organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Crystal structure of ethyl 2-[9-(5-bromo-2-hy­dr­oxy­phen­yl)-1,8-dioxo-1,2,3,4,5,6,7,8,9,10-deca­hydro­acridin-10-yl]acetate

aChemistry and Environmental Division, Manchester Metropolitan University, Manchester M1 5GD, England, bChemistry Department, Faculty of Science, Minia University, 61519 El-Minia, Egypt, cDepartment of Physics, Faculty of Sciences, Erciyes University, 38039 Kayseri, Turkey, dDepartment of Chemistry, Keene State College, 229 Main Street, Keene, NH 03435-2001, USA, eChemistry Department, Faculty of Science, Sohag University, 82524 Sohag, Egypt, and fKirkuk University, College of Science, Department of Chemistry, Kirkuk, Iraq
*Correspondence e-mail: shaabankamel@yahoo.com

Edited by M. Weil, Vienna University of Technology, Austria (Received 9 November 2015; accepted 20 November 2015; online 25 November 2015)

In the title compound, C23H24BrNO5, the central 1,4-di­hydro­pyridine ring of the 1,2,3,4,5,6,7,8,9,10-deca­hydro­acridine ring system adopts a half-chair conformation. The two cyclo­hexene rings fused to the central ring both have a twisted-boat conformation. The mean planes of the bromo­hydroxy­phenyl ring and the major and minor components of the disordered ethyl amino­acetate moiety make dihedral angles of 78.99 (12), 85.9 (2) and 88.3 (9)°, respectively, with the 1,4-di­hydro­pyridine ring. The terminal ethyl group of the ethyl amino­acetate moiety is disordered over two sets of sites with refined occupancies of 0.768 (17) and 0.232 (17). The mol­ecular conformation is stabilized by an intra­molecular O—H⋯O hydrogen bond, forming an S(8) ring motif. In the crystal, C—H⋯O hydrogen bonds connect the mol­ecules into layers parallel to (001), enclosing R12(7) ring motifs.

1. Related literature

For biological activities of hydro­quinolines, see: Moghadam et al. (2011[Moghadam, M. J. F., Amini, M., Asadieskandar, A. & Shaffiee, A. (2011). J. Sci. Islamic Republic Iran, 22, 21-25.]); Miri et al. (2007[Miri, R., Javidnia, K., Mirkhani, H., Hemmateenejad, B., Sepeher, Z., Zalpour, M., Behzad, T., Khoshneviszadeh, M., Edraki, N. & Mehdipour, A. R. (2007). Chem. Biol. Drug Des. 70, 329-336.]). For accridinones, see: Okoro et al. (2012[Okoro, C. O., Ogunwale, M. A. & Siddiquee, T. (2012). Appl. Sci. 2, 368-374.]). For di­hydro­pyridines, see: Aydin et al. (2006[Aydin, F., Safak, C., Simşek, R., Erol, K., Ülgen, M. & Linden, A. (2006). Pharmazie, 61, 655-659.]); Rose (1990[Rose, U. (1990). J. Heterocycl. Chem. 27, 237-242.], 1991[Rose, U. (1991). Arzneim. Forsch. Drug. Res. 41, 199-203.]); Rose & Draeger (1992[Rose, U. & Draeger, M. (1992). J. Med. Chem. 35, 2238-2243.]).

[Scheme 1]

2. Experimental

2.1. Crystal data

  • C23H24BrNO5

  • Mr = 474.33

  • Orthorhombic, P b c a

  • a = 8.8287 (3) Å

  • b = 14.2531 (5) Å

  • c = 33.1222 (11) Å

  • V = 4168.0 (2) Å3

  • Z = 8

  • Mo Kα radiation

  • μ = 2.01 mm−1

  • T = 293 K

  • 0.32 × 0.11 × 0.08 mm

2.2. Data collection

  • Agilent Xcalibur Eos Gemini diffractometer

  • Absorption correction: multi-scan (CrysAlis PRO; Agilent, 2014[Agilent (2014). CrysAlis PRO. Agilent Technologies Ltd, Yarnton, England.]) Tmin = 0.579, Tmax = 1.000

  • 51745 measured reflections

  • 5281 independent reflections

  • 3379 reflections with I > 2σ(I)

  • Rint = 0.060

2.3. Refinement

  • R[F2 > 2σ(F2)] = 0.059

  • wR(F2) = 0.153

  • S = 1.02

  • 5281 reflections

  • 281 parameters

  • 1 restraint

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 0.53 e Å−3

  • Δρmin = −0.59 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
O5—H5⋯O1 0.83 (3) 1.91 (3) 2.709 (4) 163 (6)
C10—H10A⋯O4i 0.97 2.41 3.228 (4) 142
C14—H14B⋯O4i 0.97 2.42 3.267 (4) 146
Symmetry code: (i) [-x+{\script{3\over 2}}, y+{\script{1\over 2}}, z].

Data collection: CrysAlis PRO (Agilent, 2014[Agilent (2014). CrysAlis PRO. Agilent Technologies Ltd, Yarnton, England.]); cell refinement: CrysAlis PRO; data reduction: CrysAlis PRO; program(s) used to solve structure: SHELXS2014 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL2014 (Sheldrick, 2015[Sheldrick, G. M. (2015). Acta Cryst. C71, 3-8.]); molecular graphics: ORTEP-3 for Windows (Farrugia, 2012[Farrugia, L. J. (2012). J. Appl. Cryst. 45, 849-854.]); software used to prepare material for publication: PLATON (Spek, 2009[Spek, A. L. (2009). Acta Cryst. D65, 148-155.]) and PARST (Nardelli, 1995[Nardelli, M. (1995). J. Appl. Cryst. 28, 659.]).

Supporting information


Comment top

Hydroquinolines (Moghadam et al., 2011; Miri et al., 2007), acridinediones (Okoro et al., 2012) and other anellated dihydropyridines (Aydin et al., 2006; Rose, 1990) were developed that exhibit selective cardial agonist activity while calcium antagonistic effects were observed on smooth musculature (Rose & Draeger, 1992; Rose, 1991). In this context, we report here the synthesis and crystal structure of the title compound, C23H24BrNO5, (I).

In the structure of (I) (Fig. 1), the central 1,4-dihydropyridine ring (N1/C5–C9) of the 1,2,3,4,5,6,7,8,9,10-decahydroacridine ring system (N1/C1–C13) adopts a half-chair conformation [the puckering parameters are QT = 0.235 (3) Å, θ = 102.0 (7) °, φ = 6.0 (7) °]. The two cyclohexene rings (C1–C6 and C8–C13) of the 1,2,3,4,5,6,7,8,9,10-decahydroacridine ring system have a twisted-boat conformation [the puckering parameters are QT = 0.428 (4) Å, θ = 51.0 (5) °, φ = 109.2 (6) °, and QT = 0.468 (4) Å, θ = 60.6 (4) °, φ = 187.1 (5) °, respectively].

The mean planes of the bromo-hydroxyphenyl ring (C18–C23) and the major and minor components of the disordered ethyl aminoacetate moiety make dihedral angles of 78.99 (12), 85.9 (2) and 88.3 (9)°, respectively, with the 1,4-dihydropyridine ring (N1/C5–C9).

All bond lengths and bond angles in the title molecule are within the normal ranges and comparable with each other and with those obtained earlier for similar compounds.

The molecular conformation is stabilized by an intramolecular O—H···O hydrogen bond, which generates an S(8) ring motif (Fig. 1, Table 1).

In the crystal, molecules are linked by intermolecular C—H···O hydrogen bonds into layers parallel to (001), enclosing R21(7) ring motifs (Table 1, Fig. 2).

Related literature top

For biological activities of hydroquinolines, see: Moghadam et al. (2011); Miri et al. (2007). For accridinones, see: Okoro et al. (2012). For dihydropyridines, see: Aydin et al. (2006); Rose (1990, 1991); Rose & Draeger (1992).

Experimental top

A mixture of 1 mmol (112 mg) of cyclohexane-1,3-dione, 1 mmol (201 mg) of 4-bromo-2-hydroxybenzaldehyde and 1 mmol (103 mg) ethyl 2-aminoacetate in 30 ml ethanol was refluxed at 351 K. The reaction was monitored by TLC until completion. The solid product was deposited on cooling and collected by filtration under vacuum. Recystallization of the crude product from ethanol afforded crystals sufficient for X-ray diffraction. M.p. 515 K.

Refinement top

The hydroxyl hydrogen atom was found from a difference Fourier map and its O—H bond length was restrained using a DFIX restraint of 0.82 (2) Å, with its displacement parameter set equal to 1.5Ueq(O). The other H atoms were placed in calculated positions with C—H = 0.93 - 0.98 Å, and refined as riding with Uiso(H) = 1.2Ueq(C). The terminal ethyl group (C16, C17) of the ethyl aminoacetate moiety is disordered over two sets of sites with an occupancy ratio of 0.768 (17):0.232 (17).

Structure description top

Hydroquinolines (Moghadam et al., 2011; Miri et al., 2007), acridinediones (Okoro et al., 2012) and other anellated dihydropyridines (Aydin et al., 2006; Rose, 1990) were developed that exhibit selective cardial agonist activity while calcium antagonistic effects were observed on smooth musculature (Rose & Draeger, 1992; Rose, 1991). In this context, we report here the synthesis and crystal structure of the title compound, C23H24BrNO5, (I).

In the structure of (I) (Fig. 1), the central 1,4-dihydropyridine ring (N1/C5–C9) of the 1,2,3,4,5,6,7,8,9,10-decahydroacridine ring system (N1/C1–C13) adopts a half-chair conformation [the puckering parameters are QT = 0.235 (3) Å, θ = 102.0 (7) °, φ = 6.0 (7) °]. The two cyclohexene rings (C1–C6 and C8–C13) of the 1,2,3,4,5,6,7,8,9,10-decahydroacridine ring system have a twisted-boat conformation [the puckering parameters are QT = 0.428 (4) Å, θ = 51.0 (5) °, φ = 109.2 (6) °, and QT = 0.468 (4) Å, θ = 60.6 (4) °, φ = 187.1 (5) °, respectively].

The mean planes of the bromo-hydroxyphenyl ring (C18–C23) and the major and minor components of the disordered ethyl aminoacetate moiety make dihedral angles of 78.99 (12), 85.9 (2) and 88.3 (9)°, respectively, with the 1,4-dihydropyridine ring (N1/C5–C9).

All bond lengths and bond angles in the title molecule are within the normal ranges and comparable with each other and with those obtained earlier for similar compounds.

The molecular conformation is stabilized by an intramolecular O—H···O hydrogen bond, which generates an S(8) ring motif (Fig. 1, Table 1).

In the crystal, molecules are linked by intermolecular C—H···O hydrogen bonds into layers parallel to (001), enclosing R21(7) ring motifs (Table 1, Fig. 2).

For biological activities of hydroquinolines, see: Moghadam et al. (2011); Miri et al. (2007). For accridinones, see: Okoro et al. (2012). For dihydropyridines, see: Aydin et al. (2006); Rose (1990, 1991); Rose & Draeger (1992).

Computing details top

Data collection: CrysAlis PRO (Agilent, 2014); cell refinement: CrysAlis PRO (Agilent, 2014); data reduction: CrysAlis PRO (Agilent, 2014); program(s) used to solve structure: SHELXS2014 (Sheldrick, 2008); program(s) used to refine structure: SHELXL2014 (Sheldrick, 2015); molecular graphics: ORTEP-3 for Windows (Farrugia, 2012); software used to prepare material for publication: PLATON (Spek, 2009) and PARST (Nardelli, 1995).

Figures top
[Figure 1] Fig. 1. View of the title molecule with displacement ellipsoids drawn at the 30% probability level. Only the major component (C16A, C17A) of disorder is shown.
[Figure 2] Fig. 2. The packing of molecules in the the title compound viewed down [100]. Hydrogen bonds are shown as dashed lines. Hydrogen atoms not involved in hydrogen bonding and the minor component of disorder have been removed for clarity.
Ethyl 2-[9-(5-bromo-2-hydroxyphenyl)-1,8-dioxo-1,2,3,4,5,6,7,8,9,10-decahydroacridin-10-yl]acetate top
Crystal data top
C23H24BrNO5F(000) = 1952
Mr = 474.33Dx = 1.512 Mg m3
Orthorhombic, PbcaMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ac 2abCell parameters from 4787 reflections
a = 8.8287 (3) Åθ = 3.7–24.1°
b = 14.2531 (5) ŵ = 2.01 mm1
c = 33.1222 (11) ÅT = 293 K
V = 4168.0 (2) Å3Needle, colourless
Z = 80.32 × 0.11 × 0.08 mm
Data collection top
Agilent Xcalibur Eos Gemini
diffractometer
5281 independent reflections
Radiation source: Enhance (Mo) X-ray Source3379 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.060
Detector resolution: 16.0416 pixels mm-1θmax = 28.5°, θmin = 2.9°
ω scansh = 1111
Absorption correction: multi-scan
(CrysAlis PRO; Agilent, 2014)
k = 1919
Tmin = 0.579, Tmax = 1.000l = 4444
51745 measured reflections
Refinement top
Refinement on F21 restraint
Least-squares matrix: fullHydrogen site location: mixed
R[F2 > 2σ(F2)] = 0.059H atoms treated by a mixture of independent and constrained refinement
wR(F2) = 0.153 w = 1/[σ2(Fo2) + (0.052P)2 + 5.0593P]
where P = (Fo2 + 2Fc2)/3
S = 1.02(Δ/σ)max = 0.001
5281 reflectionsΔρmax = 0.53 e Å3
281 parametersΔρmin = 0.59 e Å3
Crystal data top
C23H24BrNO5V = 4168.0 (2) Å3
Mr = 474.33Z = 8
Orthorhombic, PbcaMo Kα radiation
a = 8.8287 (3) ŵ = 2.01 mm1
b = 14.2531 (5) ÅT = 293 K
c = 33.1222 (11) Å0.32 × 0.11 × 0.08 mm
Data collection top
Agilent Xcalibur Eos Gemini
diffractometer
5281 independent reflections
Absorption correction: multi-scan
(CrysAlis PRO; Agilent, 2014)
3379 reflections with I > 2σ(I)
Tmin = 0.579, Tmax = 1.000Rint = 0.060
51745 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0591 restraint
wR(F2) = 0.153H atoms treated by a mixture of independent and constrained refinement
S = 1.02Δρmax = 0.53 e Å3
5281 reflectionsΔρmin = 0.59 e Å3
281 parameters
Special details top

Geometry. Bond distances, angles etc. have been calculated using the rounded fractional coordinates. All su's are estimated from the variances of the (full) variance-covariance matrix. The cell e.s.d.'s are taken into account in the estimation of distances, angles and torsion angles

Refinement. Refinement on F2 for ALL reflections except those flagged by the user for potential systematic errors. Weighted R-factors wR and all goodnesses of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The observed criterion of F2 > σ(F2) is used only for calculating -R-factor-obs etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R-factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/UeqOcc. (<1)
Br10.93921 (6)0.00364 (4)0.25138 (2)0.0856 (2)
O10.3868 (3)0.27352 (16)0.34249 (8)0.0639 (9)
O20.3448 (4)0.0831 (2)0.45391 (9)0.0919 (13)
O30.3033 (3)0.22761 (18)0.43222 (9)0.0716 (10)
O40.8428 (3)0.19850 (15)0.42308 (8)0.0626 (9)
O50.6762 (3)0.33400 (18)0.33476 (10)0.0738 (10)
N10.4997 (3)0.03570 (15)0.38366 (7)0.0386 (7)
C10.3472 (4)0.1908 (2)0.34564 (10)0.0487 (11)
C20.1926 (4)0.1605 (3)0.33252 (13)0.0640 (11)
C30.1358 (4)0.0829 (3)0.35687 (14)0.0781 (15)
C40.2432 (4)0.0007 (2)0.35809 (11)0.0545 (11)
C50.4030 (3)0.0314 (2)0.36740 (9)0.0382 (8)
C60.4505 (3)0.12057 (19)0.36125 (8)0.0360 (8)
C70.6109 (3)0.15066 (18)0.36981 (8)0.0347 (8)
C80.6843 (3)0.08124 (18)0.39812 (8)0.0319 (8)
C90.6337 (3)0.00739 (18)0.40212 (8)0.0350 (8)
C100.7157 (4)0.0782 (2)0.42760 (11)0.0526 (11)
C110.8757 (4)0.0494 (2)0.43624 (13)0.0643 (14)
C120.8835 (4)0.0486 (2)0.45150 (11)0.0590 (12)
C130.8066 (3)0.1162 (2)0.42346 (9)0.0410 (9)
C140.4438 (4)0.1312 (2)0.38959 (10)0.0473 (10)
C150.3597 (4)0.1431 (2)0.42924 (12)0.0546 (11)
C16A0.2173 (11)0.2445 (7)0.4704 (2)0.076 (3)0.768 (17)
C16B0.261 (4)0.281 (2)0.4685 (9)0.076 (3)0.232 (17)
C17A0.1256 (11)0.3290 (10)0.4650 (2)0.109 (4)0.768 (17)
C17B0.108 (5)0.271 (3)0.4674 (9)0.109 (4)0.232 (17)
C180.7040 (3)0.1655 (2)0.33158 (9)0.0389 (8)
C190.7647 (3)0.0892 (2)0.31119 (8)0.0408 (9)
C200.8555 (4)0.1024 (3)0.27790 (10)0.0544 (10)
C210.8894 (4)0.1919 (4)0.26418 (11)0.0693 (14)
C220.8278 (5)0.2668 (3)0.28343 (12)0.0690 (16)
C230.7340 (4)0.2559 (2)0.31685 (11)0.0539 (11)
H2A0.196300.141400.304400.0770*
H2B0.123500.213100.334700.0770*
H3A0.118300.104900.384200.0940*
H3B0.039400.062200.346000.0940*
H4A0.209700.043400.378500.0650*
H4B0.241500.031200.332200.0650*
H50.584 (3)0.327 (4)0.3388 (18)0.1280*
H70.606000.211000.383900.0420*
H10A0.716200.138200.413700.0630*
H10B0.662000.086200.452900.0630*
H11A0.935300.054600.411800.0770*
H11B0.918800.091500.456200.0770*
H12A0.835700.051800.477800.0710*
H12B0.988800.066600.454700.0710*
H14A0.376500.147300.367500.0570*
H14B0.528700.174300.388900.0570*
H16B0.152600.191200.476300.0910*0.768 (17)
H16C0.286900.252900.492800.0910*0.768 (17)
H16D0.304100.253300.492700.0910*0.232 (17)
H16E0.292000.346000.466500.0910*0.232 (17)
H17A0.067900.340600.489000.1640*0.768 (17)
H17B0.058000.320300.442600.1640*0.768 (17)
H17C0.190800.381500.459800.1640*0.768 (17)
H17D0.063700.304400.489800.1640*0.232 (17)
H17E0.081300.206200.469000.1640*0.232 (17)
H17F0.069600.297200.442600.1640*0.232 (17)
H190.743900.028700.320100.0490*
H210.953300.200400.242200.0830*
H220.848800.326900.274000.0830*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Br10.0760 (3)0.1199 (4)0.0608 (3)0.0183 (3)0.0258 (2)0.0017 (2)
O10.0663 (16)0.0464 (14)0.0790 (18)0.0189 (12)0.0077 (13)0.0061 (12)
O20.128 (3)0.0738 (19)0.0739 (19)0.0340 (19)0.0361 (19)0.0174 (16)
O30.0829 (19)0.0565 (15)0.0754 (18)0.0255 (14)0.0114 (14)0.0102 (13)
O40.0684 (16)0.0387 (12)0.0806 (17)0.0162 (11)0.0263 (13)0.0053 (11)
O50.099 (2)0.0375 (13)0.085 (2)0.0067 (15)0.0074 (18)0.0181 (13)
N10.0388 (12)0.0304 (11)0.0466 (14)0.0060 (10)0.0021 (11)0.0012 (10)
C10.0490 (18)0.0478 (19)0.0494 (18)0.0132 (15)0.0033 (15)0.0018 (14)
C20.0460 (19)0.072 (2)0.074 (2)0.0196 (18)0.0144 (18)0.009 (2)
C30.0402 (19)0.110 (3)0.084 (3)0.001 (2)0.011 (2)0.010 (3)
C40.0366 (15)0.065 (2)0.062 (2)0.0090 (15)0.0047 (16)0.0018 (17)
C50.0347 (14)0.0435 (15)0.0364 (14)0.0027 (12)0.0012 (12)0.0044 (12)
C60.0340 (14)0.0395 (15)0.0346 (14)0.0068 (12)0.0003 (11)0.0021 (12)
C70.0421 (15)0.0253 (12)0.0366 (14)0.0000 (11)0.0024 (12)0.0011 (11)
C80.0349 (13)0.0286 (13)0.0321 (13)0.0009 (11)0.0028 (11)0.0026 (10)
C90.0359 (13)0.0326 (14)0.0364 (13)0.0009 (11)0.0022 (11)0.0002 (11)
C100.056 (2)0.0357 (16)0.066 (2)0.0024 (14)0.0072 (17)0.0151 (15)
C110.058 (2)0.052 (2)0.083 (3)0.0059 (17)0.016 (2)0.0189 (19)
C120.060 (2)0.055 (2)0.062 (2)0.0062 (17)0.0251 (18)0.0121 (17)
C130.0406 (15)0.0386 (16)0.0437 (16)0.0049 (13)0.0027 (13)0.0018 (13)
C140.0518 (18)0.0330 (15)0.0571 (19)0.0108 (14)0.0006 (15)0.0009 (14)
C150.0530 (19)0.0468 (19)0.064 (2)0.0106 (16)0.0004 (17)0.0051 (17)
C16A0.098 (6)0.060 (5)0.070 (3)0.013 (4)0.020 (3)0.007 (4)
C16B0.098 (6)0.060 (5)0.070 (3)0.013 (4)0.020 (3)0.007 (4)
C17A0.133 (6)0.134 (9)0.061 (3)0.085 (7)0.011 (3)0.005 (5)
C17B0.133 (6)0.134 (9)0.061 (3)0.085 (7)0.011 (3)0.005 (5)
C180.0371 (15)0.0423 (15)0.0372 (14)0.0068 (12)0.0072 (12)0.0110 (12)
C190.0329 (14)0.0515 (17)0.0379 (15)0.0052 (13)0.0017 (12)0.0068 (13)
C200.0393 (16)0.083 (2)0.0410 (17)0.0051 (17)0.0019 (14)0.0070 (17)
C210.050 (2)0.111 (3)0.0470 (19)0.020 (2)0.0008 (17)0.028 (2)
C220.073 (3)0.070 (3)0.064 (2)0.025 (2)0.009 (2)0.033 (2)
C230.057 (2)0.0488 (19)0.056 (2)0.0120 (17)0.0086 (17)0.0192 (16)
Geometric parameters (Å, º) top
Br1—C201.898 (4)C19—C201.376 (4)
O1—C11.234 (4)C20—C211.387 (7)
O2—C151.190 (5)C21—C221.357 (7)
O3—C16A1.495 (8)C22—C231.391 (5)
O3—C151.307 (4)C2—H2B0.9700
O3—C16B1.47 (3)C2—H2A0.9700
O4—C131.216 (4)C3—H3B0.9700
O5—C231.361 (4)C3—H3A0.9700
N1—C51.391 (4)C4—H4B0.9700
N1—C91.392 (4)C4—H4A0.9700
N1—C141.461 (4)C7—H70.9800
O5—H50.83 (3)C10—H10A0.9700
C1—C21.496 (5)C10—H10B0.9700
C1—C61.450 (4)C11—H11A0.9700
C2—C31.458 (6)C11—H11B0.9700
C3—C41.508 (5)C12—H12A0.9700
C4—C51.509 (4)C12—H12B0.9700
C5—C61.354 (4)C14—H14A0.9700
C6—C71.507 (4)C14—H14B0.9700
C7—C81.509 (4)C16A—H16C0.9700
C7—C181.524 (4)C16A—H16B0.9700
C8—C131.456 (4)C16B—H16E0.9700
C8—C91.347 (4)C16B—H16D0.9700
C9—C101.502 (4)C17A—H17C0.9600
C10—C111.499 (5)C17A—H17A0.9600
C11—C121.487 (4)C17A—H17B0.9600
C12—C131.501 (4)C17B—H17D0.9600
C14—C151.518 (5)C17B—H17F0.9600
C16A—C17A1.462 (16)C17B—H17E0.9500
C16B—C17B1.36 (6)C19—H190.9300
C18—C231.403 (4)C21—H210.9300
C18—C191.388 (4)C22—H220.9300
C15—O3—C16A113.9 (5)C2—C3—H3A109.00
C15—O3—C16B129.4 (12)C2—C3—H3B109.00
C5—N1—C9119.5 (2)C3—C4—H4A109.00
C5—N1—C14119.0 (3)C5—C4—H4B109.00
C9—N1—C14119.9 (2)C3—C4—H4B109.00
C23—O5—H5110 (4)H4A—C4—H4B108.00
O1—C1—C6120.8 (3)C5—C4—H4A109.00
C2—C1—C6118.6 (3)C6—C7—H7107.00
O1—C1—C2120.6 (3)C8—C7—H7107.00
C1—C2—C3111.9 (3)C18—C7—H7107.00
C2—C3—C4112.8 (3)C9—C10—H10A109.00
C3—C4—C5111.6 (3)C9—C10—H10B109.00
C4—C5—C6122.1 (3)C11—C10—H10A109.00
N1—C5—C6120.9 (2)H10A—C10—H10B108.00
N1—C5—C4117.0 (2)C11—C10—H10B109.00
C1—C6—C5120.5 (3)C10—C11—H11B109.00
C5—C6—C7122.0 (2)C10—C11—H11A109.00
C1—C6—C7117.5 (2)H11A—C11—H11B108.00
C6—C7—C8109.5 (2)C12—C11—H11A109.00
C6—C7—C18113.0 (2)C12—C11—H11B109.00
C8—C7—C18112.1 (2)C13—C12—H12A109.00
C9—C8—C13120.7 (2)C13—C12—H12B109.00
C7—C8—C13116.9 (2)H12A—C12—H12B108.00
C7—C8—C9122.3 (2)C11—C12—H12A109.00
C8—C9—C10121.7 (3)C11—C12—H12B109.00
N1—C9—C8120.7 (2)N1—C14—H14A109.00
N1—C9—C10117.5 (2)C15—C14—H14A109.00
C9—C10—C11112.2 (3)N1—C14—H14B109.00
C10—C11—C12111.5 (3)H14A—C14—H14B108.00
C11—C12—C13111.8 (3)C15—C14—H14B109.00
O4—C13—C12120.5 (3)H16B—C16A—H16C108.00
O4—C13—C8121.3 (3)O3—C16A—H16B110.00
C8—C13—C12118.2 (2)C17A—C16A—H16C110.00
N1—C14—C15112.7 (2)C17A—C16A—H16B110.00
O3—C15—C14110.8 (3)O3—C16A—H16C110.00
O2—C15—O3124.6 (4)C17B—C16B—H16D112.00
O2—C15—C14124.6 (3)C17B—C16B—H16E112.00
O3—C16A—C17A108.1 (6)O3—C16B—H16E112.00
O3—C16B—C17B100 (2)O3—C16B—H16D111.00
C7—C18—C23121.2 (3)H16D—C16B—H16E110.00
C7—C18—C19120.3 (2)H17A—C17A—H17C109.00
C19—C18—C23118.5 (3)H17B—C17A—H17C110.00
C18—C19—C20120.5 (3)C16A—C17A—H17B109.00
Br1—C20—C19119.3 (3)C16A—C17A—H17C109.00
C19—C20—C21120.9 (4)C16A—C17A—H17A110.00
Br1—C20—C21119.8 (3)H17A—C17A—H17B109.00
C20—C21—C22118.9 (3)C16B—C17B—H17D109.00
C21—C22—C23121.6 (4)C16B—C17B—H17E110.00
C18—C23—C22119.5 (3)H17D—C17B—H17F109.00
O5—C23—C18121.9 (3)H17E—C17B—H17F110.00
O5—C23—C22118.6 (3)C16B—C17B—H17F109.00
C3—C2—H2A109.00H17D—C17B—H17E110.00
C3—C2—H2B109.00C20—C19—H19120.00
H2A—C2—H2B108.00C18—C19—H19120.00
C1—C2—H2B109.00C22—C21—H21121.00
C1—C2—H2A109.00C20—C21—H21121.00
C4—C3—H3B109.00C21—C22—H22119.00
C4—C3—H3A109.00C23—C22—H22119.00
H3A—C3—H3B108.00
C16A—O3—C15—O20.7 (6)C18—C7—C8—C9104.1 (3)
C16A—O3—C15—C14179.5 (4)C6—C7—C18—C23102.6 (3)
C15—O3—C16A—C17A163.9 (6)C6—C7—C18—C1979.3 (3)
C14—N1—C9—C8177.7 (3)C6—C7—C8—C922.1 (3)
C9—N1—C14—C1581.1 (3)C18—C7—C8—C1380.4 (3)
C14—N1—C5—C41.8 (4)C7—C8—C13—C12179.1 (3)
C5—N1—C14—C1584.6 (3)C9—C8—C13—O4172.3 (3)
C14—N1—C5—C6179.7 (3)C7—C8—C9—N17.6 (4)
C9—N1—C5—C4164.0 (3)C7—C8—C9—C10174.6 (3)
C5—N1—C9—C812.1 (4)C7—C8—C13—O43.3 (4)
C5—N1—C9—C10165.8 (3)C13—C8—C9—N1167.8 (2)
C14—N1—C9—C100.2 (4)C9—C8—C13—C125.2 (4)
C9—N1—C5—C614.5 (4)C13—C8—C9—C1010.0 (4)
C2—C1—C6—C7173.2 (3)C8—C9—C10—C1117.9 (4)
C6—C1—C2—C333.1 (5)N1—C9—C10—C11164.2 (3)
O1—C1—C6—C75.4 (4)C9—C10—C11—C1249.8 (4)
O1—C1—C6—C5175.2 (3)C10—C11—C12—C1354.3 (4)
O1—C1—C2—C3148.3 (4)C11—C12—C13—C827.2 (4)
C2—C1—C6—C56.2 (5)C11—C12—C13—O4155.2 (3)
C1—C2—C3—C454.1 (5)N1—C14—C15—O3175.9 (3)
C2—C3—C4—C548.2 (5)N1—C14—C15—O22.8 (5)
C3—C4—C5—N1157.2 (3)C7—C18—C19—C20176.5 (3)
C3—C4—C5—C621.3 (4)C23—C18—C19—C201.7 (4)
C4—C5—C6—C10.6 (4)C7—C18—C23—O53.0 (5)
C4—C5—C6—C7178.8 (3)C7—C18—C23—C22175.7 (3)
N1—C5—C6—C1177.8 (3)C19—C18—C23—O5178.8 (3)
N1—C5—C6—C72.8 (4)C19—C18—C23—C222.5 (5)
C5—C6—C7—C819.6 (4)C18—C19—C20—Br1178.9 (2)
C1—C6—C7—C8160.9 (2)C18—C19—C20—C210.5 (5)
C5—C6—C7—C18106.0 (3)Br1—C20—C21—C22179.7 (3)
C1—C6—C7—C1873.4 (3)C19—C20—C21—C221.9 (5)
C8—C7—C18—C1945.0 (3)C20—C21—C22—C231.1 (6)
C8—C7—C18—C23133.2 (3)C21—C22—C23—O5179.9 (4)
C6—C7—C8—C13153.5 (2)C21—C22—C23—C181.1 (6)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O5—H5···O10.83 (3)1.91 (3)2.709 (4)163 (6)
C7—H7···O50.982.472.917 (4)107
C10—H10A···O4i0.972.413.228 (4)142
C14—H14B···O4i0.972.423.267 (4)146
Symmetry code: (i) x+3/2, y+1/2, z.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O5—H5···O10.83 (3)1.91 (3)2.709 (4)163 (6)
C10—H10A···O4i0.972.413.228 (4)142
C14—H14B···O4i0.972.423.267 (4)146
Symmetry code: (i) x+3/2, y+1/2, z.
 

Acknowledgements

JPJ acknowledges the NSF–MRI program (grant No. CHE-1039027) for funds to purchase the X-ray diffractometer.

References

First citationAgilent (2014). CrysAlis PRO. Agilent Technologies Ltd, Yarnton, England.  Google Scholar
First citationAydin, F., Safak, C., Simşek, R., Erol, K., Ülgen, M. & Linden, A. (2006). Pharmazie, 61, 655–659.  Web of Science PubMed CAS Google Scholar
First citationFarrugia, L. J. (2012). J. Appl. Cryst. 45, 849–854.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationMiri, R., Javidnia, K., Mirkhani, H., Hemmateenejad, B., Sepeher, Z., Zalpour, M., Behzad, T., Khoshneviszadeh, M., Edraki, N. & Mehdipour, A. R. (2007). Chem. Biol. Drug Des. 70, 329–336.  Web of Science CrossRef PubMed CAS Google Scholar
First citationMoghadam, M. J. F., Amini, M., Asadieskandar, A. & Shaffiee, A. (2011). J. Sci. Islamic Republic Iran, 22, 21–25.  CAS Google Scholar
First citationNardelli, M. (1995). J. Appl. Cryst. 28, 659.  CrossRef IUCr Journals Google Scholar
First citationOkoro, C. O., Ogunwale, M. A. & Siddiquee, T. (2012). Appl. Sci. 2, 368–374.  Web of Science CrossRef CAS Google Scholar
First citationRose, U. (1990). J. Heterocycl. Chem. 27, 237–242.  CrossRef CAS Google Scholar
First citationRose, U. (1991). Arzneim. Forsch. Drug. Res. 41, 199–203.  CAS Google Scholar
First citationRose, U. & Draeger, M. (1992). J. Med. Chem. 35, 2238–2243.  CSD CrossRef PubMed CAS Web of Science Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSheldrick, G. M. (2015). Acta Cryst. C71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar
First citationSpek, A. L. (2009). Acta Cryst. D65, 148–155.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds