metal-organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Crystal structure of 8-iodo­quinolinium tetra­chlorido­aurate(III)

aDepartment of Chemistry, University of South Dakota, 414 E. Clark St., Vermillion, SD 57069, USA
*Correspondence e-mail: jhoefelm@usd.edu

Edited by M. Weil, Vienna University of Technology, Austria (Received 3 November 2015; accepted 25 November 2015; online 12 December 2015)

The structure of the title salt, (C9H7IN)[AuCl4], is comprised of planar 8-iodo­quinolinium cations (r.m.s. deviation = 0.05 Å) and square-planar tetra­chlorido­aurate(III) anions. The asymmetric unit contains one 8-iodo­quinolinium cation and two halfs of [AuCl4] anions, in each case with the central AuIII atom located on an inversion center. Inter­molecular halogen–halogen contacts were found between centrosymmetric pairs of I [3.6178 (4) Å] and Cl atoms [3.1484 (11), 3.3762 (13), and 3.4935 (12) Å]. Inter­molecular N—H⋯Cl and C—H⋯Cl hydrogen bonding is also found in the structure. These inter­actions lead to the formation of a three-dimensional network. Additionally, there is an intra­molecular N—H⋯I hydrogen bond between the aromatic iminium and iodine. There are no aurophilic inter­actions or short contacts between I and Au atoms, and there are no notable π-stacking inter­actions between the aromatic cations.

1. Related literature

There are only two reported structures containing the 8-iodo­quinolinium cation, viz. 8-iodo­quinolinium chloride dihydrate (Son & Hoefelmeyer, 2008a[Son, J.-H. & Hoefelmeyer, J. D. (2008a). Acta Cryst. E64, o2076.]) and 8-iodo­quinolinium triiodide tetra­hydro­furan solvate (Son & Hoefelmeyer, 2008b[Son, J.-H. & Hoefelmeyer, J. D. (2008b). Acta Cryst. E64, o2077.]). Recently, the zwitterionic 8-iodo­quinoline N-oxide was also reported (Hwang et al., 2014[Hwang, H., Kim, J., Jeong, J. & Chang, S. (2014). J. Am. Chem. Soc. 136, 10770-10776.]).

[Scheme 1]

2. Experimental

2.1. Crystal data

  • (C9H7IN)[AuCl4]

  • Mr = 594.82

  • Triclinic, [P \overline 1]

  • a = 7.6299 (5) Å

  • b = 7.8609 (5) Å

  • c = 11.7125 (7) Å

  • α = 80.160 (1)°

  • β = 78.143 (1)°

  • γ = 85.178 (1)°

  • V = 676.52 (7) Å3

  • Z = 2

  • Mo Kα radiation

  • μ = 13.92 mm−1

  • T = 100 K

  • 0.16 × 0.11 × 0.04 mm

2.2. Data collection

  • Bruker APEXII CCD diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 2009[Bruker (2009). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]) Tmin = 0.174, Tmax = 0.573

  • 6855 measured reflections

  • 2482 independent reflections

  • 2407 reflections with I > 2σ(I)

  • Rint = 0.024

2.3. Refinement

  • R[F2 > 2σ(F2)] = 0.016

  • wR(F2) = 0.040

  • S = 1.04

  • 2482 reflections

  • 152 parameters

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 1.19 e Å−3

  • Δρmin = −0.94 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
N1—H99⋯Cl3i 0.80 (5) 2.62 (5) 3.287 (3) 142 (4)
N1—H99⋯I1 0.80 (5) 2.81 (5) 3.264 (3) 118 (4)
C2—H2⋯Cl1ii 0.93 2.79 3.493 (4) 133
C3—H3⋯Cl1iii 0.93 2.81 3.722 (4) 168
Symmetry codes: (i) x+1, y+1, z+1; (ii) x+1, y+1, z; (iii) -x+2, -y, -z+1.

Data collection: APEX2 (Bruker, 2009[Bruker (2009). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2009[Bruker (2009). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL2014 (Sheldrick, 2015[Sheldrick, G. M. (2015). Acta Cryst. C71, 3-8.]); molecular graphics: Mercury (Macrea et al., 2006[Macrae, C. F., Edgington, P. R., McCabe, P., Pidcock, E., Shields, G. P., Taylor, R., Towler, M. & van de Streek, J. (2006). J. Appl. Cryst. 39, 453-457.]); software used to prepare material for publication: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]).

Supporting information


Synthesis and crystallization top

In a 4 ml vial, HAuCl4·3H2O (0.12 g, 0.33 mmol), 8-iodo­quinoline (0.10 g, 0.39 mmol) and aceto­nitrile (2 ml) were combined and sonicated for 30 minutes. The 4 ml vial was placed in a 20 ml vial with 5 ml di­ethyl­ether. Diffusion of the ether vapor into the solution within the smaller vial gave yellow-green crystals, mostly with a cuboid-like form.

Refinement top

C-bound H atoms were placed in ideal positions and refined as riding atoms (C—H = 0.93 Å; Uiso(H) = 1.2Ueq(H)). The H atom bound to the N atom was located from a difference map and refined freely. The highest remaining electron density peak was located 0.20 Å from H6. A transmission factor of 0.62 was calculated using the ratio of Tmin (0.4593) to Tmax (0.7452) taken from the absorption correction output file, whereas experimental Tmin (0.174) and Tmax (0.573) give a transmission factor of 0.30.

Related literature top

There are only two reported structures containing the 8-iodoquinolinium cation, viz. 8-iodoquinolinium chloride dihydrate (Son & Hoefelmeyer, 2008a) and 8-iodoquinolinium triiodide tetrahydrofuran solvate (Son & Hoefelmeyer, 2008b). Recently, the zwitterionic 8-iodoquinoline N-oxide was also reported (Hwang et al., 2014).

Structure description top

There are only two reported structures containing the 8-iodoquinolinium cation, viz. 8-iodoquinolinium chloride dihydrate (Son & Hoefelmeyer, 2008a) and 8-iodoquinolinium triiodide tetrahydrofuran solvate (Son & Hoefelmeyer, 2008b). Recently, the zwitterionic 8-iodoquinoline N-oxide was also reported (Hwang et al., 2014).

Synthesis and crystallization top

In a 4 ml vial, HAuCl4·3H2O (0.12 g, 0.33 mmol), 8-iodo­quinoline (0.10 g, 0.39 mmol) and aceto­nitrile (2 ml) were combined and sonicated for 30 minutes. The 4 ml vial was placed in a 20 ml vial with 5 ml di­ethyl­ether. Diffusion of the ether vapor into the solution within the smaller vial gave yellow-green crystals, mostly with a cuboid-like form.

Refinement details top

C-bound H atoms were placed in ideal positions and refined as riding atoms (C—H = 0.93 Å; Uiso(H) = 1.2Ueq(H)). The H atom bound to the N atom was located from a difference map and refined freely. The highest remaining electron density peak was located 0.20 Å from H6. A transmission factor of 0.62 was calculated using the ratio of Tmin (0.4593) to Tmax (0.7452) taken from the absorption correction output file, whereas experimental Tmin (0.174) and Tmax (0.573) give a transmission factor of 0.30.

Computing details top

Data collection: APEX2 (Bruker, 2009); cell refinement: SAINT (Bruker, 2009); data reduction: SAINT (Bruker, 2009); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL2014 (Sheldrick, 2015); molecular graphics: Mercury (Macrea et al., 2006); software used to prepare material for publication: SHELXTL (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. The expanded asymmetric unit of the crystal shown with intermolecular halogen···halogen contacts and hydrogen bonds as dashed lines. [Symmetry codes: (i) 1 - x, 2 - y, 2 - z; (ii) 2 - x, -y, 1 - z; (iii) 1 - x, -1 - y, 1 - z; (iv) -x, -y - 1, -z; (v) x + 1, y + 1, z + 1; (vi) x + 1, y + 1, z; (vii) -x + 2, -y, -z + 1.]
[Figure 2] Fig. 2. The centrosymmetric unit cell of the title compound. Displacement ellipsoids are drawn at the 50% probability level.
[Figure 3] Fig. 3. Examination of the nearest distances (Å) between iodine and Au—Cl bond centroids. These distances are beyond the sum of the van der Waals radii of the atoms.
8-Iodoquinolinium tetrachloridoaurate(III) top
Crystal data top
(C9H7IN)[AuCl4]Z = 2
Mr = 594.82F(000) = 536
Triclinic, P1Dx = 2.920 Mg m3
a = 7.6299 (5) ÅMo Kα radiation, λ = 0.71073 Å
b = 7.8609 (5) ÅCell parameters from 5508 reflections
c = 11.7125 (7) Åθ = 2.6–25.6°
α = 80.160 (1)°µ = 13.92 mm1
β = 78.143 (1)°T = 100 K
γ = 85.178 (1)°Plate, light green
V = 676.52 (7) Å30.16 × 0.11 × 0.04 mm
Data collection top
Bruker APEXII CCD
diffractometer
2407 reflections with I > 2σ(I)
φ and ω scansRint = 0.024
Absorption correction: multi-scan
(SADABS; Bruker, 2009)
θmax = 25.4°, θmin = 1.8°
Tmin = 0.174, Tmax = 0.573h = 99
6855 measured reflectionsk = 99
2482 independent reflectionsl = 1414
Refinement top
Refinement on F20 restraints
Least-squares matrix: fullHydrogen site location: mixed
R[F2 > 2σ(F2)] = 0.016H atoms treated by a mixture of independent and constrained refinement
wR(F2) = 0.040 w = 1/[σ2(Fo2) + (0.019P)2 + 0.5573P]
where P = (Fo2 + 2Fc2)/3
S = 1.04(Δ/σ)max = 0.001
2482 reflectionsΔρmax = 1.19 e Å3
152 parametersΔρmin = 0.94 e Å3
Crystal data top
(C9H7IN)[AuCl4]γ = 85.178 (1)°
Mr = 594.82V = 676.52 (7) Å3
Triclinic, P1Z = 2
a = 7.6299 (5) ÅMo Kα radiation
b = 7.8609 (5) ŵ = 13.92 mm1
c = 11.7125 (7) ÅT = 100 K
α = 80.160 (1)°0.16 × 0.11 × 0.04 mm
β = 78.143 (1)°
Data collection top
Bruker APEXII CCD
diffractometer
2482 independent reflections
Absorption correction: multi-scan
(SADABS; Bruker, 2009)
2407 reflections with I > 2σ(I)
Tmin = 0.174, Tmax = 0.573Rint = 0.024
6855 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0160 restraints
wR(F2) = 0.040H atoms treated by a mixture of independent and constrained refinement
S = 1.04Δρmax = 1.19 e Å3
2482 reflectionsΔρmin = 0.94 e Å3
152 parameters
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
I10.54637 (3)0.86196 (3)0.88748 (2)0.01671 (7)
Au20.00000.00000.00000.01009 (6)
Au10.50000.00000.50000.00870 (6)
Cl30.07524 (11)0.00792 (10)0.20000 (7)0.01714 (17)
Cl20.20893 (10)0.01686 (10)0.47699 (7)0.01590 (17)
Cl40.00376 (12)0.29552 (11)0.02554 (8)0.01672 (18)
C80.5841 (5)0.6220 (4)0.8290 (3)0.0137 (7)
C70.4426 (5)0.5185 (5)0.8453 (3)0.0167 (8)
H70.33210.55070.88870.020*
C60.4621 (5)0.3624 (5)0.7968 (3)0.0201 (8)
H60.36550.29230.80920.024*
C50.6244 (5)0.3160 (5)0.7317 (3)0.0173 (8)
H50.63590.21550.69820.021*
C100.7737 (5)0.4170 (4)0.7144 (3)0.0136 (7)
C40.9432 (5)0.3733 (5)0.6493 (3)0.0163 (7)
H40.95890.27410.61420.020*
N10.9009 (4)0.6662 (4)0.7494 (3)0.0146 (6)
C90.7541 (5)0.5716 (5)0.7656 (3)0.0134 (7)
Cl10.49806 (11)0.29443 (10)0.53814 (8)0.01473 (17)
C31.0864 (5)0.4757 (5)0.6369 (3)0.0172 (8)
H31.19830.44580.59420.021*
C21.0612 (5)0.6228 (5)0.6887 (3)0.0166 (8)
H21.15690.69250.68120.020*
H990.890 (6)0.755 (6)0.776 (4)0.026 (12)*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
I10.01797 (12)0.01529 (12)0.01717 (12)0.00269 (9)0.00223 (9)0.00651 (9)
Au20.01106 (10)0.00938 (10)0.01044 (10)0.00048 (7)0.00355 (7)0.00150 (7)
Au10.00681 (9)0.01063 (10)0.00881 (10)0.00010 (7)0.00208 (7)0.00155 (7)
Cl30.0245 (4)0.0160 (4)0.0109 (4)0.0024 (3)0.0030 (3)0.0017 (3)
Cl20.0086 (4)0.0191 (4)0.0211 (4)0.0000 (3)0.0055 (3)0.0036 (3)
Cl40.0233 (4)0.0104 (4)0.0166 (4)0.0010 (3)0.0040 (4)0.0020 (3)
C80.0163 (17)0.0134 (17)0.0117 (17)0.0026 (14)0.0041 (14)0.0028 (13)
C70.0180 (18)0.0184 (18)0.0124 (17)0.0002 (14)0.0022 (14)0.0001 (14)
C60.025 (2)0.0210 (19)0.0133 (18)0.0035 (16)0.0067 (15)0.0009 (15)
C50.027 (2)0.0131 (17)0.0139 (18)0.0024 (15)0.0092 (15)0.0016 (14)
C100.0198 (18)0.0127 (17)0.0077 (16)0.0013 (14)0.0048 (14)0.0014 (13)
C40.0235 (19)0.0133 (17)0.0130 (17)0.0058 (14)0.0080 (15)0.0021 (14)
N10.0164 (15)0.0125 (15)0.0153 (15)0.0006 (12)0.0041 (12)0.0024 (12)
C90.0177 (17)0.0125 (17)0.0098 (16)0.0008 (13)0.0067 (14)0.0027 (13)
Cl10.0150 (4)0.0115 (4)0.0176 (4)0.0005 (3)0.0037 (3)0.0014 (3)
C30.0138 (17)0.0234 (19)0.0117 (17)0.0055 (15)0.0005 (14)0.0007 (14)
C20.0159 (18)0.0173 (18)0.0159 (18)0.0029 (14)0.0053 (14)0.0026 (14)
Geometric parameters (Å, º) top
I1—C82.093 (3)C6—H60.9300
Au2—Cl32.2857 (8)C5—C101.404 (5)
Au2—Cl3i2.2857 (8)C5—H50.9300
Au2—Cl4i2.2894 (8)C10—C41.407 (5)
Au2—Cl42.2895 (8)C10—C91.429 (5)
Au1—Cl1ii2.2817 (8)C4—C31.381 (5)
Au1—Cl12.2817 (8)C4—H40.9300
Au1—Cl2ii2.2818 (8)N1—C21.331 (5)
Au1—Cl22.2818 (8)N1—C91.360 (5)
C8—C71.369 (5)N1—H990.80 (4)
C8—C91.418 (5)C3—C21.377 (5)
C7—C61.422 (5)C3—H30.9300
C7—H70.9300C2—H20.9300
C6—C51.371 (5)
Cl3—Au2—Cl3i180.0C6—C5—C10121.4 (3)
Cl3—Au2—Cl4i90.15 (3)C6—C5—H5119.3
Cl3i—Au2—Cl4i89.85 (3)C10—C5—H5119.3
Cl3—Au2—Cl489.85 (3)C5—C10—C4123.3 (3)
Cl3i—Au2—Cl490.15 (3)C5—C10—C9118.8 (3)
Cl4i—Au2—Cl4180.0C4—C10—C9117.9 (4)
Cl1ii—Au1—Cl1180.0C3—C4—C10120.9 (3)
Cl1ii—Au1—Cl2ii90.54 (3)C3—C4—H4119.6
Cl1—Au1—Cl2ii89.46 (3)C10—C4—H4119.6
Cl1ii—Au1—Cl289.46 (3)C2—N1—C9123.7 (3)
Cl1—Au1—Cl290.54 (3)C2—N1—H99118 (3)
Cl2ii—Au1—Cl2180.0C9—N1—H99118 (3)
C7—C8—C9119.9 (3)N1—C9—C8122.7 (3)
C7—C8—I1120.2 (3)N1—C9—C10117.9 (3)
C9—C8—I1119.8 (3)C8—C9—C10119.4 (3)
C8—C7—C6121.0 (3)C2—C3—C4119.0 (3)
C8—C7—H7119.5C2—C3—H3120.5
C6—C7—H7119.5C4—C3—H3120.5
C5—C6—C7119.5 (4)N1—C2—C3120.6 (3)
C5—C6—H6120.3N1—C2—H2119.7
C7—C6—H6120.3C3—C2—H2119.7
Symmetry codes: (i) x, y, z; (ii) x+1, y, z+1.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H99···Cl3iii0.80 (5)2.62 (5)3.287 (3)142 (4)
N1—H99···I10.80 (5)2.81 (5)3.264 (3)118 (4)
C2—H2···Cl1iv0.932.793.493 (4)133
C3—H3···Cl1v0.932.813.722 (4)168
Symmetry codes: (iii) x+1, y+1, z+1; (iv) x+1, y+1, z; (v) x+2, y, z+1.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H99···Cl3i0.80 (5)2.62 (5)3.287 (3)142 (4)
N1—H99···I10.80 (5)2.81 (5)3.264 (3)118 (4)
C2—H2···Cl1ii0.932.793.493 (4)133
C3—H3···Cl1iii0.932.813.722 (4)168
Symmetry codes: (i) x+1, y+1, z+1; (ii) x+1, y+1, z; (iii) x+2, y, z+1.
 

Acknowledgements

Purchase of the X-ray diffractometer was made possible by funding from the National Science Foundation (grant No. EPS-0554609).

References

First citationBruker (2009). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationHwang, H., Kim, J., Jeong, J. & Chang, S. (2014). J. Am. Chem. Soc. 136, 10770–10776.  Web of Science CSD CrossRef CAS PubMed Google Scholar
First citationMacrae, C. F., Edgington, P. R., McCabe, P., Pidcock, E., Shields, G. P., Taylor, R., Towler, M. & van de Streek, J. (2006). J. Appl. Cryst. 39, 453–457.  Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSheldrick, G. M. (2015). Acta Cryst. C71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar
First citationSon, J.-H. & Hoefelmeyer, J. D. (2008a). Acta Cryst. E64, o2076.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationSon, J.-H. & Hoefelmeyer, J. D. (2008b). Acta Cryst. E64, o2077.  Web of Science CSD CrossRef IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds