metal-organic compounds
The
of a new polymorph of hexaaquanickel(II) bis(6-oxo-1,6-dihydropyridine-3-carboxylate)aDepartamento de Química Inorgánica., Facultad de Ciencia y Tecnología, Universidad del País Vasco, UPV/EHU, Apdo. 644, E-48080 Bilbao, Spain
*Correspondence e-mail: oscar.castillo@ehu.eus
In a new polymorph of the title salt, [Ni(H2O)6](C6H4NO3)2, the metal atom of the cationic complex lies on a symmetry centre and is coordinated by six water molecules to provide a quite regular octahedral coordination environment. These cations interact with 6-oxo-1,6-dihydropyridine-3-carboxylate anions through electrostatic interactions and by means of O—H⋯O and N—H⋯O hydrogen bonds involving the carboxylate, keto and protonated imine groups of the anion, and the coordinating water molecules from the cationic complex entity to generate a supramolecular three-dimensional architecture. The previously reported polymorph of this compound presents a network of hydrogen bonds, in which the organic anions establish mutual hydrogen-bonding interactions involving their keto and protonated imine groups.
Keywords: crystal structure; polymorph; 6-oxo-1,6-dihydropyridine-3-carboxylate anion; hydrogen bonding,.
CCDC reference: 1438522
1. Related literature
The zinc and cobalt analogues (Zhang et al., 2005; Song et al., 2005; Zhang & Ng, 2005a) of the title salt are isostructural with the previously reported polymorph of [Ni(H2O)6](C6H4NO3)2 (Zhang & Ng, 2005b). It is worth mentioning that although the authors claimed a lactim tautomer of the organic anion to be present in all these structures, the C—O bond length seems to indicate of a lactam tautomer as in the case of the title compound. For additional examples of coordination complexes with 6-oxo-1,6-dihydropyridine-3-carboxylate anions and copper(II), see: Zeng et al. (2007).
2. Experimental
2.1. Crystal data
|
2.3. Refinement
|
|
Data collection: CrysAlis PRO (Agilent, 2012); cell CrysAlis PRO; data reduction: CrysAlis PRO; program(s) used to solve structure: SIR92 (Altomare et al., 1993); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 for Windows (Farrugia, 2012); software used to prepare material for publication: WinGX (Farrugia, 2012).
Supporting information
CCDC reference: 1438522
https://doi.org/10.1107/S2056989015022422/wm5241sup1.cif
contains datablocks I, global. DOI:Structure factors: contains datablock I. DOI: https://doi.org/10.1107/S2056989015022422/wm5241Isup2.hkl
Supporting information file. DOI: https://doi.org/10.1107/S2056989015022422/wm5241Isup3.cdx
6-Oxo-1,6-dihydropyridine-3-carboxylic acid (0.8 mmol) and Ni(NO3)2·6H2O (0.4 mmol) were dissolved in 40 ml of distilled water. After stirring for half an hour, the solution was left evaporating at room temperature. Two weeks later light green crystals of the title compound were obtained.
H atoms bonded to N and O atoms were located in a difference map and were refined with Uiso(H) = 1.2Ueq(N) and Uiso(H) = 1.5Ueq(O). Other H atoms were positioned geometrically and refined using a riding model with C—H = 0.93 Å and with Uiso(H) = 1.2Ueq(C).
The zinc and cobalt analogues (Zhang et al., 2005; Song et al., 2005; Zhang & Ng, 2005a) of the title salt are isostructural with the previously reported polymorph of [Ni(H2O)6](C6H4NO3)2 (Zhang & Ng, 2005b). It is worth mentioning that although the authors claimed a lactim tautomer of the organic anion to be present in all these structures, the C—O bond length seems to indicate of a lactam tautomer as in the case of the title compound. For additional examples of coordination complexes with 6-oxo-1,6-dihydropyridine-3-carboxylate anions and copper(II), see: Zeng et al. (2007).
Data collection: CrysAlis PRO (Agilent, 2012); cell
CrysAlis PRO (Agilent, 2012); data reduction: CrysAlis PRO (Agilent, 2012); program(s) used to solve structure: SIR92 (Altomare et al., 1993); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 for Windows (Farrugia, 2012); software used to prepare material for publication: WinGX (Farrugia, 2012).Fig. 1. The structures of the molecular entities in (I), drawn with displacement ellipsoids at the 50% probability level. [Symmetry code: -x+1, -y, -z+1.] | |
Fig. 2. Hydrogen-bonding interactions (dashed lines) taking place between the [Ni(H2O)6]2+ complex cations and the 6-oxo-1,6-dihydropyridine-3-carboxylate anions. |
[Ni(H2O)6](C6H4NO3)2 | Z = 1 |
Mr = 443.01 | F(000) = 230 |
Triclinic, P1 | Dx = 1.792 Mg m−3 |
a = 6.2620 (5) Å | Mo Kα radiation, λ = 0.71073 Å |
b = 7.1053 (7) Å | Cell parameters from 2781 reflections |
c = 10.7101 (10) Å | θ = 2.0–28.2° |
α = 102.461 (8)° | µ = 1.26 mm−1 |
β = 96.754 (7)° | T = 100 K |
γ = 114.823 (8)° | Block, light green |
V = 410.49 (7) Å3 | 0.08 × 0.07 × 0.06 mm |
Bruker SMART 1K CCD area-detector diffractometer | 1801 independent reflections |
Radiation source: sealed tube | 1654 reflections with I > 2σ(I) |
Graphite monochromator | Rint = 0.020 |
Detector resolution: 8.192 pixels mm-1 | θmax = 28.2°, θmin = 2.0° |
thin–slice ω scans | h = −5→8 |
Absorption correction: analytical (CrysAlis RED; Oxford Diffraction, 2003) | k = −9→5 |
Tmin = 0.888, Tmax = 0.936 | l = −14→13 |
2781 measured reflections |
Refinement on F2 | Primary atom site location: structure-invariant direct methods |
Least-squares matrix: full | Secondary atom site location: difference Fourier map |
R[F2 > 2σ(F2)] = 0.032 | Hydrogen site location: mixed |
wR(F2) = 0.070 | H atoms treated by a mixture of independent and constrained refinement |
S = 1.06 | w = 1/[σ2(Fo2) + (0.0191P)2 + 0.3293P] where P = (Fo2 + 2Fc2)/3 |
1801 reflections | (Δ/σ)max < 0.001 |
146 parameters | Δρmax = 0.45 e Å−3 |
0 restraints | Δρmin = −0.39 e Å−3 |
[Ni(H2O)6](C6H4NO3)2 | γ = 114.823 (8)° |
Mr = 443.01 | V = 410.49 (7) Å3 |
Triclinic, P1 | Z = 1 |
a = 6.2620 (5) Å | Mo Kα radiation |
b = 7.1053 (7) Å | µ = 1.26 mm−1 |
c = 10.7101 (10) Å | T = 100 K |
α = 102.461 (8)° | 0.08 × 0.07 × 0.06 mm |
β = 96.754 (7)° |
Bruker SMART 1K CCD area-detector diffractometer | 1801 independent reflections |
Absorption correction: analytical (CrysAlis RED; Oxford Diffraction, 2003) | 1654 reflections with I > 2σ(I) |
Tmin = 0.888, Tmax = 0.936 | Rint = 0.020 |
2781 measured reflections |
R[F2 > 2σ(F2)] = 0.032 | 0 restraints |
wR(F2) = 0.070 | H atoms treated by a mixture of independent and constrained refinement |
S = 1.06 | Δρmax = 0.45 e Å−3 |
1801 reflections | Δρmin = −0.39 e Å−3 |
146 parameters |
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > 2sigma(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger. |
x | y | z | Uiso*/Ueq | ||
Ni1 | 0.5000 | 0.0000 | 0.5000 | 0.01281 (12) | |
O1W | 0.7185 (3) | 0.1609 (3) | 0.68193 (15) | 0.0168 (3) | |
O71 | 0.5271 (3) | −0.1565 (3) | 1.13681 (15) | 0.0202 (4) | |
O2W | 0.3038 (3) | −0.2654 (3) | 0.56622 (15) | 0.0154 (3) | |
O3W | 0.2933 (3) | 0.1461 (3) | 0.55076 (17) | 0.0231 (4) | |
O2 | 0.8636 (3) | −0.3362 (3) | 0.62046 (14) | 0.0176 (3) | |
O72 | 0.8231 (3) | −0.2245 (3) | 1.21937 (15) | 0.0202 (4) | |
N1 | 0.6616 (3) | −0.2558 (3) | 0.76999 (18) | 0.0162 (4) | |
C2 | 0.8355 (4) | −0.3128 (4) | 0.7379 (2) | 0.0141 (4) | |
C4 | 0.9331 (4) | −0.3021 (3) | 0.9661 (2) | 0.0140 (4) | |
H4 | 1.0278 | −0.3170 | 1.0333 | 0.017* | |
C3 | 0.9726 (4) | −0.3378 (4) | 0.8423 (2) | 0.0148 (4) | |
H3 | 1.0917 | −0.3793 | 0.8264 | 0.018* | |
C5 | 0.7512 (4) | −0.2432 (3) | 0.9937 (2) | 0.0130 (4) | |
C7 | 0.6965 (4) | −0.2048 (3) | 1.1271 (2) | 0.0144 (4) | |
C6 | 0.6196 (4) | −0.2203 (4) | 0.8921 (2) | 0.0154 (4) | |
H6 | 0.4995 | −0.1797 | 0.9070 | 0.018* | |
H1 | 0.574 (4) | −0.240 (4) | 0.708 (3) | 0.018* | |
H31W | 0.266 (5) | 0.177 (4) | 0.615 (3) | 0.023* | |
H21W | 0.262 (5) | −0.387 (5) | 0.505 (3) | 0.023* | |
H22W | 0.189 (5) | −0.270 (4) | 0.588 (3) | 0.023* | |
H11W | 0.650 (5) | 0.171 (4) | 0.736 (3) | 0.023* | |
H12W | 0.844 (5) | 0.170 (4) | 0.712 (3) | 0.023* | |
H32W | 0.236 (5) | 0.196 (5) | 0.503 (3) | 0.038 (9)* |
U11 | U22 | U33 | U12 | U13 | U23 | |
Ni1 | 0.0108 (2) | 0.0231 (2) | 0.0093 (2) | 0.01104 (17) | 0.00397 (15) | 0.00593 (16) |
O1W | 0.0119 (8) | 0.0321 (10) | 0.0095 (8) | 0.0130 (7) | 0.0037 (6) | 0.0053 (7) |
O71 | 0.0201 (8) | 0.0353 (10) | 0.0169 (8) | 0.0204 (8) | 0.0102 (7) | 0.0109 (7) |
O2W | 0.0127 (8) | 0.0239 (9) | 0.0126 (8) | 0.0102 (7) | 0.0056 (6) | 0.0058 (7) |
O3W | 0.0303 (10) | 0.0467 (12) | 0.0121 (8) | 0.0320 (9) | 0.0110 (7) | 0.0135 (8) |
O2 | 0.0198 (8) | 0.0248 (9) | 0.0126 (8) | 0.0127 (7) | 0.0073 (6) | 0.0067 (7) |
O72 | 0.0180 (8) | 0.0384 (10) | 0.0112 (8) | 0.0187 (8) | 0.0048 (6) | 0.0079 (7) |
N1 | 0.0152 (9) | 0.0275 (11) | 0.0121 (9) | 0.0135 (8) | 0.0047 (8) | 0.0094 (8) |
C2 | 0.0133 (10) | 0.0176 (11) | 0.0130 (10) | 0.0074 (9) | 0.0061 (8) | 0.0054 (9) |
C4 | 0.0132 (10) | 0.0156 (11) | 0.0138 (10) | 0.0084 (9) | 0.0010 (8) | 0.0033 (9) |
C3 | 0.0118 (10) | 0.0190 (11) | 0.0170 (11) | 0.0102 (9) | 0.0053 (8) | 0.0042 (9) |
C5 | 0.0113 (10) | 0.0159 (11) | 0.0115 (10) | 0.0058 (8) | 0.0038 (8) | 0.0038 (8) |
C7 | 0.0127 (10) | 0.0169 (11) | 0.0133 (11) | 0.0062 (9) | 0.0039 (8) | 0.0047 (9) |
C6 | 0.0130 (10) | 0.0233 (12) | 0.0145 (11) | 0.0107 (9) | 0.0066 (9) | 0.0075 (9) |
Ni1—O1W | 2.0184 (16) | O2—C2 | 1.275 (2) |
Ni1—O1Wi | 2.0184 (16) | O72—C7 | 1.262 (3) |
Ni1—O3Wi | 2.0242 (16) | N1—C6 | 1.356 (3) |
Ni1—O3W | 2.0242 (16) | N1—C2 | 1.366 (3) |
Ni1—O2Wi | 2.0990 (16) | N1—H1 | 0.87 (2) |
Ni1—O2W | 2.0990 (16) | C2—C3 | 1.417 (3) |
O1W—H11W | 0.77 (3) | C4—C3 | 1.367 (3) |
O1W—H12W | 0.78 (3) | C4—C5 | 1.409 (3) |
O71—C7 | 1.253 (2) | C4—H4 | 0.9300 |
O2W—H21W | 0.88 (3) | C3—H3 | 0.9300 |
O2W—H22W | 0.77 (3) | C5—C6 | 1.366 (3) |
O3W—H31W | 0.74 (3) | C5—C7 | 1.503 (3) |
O3W—H32W | 0.81 (3) | C6—H6 | 0.9300 |
O1W—Ni1—O1Wi | 180.0 | H31W—O3W—H32W | 106 (3) |
O1W—Ni1—O2W | 89.95 (6) | C6—N1—C2 | 124.28 (18) |
O1W—Ni1—O2Wi | 90.05 (6) | C6—N1—H1 | 118.1 (16) |
O1W—Ni1—O3W | 88.06 (7) | C2—N1—H1 | 117.6 (16) |
O1W—Ni1—O3Wi | 91.94 (7) | O2—C2—N1 | 118.94 (19) |
O2W—Ni1—O3W | 92.99 (7) | O2—C2—C3 | 125.81 (19) |
O2W—Ni1—O3Wi | 87.01 (7) | N1—C2—C3 | 115.24 (18) |
O1Wi—Ni1—O3Wi | 88.06 (7) | C3—C4—C5 | 121.08 (19) |
O1Wi—Ni1—O3W | 91.94 (7) | C3—C4—H4 | 119.5 |
O3Wi—Ni1—O3W | 180.0 | C5—C4—H4 | 119.5 |
O1Wi—Ni1—O2Wi | 89.95 (6) | C4—C3—C2 | 121.22 (19) |
O3Wi—Ni1—O2Wi | 92.99 (7) | C4—C3—H3 | 119.4 |
O1Wi—Ni1—O2W | 90.05 (6) | C2—C3—H3 | 119.4 |
O3Wi—Ni1—O2W | 87.01 (7) | C6—C5—C4 | 117.18 (19) |
O2Wi—Ni1—O2W | 180.0 | C6—C5—C7 | 119.20 (18) |
Ni1—O1W—H11W | 114 (2) | C4—C5—C7 | 123.62 (18) |
Ni1—O1W—H12W | 130 (2) | O71—C7—O72 | 125.51 (19) |
H11W—O1W—H12W | 110 (3) | O71—C7—C5 | 116.72 (18) |
Ni1—O2W—H21W | 110.1 (17) | O72—C7—C5 | 117.77 (18) |
Ni1—O2W—H22W | 116 (2) | N1—C6—C5 | 120.98 (19) |
H21W—O2W—H22W | 108 (3) | N1—C6—H6 | 119.5 |
Ni1—O3W—H31W | 129 (2) | C5—C6—H6 | 119.5 |
Ni1—O3W—H32W | 124 (2) | ||
C6—N1—C2—O2 | −178.1 (2) | C6—C5—C7—O71 | 1.2 (3) |
C6—N1—C2—C3 | 1.1 (3) | C4—C5—C7—O71 | −178.9 (2) |
C5—C4—C3—C2 | 1.2 (3) | C6—C5—C7—O72 | −179.1 (2) |
O2—C2—C3—C4 | 177.9 (2) | C4—C5—C7—O72 | 0.8 (3) |
N1—C2—C3—C4 | −1.2 (3) | C2—N1—C6—C5 | −1.0 (3) |
C3—C4—C5—C6 | −1.0 (3) | C4—C5—C6—N1 | 0.8 (3) |
C3—C4—C5—C7 | 179.1 (2) | C7—C5—C6—N1 | −179.3 (2) |
Symmetry code: (i) −x+1, −y, −z+1. |
D—H···A | D—H | H···A | D···A | D—H···A |
N1—H1···O2W | 0.87 (2) | 2.06 (3) | 2.906 (2) | 167 (2) |
O1W—H11W···O71ii | 0.77 (3) | 1.85 (3) | 2.612 (2) | 173 (3) |
O1W—H12W···O72iii | 0.78 (3) | 1.97 (3) | 2.748 (2) | 173 (3) |
O2W—H21W···O2iv | 0.88 (3) | 1.90 (3) | 2.772 (2) | 173 (2) |
O2W—H22W···O2v | 0.77 (3) | 1.98 (3) | 2.743 (2) | 169 (3) |
O3W—H31W···O72ii | 0.74 (3) | 1.92 (3) | 2.660 (2) | 174 (3) |
O3W—H32W···O2i | 0.81 (3) | 2.01 (3) | 2.813 (2) | 172 (3) |
Symmetry codes: (i) −x+1, −y, −z+1; (ii) −x+1, −y, −z+2; (iii) −x+2, −y, −z+2; (iv) −x+1, −y−1, −z+1; (v) x−1, y, z. |
D—H···A | D—H | H···A | D···A | D—H···A |
N1—H1···O2W | 0.87 (2) | 2.06 (3) | 2.906 (2) | 167 (2) |
O1W—H11W···O71i | 0.77 (3) | 1.85 (3) | 2.612 (2) | 173 (3) |
O1W—H12W···O72ii | 0.78 (3) | 1.97 (3) | 2.748 (2) | 173 (3) |
O2W—H21W···O2iii | 0.88 (3) | 1.90 (3) | 2.772 (2) | 173 (2) |
O2W—H22W···O2iv | 0.77 (3) | 1.98 (3) | 2.743 (2) | 169 (3) |
O3W—H31W···O72i | 0.74 (3) | 1.92 (3) | 2.660 (2) | 174 (3) |
O3W—H32W···O2v | 0.81 (3) | 2.01 (3) | 2.813 (2) | 172 (3) |
Symmetry codes: (i) −x+1, −y, −z+2; (ii) −x+2, −y, −z+2; (iii) −x+1, −y−1, −z+1; (iv) x−1, y, z; (v) −x+1, −y, −z+1. |
Acknowledgements
This work has been funded by Eusko Jaurlaritza/Gobierno Vasco (Grant IT477–10), Universidad del País Vasco/Euskal Herriko Unibertsitatea (EHUA14/09, Grant UFI11/53), and the Ministerio de Economía y Competitividad (MAT2013–46502-C2–1-P). The authors are thankful for technical and human support provided by S. GIker of UPV/EHU.
References
Agilent (2012). CrysAlis PRO. Agilent Technologies Ltd, Yarnton, England. Google Scholar
Altomare, A., Cascarano, G., Giacovazzo, C. & Guagliardi, A. (1993). J. Appl. Cryst. 26, 343–350. CrossRef Web of Science IUCr Journals Google Scholar
Farrugia, L. J. (2012). J. Appl. Cryst. 45, 849–854. Web of Science CrossRef CAS IUCr Journals Google Scholar
Oxford Diffraction (2003). CrysAlis RED. Oxford Diffraction Ltd, Abingdon, England. Google Scholar
Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. Web of Science CrossRef CAS IUCr Journals Google Scholar
Song, Y.-S., Yan, B. & Chen, Z.-X. (2005). Inorg. Chem. Commun. 8, 1165–1168. Web of Science CSD CrossRef CAS Google Scholar
Zeng, Y.-F., Zhao, J.-P., Hu, B.-W., Hu, X., Liu, F.-C., Ribas, J., Ribas-Ariño, J. & Bu, X. H. (2007). Chem. Eur. J. 13, 9924–9930. Web of Science CSD CrossRef PubMed CAS Google Scholar
Zhang, X.-L., Lu, Y.-J., Li, J.-Z. & Ng, S. W. (2005). Acta Cryst. E61, m1063–m1064. Web of Science CSD CrossRef IUCr Journals Google Scholar
Zhang, X.-L. & Ng, S. W. (2005a). Acta Cryst. E61, m1140–m1141. Web of Science CSD CrossRef IUCr Journals Google Scholar
Zhang, X.-L. & Ng, S. W. (2005b). Acta Cryst. E61, m1142–m1143. Web of Science CSD CrossRef IUCr Journals Google Scholar
This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.