)
C6—C5—H5B110.9C20B—C19B—C24B125.3 (8)
C4—C5—H5B110.9C18B—C19B—C24B126.2 (8)
H5A—C5—H5B108.9C20B—C19B—Zr172.9 (8)
C5—C6—C3i104.6 (2)C18B—C19B—Zr174.7 (8)
C5—C6—H6A110.8C24B—C19B—Zr1119.2 (12)
C3i—C6—H6A110.8C19B—C20B—C21B107.4 (9)
C5—C6—H6B110.8C19B—C20B—C25B125.6 (8)
C3i—C6—H6B110.8C21B—C20B—C25B126.4 (8)
H6A—C6—H6B108.9C19B—C20B—Zr175.3 (8)
C11—C7—C8108.6 (2)C21B—C20B—Zr175.0 (7)
C11—C7—C12125.2 (3)C25B—C20B—Zr1122.2 (10)
C8—C7—C12126.1 (3)C17B—C21B—C20B108.2 (9)
C11—C7—Zr174.70 (13)C17B—C21B—C26B125.5 (8)
C8—C7—Zr174.57 (13)C20B—C21B—C26B125.8 (8)
C12—C7—Zr1120.79 (17)C17B—C21B—Zr174.3 (7)
C7—C8—C9108.1 (2)C20B—C21B—Zr173.4 (7)
C7—C8—C13125.5 (3)C26B—C21B—Zr1124.7 (10)
C9—C8—C13126.3 (3)C17B—C22B—H22D109.5
C7—C8—Zr173.51 (13)C17B—C22B—H22E109.5
C9—C8—Zr174.99 (13)H22D—C22B—H22E109.5
C13—C8—Zr1120.81 (17)C17B—C22B—H22F109.5
C8—C9—C10107.8 (2)H22D—C22B—H22F109.5
C8—C9—C14127.4 (3)H22E—C22B—H22F109.5
C10—C9—C14124.4 (3)C18B—C23B—H23D109.5
C8—C9—Zr173.21 (12)C18B—C23B—H23E109.5
C10—C9—Zr174.23 (12)H23D—C23B—H23E109.5
C14—C9—Zr1124.35 (15)C18B—C23B—H23F109.5
C9—C10—C11107.4 (2)H23D—C23B—H23F109.5
C9—C10—C15124.8 (3)H23E—C23B—H23F109.5
C11—C10—C15127.2 (3)C19B—C24B—H24D109.5
C9—C10—Zr173.99 (12)C19B—C24B—H24E109.5
C11—C10—Zr172.98 (13)H24D—C24B—H24E109.5
C15—C10—Zr1125.56 (18)C19B—C24B—H24F109.5
C7—C11—C10108.1 (2)H24D—C24B—H24F109.5
C7—C11—C16123.2 (3)H24E—C24B—H24F109.5
C10—C11—C16127.3 (3)C20B—C25B—H25D109.5
C7—C11—Zr173.61 (13)C20B—C25B—H25E109.5
C10—C11—Zr174.99 (13)H25D—C25B—H25E109.5
C16—C11—Zr1127.92 (18)C20B—C25B—H25F109.5
C7—C12—H12A109.5H25D—C25B—H25F109.5
C7—C12—H12B109.5H25E—C25B—H25F109.5
H12A—C12—H12B109.5C21B—C26B—H26D109.5
C7—C12—H12C109.5C21B—C26B—H26E109.5
H12A—C12—H12C109.5H26D—C26B—H26E109.5
H12B—C12—H12C109.5C21B—C26B—H26F109.5
C8—C13—H13A109.5H26D—C26B—H26F109.5
C8—C13—H13B109.5H26E—C26B—H26F109.5
H13A—C13—H13B109.5C28—C27—H27A109.5
C8—C13—H13C109.5C28—C27—H27B109.5
H13A—C13—H13C109.5H27A—C27—H27B109.5
H13B—C13—H13C109.5C28—C27—H27C109.5
C9—C14—H14A109.5H27A—C27—H27C109.5
C9—C14—H14B109.5H27B—C27—H27C109.5
H14A—C14—H14B109.5C27—C28—C29113.4 (3)
C9—C14—H14C109.5C27—C28—H28A108.9
H14A—C14—H14C109.5C29—C28—H28A108.9
H14B—C14—H14C109.5C27—C28—H28B108.9
C10—C15—H15A109.5C29—C28—H28B108.9
C10—C15—H15B109.5H28A—C28—H28B107.7
H15A—C15—H15B109.5C29ii—C29—C28115.0 (3)
C10—C15—H15C109.5C29ii—C29—H29A108.5
H15A—C15—H15C109.5C28—C29—H29A108.5
H15B—C15—H15C109.5C29ii—C29—H29B108.5
C11—C16—H16A109.5C28—C29—H29B108.5
C11—C16—H16B109.5H29A—C29—H29B107.5
H16A—C16—H16B109.5
C1—C2—C3—C6i163.3 (2)Zr1—C19A—C20A—C21A65.5 (2)
C4i—C2—C3—C6i17.5 (3)C18A—C19A—C20A—C25A172.6 (3)
N2—C4—C5—C6159.1 (2)C24A—C19A—C20A—C25A4.0 (6)
C2i—C4—C5—C621.3 (3)Zr1—C19A—C20A—C25A119.2 (3)
C4—C5—C6—C3i31.9 (3)C18A—C19A—C20A—Zr168.2 (2)
C11—C7—C8—C90.1 (3)C24A—C19A—C20A—Zr1123.3 (4)
C12—C7—C8—C9175.2 (2)C19A—C20A—C21A—C17A1.7 (3)
Zr1—C7—C8—C967.62 (15)C25A—C20A—C21A—C17A173.8 (3)
C11—C7—C8—C13176.0 (2)Zr1—C20A—C21A—C17A67.6 (2)
C12—C7—C8—C130.7 (4)C19A—C20A—C21A—C26A179.3 (3)
Zr1—C7—C8—C13116.4 (2)C25A—C20A—C21A—C26A3.8 (5)
C11—C7—C8—Zr167.57 (16)Zr1—C20A—C21A—C26A114.8 (3)
C12—C7—C8—Zr1117.1 (2)C19A—C20A—C21A—Zr165.9 (2)
C7—C8—C9—C100.1 (2)C25A—C20A—C21A—Zr1118.6 (3)
C13—C8—C9—C10175.8 (2)C18A—C17A—C21A—C20A0.0 (3)
Zr1—C8—C9—C1066.71 (15)C22A—C17A—C21A—C20A174.2 (3)
C7—C8—C9—C14172.6 (2)Zr1—C17A—C21A—C20A67.7 (2)
C13—C8—C9—C143.3 (4)C18A—C17A—C21A—C26A177.6 (3)
Zr1—C8—C9—C14120.7 (2)C22A—C17A—C21A—C26A3.4 (5)
C7—C8—C9—Zr166.63 (16)Zr1—C17A—C21A—C26A114.7 (3)
C13—C8—C9—Zr1117.4 (2)C18A—C17A—C21A—Zr167.7 (2)
C8—C9—C10—C110.2 (2)C22A—C17A—C21A—Zr1118.1 (3)
C14—C9—C10—C11173.0 (2)C21B—C17B—C18B—C19B0.4 (16)
Zr1—C9—C10—C1165.84 (15)C22B—C17B—C18B—C19B173.0 (14)
C8—C9—C10—C15171.5 (2)Zr1—C17B—C18B—C19B66.8 (11)
C14—C9—C10—C151.4 (4)C21B—C17B—C18B—C23B165.3 (14)
Zr1—C9—C10—C15122.5 (2)C22B—C17B—C18B—C23B7 (2)
C8—C9—C10—Zr166.03 (15)Zr1—C17B—C18B—C23B127.5 (14)
C14—C9—C10—Zr1121.1 (2)C21B—C17B—C18B—Zr167.2 (9)
C8—C7—C11—C100.2 (3)C22B—C17B—C18B—Zr1120.3 (14)
C12—C7—C11—C10175.2 (2)C17B—C18B—C19B—C20B0.9 (17)
Zr1—C7—C11—C1067.66 (16)C23B—C18B—C19B—C20B166.6 (15)
C8—C7—C11—C16167.5 (2)Zr1—C18B—C19B—C20B65.6 (11)
C12—C7—C11—C167.8 (4)C17B—C18B—C19B—C24B178.2 (17)
Zr1—C7—C11—C16125.0 (2)C23B—C18B—C19B—C24B13 (3)
C8—C7—C11—Zr167.49 (16)Zr1—C18B—C19B—C24B115.3 (18)
C12—C7—C11—Zr1117.2 (2)C17B—C18B—C19B—Zr166.6 (9)
C9—C10—C11—C70.2 (3)C23B—C18B—C19B—Zr1127.8 (15)
C15—C10—C11—C7171.2 (2)C18B—C19B—C20B—C21B1.9 (17)
Zr1—C10—C11—C766.74 (16)C24B—C19B—C20B—C21B177.2 (16)
C9—C10—C11—C16166.9 (2)Zr1—C19B—C20B—C21B68.7 (9)
C15—C10—C11—C164.5 (4)C18B—C19B—C20B—C25B173.9 (15)
Zr1—C10—C11—C16126.5 (3)C24B—C19B—C20B—C25B5 (3)
C9—C10—C11—Zr166.52 (15)Zr1—C19B—C20B—C25B119.3 (15)
C15—C10—C11—Zr1122.1 (3)C18B—C19B—C20B—Zr166.8 (11)
C21A—C17A—C18A—C19A1.7 (3)C24B—C19B—C20B—Zr1114.1 (18)
C22A—C17A—C18A—C19A175.9 (3)C18B—C17B—C21B—C20B1.6 (15)
Zr1—C17A—C18A—C19A64.9 (2)C22B—C17B—C21B—C20B174.2 (13)
C21A—C17A—C18A—C23A165.6 (3)Zr1—C17B—C21B—C20B66.1 (9)
C22A—C17A—C18A—C23A8.6 (5)C18B—C17B—C21B—C26B170.6 (13)
Zr1—C17A—C18A—C23A127.8 (3)C22B—C17B—C21B—C26B2 (2)
C21A—C17A—C18A—Zr166.56 (19)Zr1—C17B—C21B—C26B121.8 (14)
C22A—C17A—C18A—Zr1119.2 (3)C18B—C17B—C21B—Zr167.7 (9)
C17A—C18A—C19A—C20A2.7 (4)C22B—C17B—C21B—Zr1119.7 (14)
C23A—C18A—C19A—C20A164.5 (3)C19B—C20B—C21B—C17B2.2 (16)
Zr1—C18A—C19A—C20A67.7 (2)C25B—C20B—C21B—C17B174.0 (14)
C17A—C18A—C19A—C24A170.6 (4)Zr1—C20B—C21B—C17B66.7 (9)
C23A—C18A—C19A—C24A3.4 (6)C19B—C20B—C21B—C26B170.0 (14)
Zr1—C18A—C19A—C24A124.4 (4)C25B—C20B—C21B—C26B2 (2)
C17A—C18A—C19A—Zr165.0 (2)Zr1—C20B—C21B—C26B121.1 (14)
C23A—C18A—C19A—Zr1127.8 (4)C19B—C20B—C21B—Zr168.9 (11)
C18A—C19A—C20A—C21A2.7 (4)C25B—C20B—C21B—Zr1119.2 (15)
C24A—C19A—C20A—C21A171.3 (4)C27—C28—C29—C29ii178.9 (4)
Symmetry codes: (i) x+2, y+1, z+2; (ii) x+2, y, z+2.

Experimental details

Crystal data
Chemical formula[Zr2(C10H15)4(C6H6N2)2]·C6H14
Mr1021.74
Crystal system, space groupMonoclinic, P21/c
Temperature (K)150
a, b, c (Å)13.4862 (8), 16.9048 (11), 13.0151 (8)
β (°) 117.7232 (15)
V3)2626.6 (3)
Z2
Radiation typeMo Kα
µ (mm1)0.44
Crystal size (mm)0.35 × 0.27 × 0.18
Data collection
DiffractometerBruker APEXII CCD
Absorption correctionMulti-scan
(SADABS; Bruker, 2014)
Tmin, Tmax0.88, 0.93
No. of measured, independent and
observed [I > 2σ(I)] reflections
60472, 6341, 5621
Rint0.028
(sin θ/λ)max1)0.661
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.035, 0.094, 1.06
No. of reflections6341
No. of parameters386
No. of restraints239
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.88, 0.43

Computer programs: APEX2 (Bruker, 2014), SAINT (Bruker, 2014), SHELXS97 (Sheldrick, 2008), SHELXL2014 (Sheldrick, 2015), XP in SHELXTL (Sheldrick, 2008) and Mercury (Macrae et al., 2006), publCIF (Westrip, 2010).

 

Acknowledgements

We thank our technical staff for assistance. This work was supported by the Deutsche Forschungsgemeinschaft (grant No. RO1269/9-1).

References

First citationBecker, L., Arndt, P., Spannenberg, A., Jiao, H. & Rosenthal, U. (2015). Angew. Chem. Int. Ed. 54, 5523–5526.  Web of Science CSD CrossRef CAS Google Scholar
First citationBecker, L., Haehnel, M., Spannenberg, A., Arndt, P. & Rosenthal, U. (2015). Chem. Eur. J. 21, 3242–3248.  Web of Science CSD CrossRef CAS PubMed Google Scholar
First citationBruker (2014). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationMacrae, C. F., Edgington, P. R., McCabe, P., Pidcock, E., Shields, G. P., Taylor, R., Towler, M. & van de Streek, J. (2006). J. Appl. Cryst. 39, 453–457.  Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
First citationSchroeder, H. E. & Rigby, G. W. (1949). J. Am. Chem. Soc. 71, 2205–2209.  CrossRef CAS Web of Science Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSheldrick, G. M. (2015). Acta Cryst. C71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar
First citationThorpe, J. F. (1909). J. Chem. Soc. Trans. 95, 1901–1903.  CrossRef CAS Google Scholar
First citationWestrip, S. P. (2010). J. Appl. Cryst. 43, 920–925.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds