metal-organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

The crystal structure of a new polymorph of hexa­aqua­nickel(II) bis­­(6-oxo-1,6-di­hydro­pyridine-3-carboxyl­ate)

aDepartamento de Química Inorgánica., Facultad de Ciencia y Tecnología, Universidad del País Vasco, UPV/EHU, Apdo. 644, E-48080 Bilbao, Spain
*Correspondence e-mail: oscar.castillo@ehu.eus

Edited by M. Weil, Vienna University of Technology, Austria (Received 16 November 2015; accepted 24 November 2015; online 28 November 2015)

In a new polymorph of the title salt, [Ni(H2O)6](C6H4NO3)2, the metal atom of the cationic complex lies on a symmetry centre and is coordinated by six water mol­ecules to provide a quite regular octa­hedral coordination environment. These cations inter­act with 6-oxo-1,6-di­hydro­pyridine-3-carboxyl­ate anions through electrostatic inter­actions and by means of O—H⋯O and N—H⋯O hydrogen bonds involving the carboxyl­ate, keto and protonated imine groups of the anion, and the coordinating water mol­ecules from the cationic complex entity to generate a supra­molecular three-dimensional architecture. The previously reported polymorph of this compound presents a network of hydrogen bonds, in which the organic anions establish mutual hydrogen-bonding inter­actions involving their keto and protonated imine groups.

1. Related literature

The zinc and cobalt analogues (Zhang et al., 2005[Zhang, X.-L., Lu, Y.-J., Li, J.-Z. & Ng, S. W. (2005). Acta Cryst. E61, m1063-m1064.]; Song et al., 2005[Song, Y.-S., Yan, B. & Chen, Z.-X. (2005). Inorg. Chem. Commun. 8, 1165-1168.]; Zhang & Ng, 2005a[Zhang, X.-L. & Ng, S. W. (2005a). Acta Cryst. E61, m1140-m1141.]) of the title salt are isostructural with the previously reported polymorph of [Ni(H2O)6](C6H4NO3)2 (Zhang & Ng, 2005b[Zhang, X.-L. & Ng, S. W. (2005b). Acta Cryst. E61, m1142-m1143.]). It is worth mentioning that although the authors claimed a lactim tautomer of the organic anion to be present in all these structures, the C—O bond length seems to indicate of a lactam tautomer as in the case of the title compound. For additional examples of coordination complexes with 6-oxo-1,6-di­hydro­pyridine-3-carboxyl­ate anions and copper(II), see: Zeng et al. (2007[Zeng, Y.-F., Zhao, J.-P., Hu, B.-W., Hu, X., Liu, F.-C., Ribas, J., Ribas-Ariño, J. & Bu, X. H. (2007). Chem. Eur. J. 13, 9924-9930.]).

[Scheme 1]

2. Experimental

2.1. Crystal data

  • [Ni(H2O)6](C6H4NO3)2

  • Mr = 443.01

  • Triclinic, [P \overline 1]

  • a = 6.2620 (5) Å

  • b = 7.1053 (7) Å

  • c = 10.7101 (10) Å

  • α = 102.461 (8)°

  • β = 96.754 (7)°

  • γ = 114.823 (8)°

  • V = 410.49 (7) Å3

  • Z = 1

  • Mo Kα radiation

  • μ = 1.26 mm−1

  • T = 100 K

  • 0.08 × 0.07 × 0.06 mm

2.2. Data collection

  • Bruker SMART 1K CCD area-detector diffractometer

  • Absorption correction: analytical (CrysAlis RED; Oxford Diffraction, 2003[Oxford Diffraction (2003). CrysAlis RED. Oxford Diffraction Ltd, Abingdon, England.]) Tmin = 0.888, Tmax = 0.936

  • 2781 measured reflections

  • 1801 independent reflections

  • 1654 reflections with I > 2σ(I)

  • Rint = 0.020

2.3. Refinement

  • R[F2 > 2σ(F2)] = 0.032

  • wR(F2) = 0.070

  • S = 1.06

  • 1801 reflections

  • 146 parameters

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 0.45 e Å−3

  • Δρmin = −0.39 e Å−3

Table 1
Selected bond lengths (Å)

Ni1—O1W 2.0184 (16)
Ni1—O3W 2.0242 (16)
Ni1—O2W 2.0990 (16)

Table 2
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
N1—H1⋯O2W 0.87 (2) 2.06 (3) 2.906 (2) 167 (2)
O1W—H11W⋯O71i 0.77 (3) 1.85 (3) 2.612 (2) 173 (3)
O1W—H12W⋯O72ii 0.78 (3) 1.97 (3) 2.748 (2) 173 (3)
O2W—H21W⋯O2iii 0.88 (3) 1.90 (3) 2.772 (2) 173 (2)
O2W—H22W⋯O2iv 0.77 (3) 1.98 (3) 2.743 (2) 169 (3)
O3W—H31W⋯O72i 0.74 (3) 1.92 (3) 2.660 (2) 174 (3)
O3W—H32W⋯O2v 0.81 (3) 2.01 (3) 2.813 (2) 172 (3)
Symmetry codes: (i) -x+1, -y, -z+2; (ii) -x+2, -y, -z+2; (iii) -x+1, -y-1, -z+1; (iv) x-1, y, z; (v) -x+1, -y, -z+1.

Data collection: CrysAlis PRO (Agilent, 2012[Agilent (2012). CrysAlis PRO. Agilent Technologies Ltd, Yarnton, England.]); cell refinement: CrysAlis PRO; data reduction: CrysAlis PRO; program(s) used to solve structure: SIR92 (Altomare et al., 1993[Altomare, A., Cascarano, G., Giacovazzo, C. & Guagliardi, A. (1993). J. Appl. Cryst. 26, 343-350.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: ORTEP-3 for Windows (Farrugia, 2012[Farrugia, L. J. (2012). J. Appl. Cryst. 45, 849-854.]); software used to prepare material for publication: WinGX (Farrugia, 2012[Farrugia, L. J. (2012). J. Appl. Cryst. 45, 849-854.]).

Supporting information


Related literature top

The zinc and cobalt analogues (Zhang et al., 2005; Song et al., 2005; Zhang & Ng, 2005a) of the title salt are isostructural with the previously reported polymorph of [Ni(H2O)6](C6H4NO3)2 (Zhang & Ng, 2005b). It is worth mentioning that although the authors claimed a lactim tautomer of the organic anion to be present in all these structures, the C—O bond length seems to indicate of a lactam tautomer as in the case of the title compound. For additional examples of coordination complexes with 6-oxo-1,6-dihydropyridine-3-carboxylate anions and copper(II), see: Zeng et al. (2007).

Experimental top

6-Oxo-1,6-dihydropyridine-3-carboxylic acid (0.8 mmol) and Ni(NO3)2·6H2O (0.4 mmol) were dissolved in 40 ml of distilled water. After stirring for half an hour, the solution was left evaporating at room temperature. Two weeks later light green crystals of the title compound were obtained.

Refinement top

H atoms bonded to N and O atoms were located in a difference map and were refined with Uiso(H) = 1.2Ueq(N) and Uiso(H) = 1.5Ueq(O). Other H atoms were positioned geometrically and refined using a riding model with C—H = 0.93 Å and with Uiso(H) = 1.2Ueq(C).

Structure description top

The zinc and cobalt analogues (Zhang et al., 2005; Song et al., 2005; Zhang & Ng, 2005a) of the title salt are isostructural with the previously reported polymorph of [Ni(H2O)6](C6H4NO3)2 (Zhang & Ng, 2005b). It is worth mentioning that although the authors claimed a lactim tautomer of the organic anion to be present in all these structures, the C—O bond length seems to indicate of a lactam tautomer as in the case of the title compound. For additional examples of coordination complexes with 6-oxo-1,6-dihydropyridine-3-carboxylate anions and copper(II), see: Zeng et al. (2007).

Computing details top

Data collection: CrysAlis PRO (Agilent, 2012); cell refinement: CrysAlis PRO (Agilent, 2012); data reduction: CrysAlis PRO (Agilent, 2012); program(s) used to solve structure: SIR92 (Altomare et al., 1993); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 for Windows (Farrugia, 2012); software used to prepare material for publication: WinGX (Farrugia, 2012).

Figures top
[Figure 1] Fig. 1. The structures of the molecular entities in (I), drawn with displacement ellipsoids at the 50% probability level. [Symmetry code: -x+1, -y, -z+1.]
[Figure 2] Fig. 2. Hydrogen-bonding interactions (dashed lines) taking place between the [Ni(H2O)6]2+ complex cations and the 6-oxo-1,6-dihydropyridine-3-carboxylate anions.
Hexaaquanickel(II) bis(6-oxo-1,6-dihydropyridine-3-carboxylate) top
Crystal data top
[Ni(H2O)6](C6H4NO3)2Z = 1
Mr = 443.01F(000) = 230
Triclinic, P1Dx = 1.792 Mg m3
a = 6.2620 (5) ÅMo Kα radiation, λ = 0.71073 Å
b = 7.1053 (7) ÅCell parameters from 2781 reflections
c = 10.7101 (10) Åθ = 2.0–28.2°
α = 102.461 (8)°µ = 1.26 mm1
β = 96.754 (7)°T = 100 K
γ = 114.823 (8)°Block, light green
V = 410.49 (7) Å30.08 × 0.07 × 0.06 mm
Data collection top
Bruker SMART 1K CCD area-detector
diffractometer
1801 independent reflections
Radiation source: sealed tube1654 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.020
Detector resolution: 8.192 pixels mm-1θmax = 28.2°, θmin = 2.0°
thin–slice ω scansh = 58
Absorption correction: analytical
(CrysAlis RED; Oxford Diffraction, 2003)
k = 95
Tmin = 0.888, Tmax = 0.936l = 1413
2781 measured reflections
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.032Hydrogen site location: mixed
wR(F2) = 0.070H atoms treated by a mixture of independent and constrained refinement
S = 1.06 w = 1/[σ2(Fo2) + (0.0191P)2 + 0.3293P]
where P = (Fo2 + 2Fc2)/3
1801 reflections(Δ/σ)max < 0.001
146 parametersΔρmax = 0.45 e Å3
0 restraintsΔρmin = 0.39 e Å3
Crystal data top
[Ni(H2O)6](C6H4NO3)2γ = 114.823 (8)°
Mr = 443.01V = 410.49 (7) Å3
Triclinic, P1Z = 1
a = 6.2620 (5) ÅMo Kα radiation
b = 7.1053 (7) ŵ = 1.26 mm1
c = 10.7101 (10) ÅT = 100 K
α = 102.461 (8)°0.08 × 0.07 × 0.06 mm
β = 96.754 (7)°
Data collection top
Bruker SMART 1K CCD area-detector
diffractometer
1801 independent reflections
Absorption correction: analytical
(CrysAlis RED; Oxford Diffraction, 2003)
1654 reflections with I > 2σ(I)
Tmin = 0.888, Tmax = 0.936Rint = 0.020
2781 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0320 restraints
wR(F2) = 0.070H atoms treated by a mixture of independent and constrained refinement
S = 1.06Δρmax = 0.45 e Å3
1801 reflectionsΔρmin = 0.39 e Å3
146 parameters
Special details top

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > 2sigma(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Ni10.50000.00000.50000.01281 (12)
O1W0.7185 (3)0.1609 (3)0.68193 (15)0.0168 (3)
O710.5271 (3)0.1565 (3)1.13681 (15)0.0202 (4)
O2W0.3038 (3)0.2654 (3)0.56622 (15)0.0154 (3)
O3W0.2933 (3)0.1461 (3)0.55076 (17)0.0231 (4)
O20.8636 (3)0.3362 (3)0.62046 (14)0.0176 (3)
O720.8231 (3)0.2245 (3)1.21937 (15)0.0202 (4)
N10.6616 (3)0.2558 (3)0.76999 (18)0.0162 (4)
C20.8355 (4)0.3128 (4)0.7379 (2)0.0141 (4)
C40.9331 (4)0.3021 (3)0.9661 (2)0.0140 (4)
H41.02780.31701.03330.017*
C30.9726 (4)0.3378 (4)0.8423 (2)0.0148 (4)
H31.09170.37930.82640.018*
C50.7512 (4)0.2432 (3)0.9937 (2)0.0130 (4)
C70.6965 (4)0.2048 (3)1.1271 (2)0.0144 (4)
C60.6196 (4)0.2203 (4)0.8921 (2)0.0154 (4)
H60.49950.17970.90700.018*
H10.574 (4)0.240 (4)0.708 (3)0.018*
H31W0.266 (5)0.177 (4)0.615 (3)0.023*
H21W0.262 (5)0.387 (5)0.505 (3)0.023*
H22W0.189 (5)0.270 (4)0.588 (3)0.023*
H11W0.650 (5)0.171 (4)0.736 (3)0.023*
H12W0.844 (5)0.170 (4)0.712 (3)0.023*
H32W0.236 (5)0.196 (5)0.503 (3)0.038 (9)*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Ni10.0108 (2)0.0231 (2)0.0093 (2)0.01104 (17)0.00397 (15)0.00593 (16)
O1W0.0119 (8)0.0321 (10)0.0095 (8)0.0130 (7)0.0037 (6)0.0053 (7)
O710.0201 (8)0.0353 (10)0.0169 (8)0.0204 (8)0.0102 (7)0.0109 (7)
O2W0.0127 (8)0.0239 (9)0.0126 (8)0.0102 (7)0.0056 (6)0.0058 (7)
O3W0.0303 (10)0.0467 (12)0.0121 (8)0.0320 (9)0.0110 (7)0.0135 (8)
O20.0198 (8)0.0248 (9)0.0126 (8)0.0127 (7)0.0073 (6)0.0067 (7)
O720.0180 (8)0.0384 (10)0.0112 (8)0.0187 (8)0.0048 (6)0.0079 (7)
N10.0152 (9)0.0275 (11)0.0121 (9)0.0135 (8)0.0047 (8)0.0094 (8)
C20.0133 (10)0.0176 (11)0.0130 (10)0.0074 (9)0.0061 (8)0.0054 (9)
C40.0132 (10)0.0156 (11)0.0138 (10)0.0084 (9)0.0010 (8)0.0033 (9)
C30.0118 (10)0.0190 (11)0.0170 (11)0.0102 (9)0.0053 (8)0.0042 (9)
C50.0113 (10)0.0159 (11)0.0115 (10)0.0058 (8)0.0038 (8)0.0038 (8)
C70.0127 (10)0.0169 (11)0.0133 (11)0.0062 (9)0.0039 (8)0.0047 (9)
C60.0130 (10)0.0233 (12)0.0145 (11)0.0107 (9)0.0066 (9)0.0075 (9)
Geometric parameters (Å, º) top
Ni1—O1W2.0184 (16)O2—C21.275 (2)
Ni1—O1Wi2.0184 (16)O72—C71.262 (3)
Ni1—O3Wi2.0242 (16)N1—C61.356 (3)
Ni1—O3W2.0242 (16)N1—C21.366 (3)
Ni1—O2Wi2.0990 (16)N1—H10.87 (2)
Ni1—O2W2.0990 (16)C2—C31.417 (3)
O1W—H11W0.77 (3)C4—C31.367 (3)
O1W—H12W0.78 (3)C4—C51.409 (3)
O71—C71.253 (2)C4—H40.9300
O2W—H21W0.88 (3)C3—H30.9300
O2W—H22W0.77 (3)C5—C61.366 (3)
O3W—H31W0.74 (3)C5—C71.503 (3)
O3W—H32W0.81 (3)C6—H60.9300
O1W—Ni1—O1Wi180.0H31W—O3W—H32W106 (3)
O1W—Ni1—O2W89.95 (6)C6—N1—C2124.28 (18)
O1W—Ni1—O2Wi90.05 (6)C6—N1—H1118.1 (16)
O1W—Ni1—O3W88.06 (7)C2—N1—H1117.6 (16)
O1W—Ni1—O3Wi91.94 (7)O2—C2—N1118.94 (19)
O2W—Ni1—O3W92.99 (7)O2—C2—C3125.81 (19)
O2W—Ni1—O3Wi87.01 (7)N1—C2—C3115.24 (18)
O1Wi—Ni1—O3Wi88.06 (7)C3—C4—C5121.08 (19)
O1Wi—Ni1—O3W91.94 (7)C3—C4—H4119.5
O3Wi—Ni1—O3W180.0C5—C4—H4119.5
O1Wi—Ni1—O2Wi89.95 (6)C4—C3—C2121.22 (19)
O3Wi—Ni1—O2Wi92.99 (7)C4—C3—H3119.4
O1Wi—Ni1—O2W90.05 (6)C2—C3—H3119.4
O3Wi—Ni1—O2W87.01 (7)C6—C5—C4117.18 (19)
O2Wi—Ni1—O2W180.0C6—C5—C7119.20 (18)
Ni1—O1W—H11W114 (2)C4—C5—C7123.62 (18)
Ni1—O1W—H12W130 (2)O71—C7—O72125.51 (19)
H11W—O1W—H12W110 (3)O71—C7—C5116.72 (18)
Ni1—O2W—H21W110.1 (17)O72—C7—C5117.77 (18)
Ni1—O2W—H22W116 (2)N1—C6—C5120.98 (19)
H21W—O2W—H22W108 (3)N1—C6—H6119.5
Ni1—O3W—H31W129 (2)C5—C6—H6119.5
Ni1—O3W—H32W124 (2)
C6—N1—C2—O2178.1 (2)C6—C5—C7—O711.2 (3)
C6—N1—C2—C31.1 (3)C4—C5—C7—O71178.9 (2)
C5—C4—C3—C21.2 (3)C6—C5—C7—O72179.1 (2)
O2—C2—C3—C4177.9 (2)C4—C5—C7—O720.8 (3)
N1—C2—C3—C41.2 (3)C2—N1—C6—C51.0 (3)
C3—C4—C5—C61.0 (3)C4—C5—C6—N10.8 (3)
C3—C4—C5—C7179.1 (2)C7—C5—C6—N1179.3 (2)
Symmetry code: (i) x+1, y, z+1.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1···O2W0.87 (2)2.06 (3)2.906 (2)167 (2)
O1W—H11W···O71ii0.77 (3)1.85 (3)2.612 (2)173 (3)
O1W—H12W···O72iii0.78 (3)1.97 (3)2.748 (2)173 (3)
O2W—H21W···O2iv0.88 (3)1.90 (3)2.772 (2)173 (2)
O2W—H22W···O2v0.77 (3)1.98 (3)2.743 (2)169 (3)
O3W—H31W···O72ii0.74 (3)1.92 (3)2.660 (2)174 (3)
O3W—H32W···O2i0.81 (3)2.01 (3)2.813 (2)172 (3)
Symmetry codes: (i) x+1, y, z+1; (ii) x+1, y, z+2; (iii) x+2, y, z+2; (iv) x+1, y1, z+1; (v) x1, y, z.
Selected bond lengths (Å) top
Ni1—O1W2.0184 (16)Ni1—O2W2.0990 (16)
Ni1—O3W2.0242 (16)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1···O2W0.87 (2)2.06 (3)2.906 (2)167 (2)
O1W—H11W···O71i0.77 (3)1.85 (3)2.612 (2)173 (3)
O1W—H12W···O72ii0.78 (3)1.97 (3)2.748 (2)173 (3)
O2W—H21W···O2iii0.88 (3)1.90 (3)2.772 (2)173 (2)
O2W—H22W···O2iv0.77 (3)1.98 (3)2.743 (2)169 (3)
O3W—H31W···O72i0.74 (3)1.92 (3)2.660 (2)174 (3)
O3W—H32W···O2v0.81 (3)2.01 (3)2.813 (2)172 (3)
Symmetry codes: (i) x+1, y, z+2; (ii) x+2, y, z+2; (iii) x+1, y1, z+1; (iv) x1, y, z; (v) x+1, y, z+1.
 

Acknowledgements

This work has been funded by Eusko Jaurlaritza/Gobierno Vasco (Grant IT477–10), Universidad del País Vasco/Euskal Herriko Unibertsitatea (EHUA14/09, Grant UFI11/53), and the Ministerio de Economía y Competitividad (MAT2013–46502-C2–1-P). The authors are thankful for technical and human support provided by S. GIker of UPV/EHU.

References

First citationAgilent (2012). CrysAlis PRO. Agilent Technologies Ltd, Yarnton, England.  Google Scholar
First citationAltomare, A., Cascarano, G., Giacovazzo, C. & Guagliardi, A. (1993). J. Appl. Cryst. 26, 343–350.  CrossRef Web of Science IUCr Journals Google Scholar
First citationFarrugia, L. J. (2012). J. Appl. Cryst. 45, 849–854.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationOxford Diffraction (2003). CrysAlis RED. Oxford Diffraction Ltd, Abingdon, England.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSong, Y.-S., Yan, B. & Chen, Z.-X. (2005). Inorg. Chem. Commun. 8, 1165–1168.  Web of Science CSD CrossRef CAS Google Scholar
First citationZeng, Y.-F., Zhao, J.-P., Hu, B.-W., Hu, X., Liu, F.-C., Ribas, J., Ribas-Ariño, J. & Bu, X. H. (2007). Chem. Eur. J. 13, 9924–9930.  Web of Science CSD CrossRef PubMed CAS Google Scholar
First citationZhang, X.-L., Lu, Y.-J., Li, J.-Z. & Ng, S. W. (2005). Acta Cryst. E61, m1063–m1064.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationZhang, X.-L. & Ng, S. W. (2005a). Acta Cryst. E61, m1140–m1141.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationZhang, X.-L. & Ng, S. W. (2005b). Acta Cryst. E61, m1142–m1143.  Web of Science CSD CrossRef IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds