metal-organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Crystal structure of di-μ2-chlorido-bis­­[(1-aza-4-azoniabi­cyclo­[2.2.2]octane-κN1)di­chlorido­dicadmium]

aSchool of Environmental and Chemical Engineering, Jiangsu University of Science and Technology, Zhenjiang 212003, People's Republic of China
*Correspondence e-mail: clz1977@sina.com

Edited by M. Weil, Vienna University of Technology, Austria (Received 19 November 2015; accepted 5 December 2015; online 12 December 2015)

In the structure of the binuclear title compound, [Cd2(C6H13N2)2Cl6], two CdII atoms are bridged by two Cl ligands, defining a centrosymmetric Cd2Cl2 motif. Each metal cation is additionally coordinated by two Cl ligands and the N atom of a protonated 1,4-di­aza­bicyclo­[2.2.2]octane (H-DABCO)+ ligand, leading to an overall trigonal–bipyramidal coordination environment with one of the bridging Cl ligands and the N atom at the apical sites. In the crystal, the neutral dimers are linked via N—H⋯Cl hydrogen bonds, forming a two-dimensional network expanding parallel to (100).

1. Related literature

For a study on phase transition of related Cd2(DABCO-CH2Cl)2(μ-Cl2), see: Chen et al. (2014[Chen, L. Z., Huang, D. D., Pan, Q. J. & Zhang, L. (2014). J. Mol. Struct. 1078, 68-73.]). Mononuclear and dinuclear bromide-nitrite cadmium complexes with DABCO derivatives were reported by Cai (2011[Cai, Y. (2011). Acta Cryst. C67, m13-m16.]).

[Scheme 1]

2. Experimental

2.1. Crystal data

  • [Cd2(C6H13N2)2Cl6]

  • Mr = 663.86

  • Orthorhombic, P b c a

  • a = 12.317 (2) Å

  • b = 12.289 (2) Å

  • c = 14.440 (2) Å

  • V = 2185.7 (6) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 2.68 mm−1

  • T = 296 K

  • 0.3 × 0.2 × 0.2 mm

2.2. Data collection

  • Bruker APEXII CCD diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 2004[Bruker (2004). APEX2, SADABS and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]) Tmin = 0.500, Tmax = 0.616

  • 14939 measured reflections

  • 1924 independent reflections

  • 1752 reflections with I > 2σ(I)

  • Rint = 0.025

2.3. Refinement

  • R[F2 > 2σ(F2)] = 0.054

  • wR(F2) = 0.183

  • S = 1.12

  • 1924 reflections

  • 109 parameters

  • 30 restraints

  • H-atom parameters constrained

  • Δρmax = 1.98 e Å−3

  • Δρmin = −1.65 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
N2—H2⋯Cl3i 0.91 2.33 3.205 (3) 162
Symmetry code: (i) [-x+1, y+{\script{1\over 2}}, -z+{\script{3\over 2}}].

Data collection: APEX2 (Bruker, 2004[Bruker (2004). APEX2, SADABS and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2004[Bruker (2004). APEX2, SADABS and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: DIAMOND (Brandenburg, 2006[Brandenburg, K. (2006). DIAMOND. Crystal Impact GbR, Bonn, Germany.]); software used to prepare material for publication: OLEX2 (Dolomanov et al., 2009[Dolomanov, O. V., Bourhis, L. J., Gildea, R. J., Howard, J. A. K. & Puschmann, H. (2009). J. Appl. Cryst. 42, 339-341.]).

Supporting information


Synthesis and crystallization top

CdCl2·2.5H2O (2.28 g, 10 mmol) and 1,4-di­aza­bicyclo [2.2.2]o­ctan (1.12 g, 10 mmol) were mixed in water (20 ml). After being stirred for 30 min, the reaction mixture was filtered and evaporated slowly at room temperature for 3 days. Colourless block-like crystals were obtained.

Refinement top

C-bound H atoms were placed in geometrically idealized positions and constrained to ride on their parent atoms, with C—H = 0.97 Å and Uiso(H) = 1.2Ueq(C). The H atom of the protonated N2 atom was discernible from a difference map. It was modelled with N—H = 0.91 Å and Uiso(H) = 1.2Ueq(N). The maximum and minimum electron density peaks are found 0.20 Å from atom Cl3 and 0.27 Å from atom Cd1, respectively.

Related literature top

For a study on phase transition of related Cd2(DABCO-CH2Cl)2(µ-Cl2), see: Chen et al. (2014). Mononuclear and dinuclear bromide-nitrite cadmium complexes with DABCO derivatives were reported by Cai (2011).

Structure description top

For a study on phase transition of related Cd2(DABCO-CH2Cl)2(µ-Cl2), see: Chen et al. (2014). Mononuclear and dinuclear bromide-nitrite cadmium complexes with DABCO derivatives were reported by Cai (2011).

Synthesis and crystallization top

CdCl2·2.5H2O (2.28 g, 10 mmol) and 1,4-di­aza­bicyclo [2.2.2]o­ctan (1.12 g, 10 mmol) were mixed in water (20 ml). After being stirred for 30 min, the reaction mixture was filtered and evaporated slowly at room temperature for 3 days. Colourless block-like crystals were obtained.

Refinement details top

C-bound H atoms were placed in geometrically idealized positions and constrained to ride on their parent atoms, with C—H = 0.97 Å and Uiso(H) = 1.2Ueq(C). The H atom of the protonated N2 atom was discernible from a difference map. It was modelled with N—H = 0.91 Å and Uiso(H) = 1.2Ueq(N). The maximum and minimum electron density peaks are found 0.20 Å from atom Cl3 and 0.27 Å from atom Cd1, respectively.

Computing details top

Data collection: APEX2 (Bruker, 2004); cell refinement: SAINT (Bruker, 2004); data reduction: SAINT (Bruker, 2004); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: DIAMOND (Brandenburg, 2006); software used to prepare material for publication: OLEX2 (Dolomanov et al., 2009).

Figures top
[Figure 1] Fig. 1. The molecular structure of the dinuclear complex in the title compound. Displacement ellipsoids are drawn at the 30% probability level. The left part of the binuclear complex is generated by symmetry code -x + 1, -y, -z + 1.
[Figure 2] Fig. 2. View onto a layer of complexes in the title compound with N—H···Cl hydrogen bonds drawn as dashed lines.
Di-µ2-chlorido-bis[(1-aza-4-azoniabicyclo[2.2.2]octane-κN1)dichloridodicadmium] top
Crystal data top
[Cd2(C6H13N2)2Cl6]Dx = 2.017 Mg m3
Mr = 663.86Mo Kα radiation, λ = 0.71073 Å
Orthorhombic, PbcaCell parameters from 6044 reflections
a = 12.317 (2) Åθ = 2.7–27.4°
b = 12.289 (2) ŵ = 2.68 mm1
c = 14.440 (2) ÅT = 296 K
V = 2185.7 (6) Å3Block, colorless
Z = 40.3 × 0.2 × 0.2 mm
F(000) = 1296
Data collection top
Bruker APEXII CCD
diffractometer
1924 independent reflections
Radiation source: fine-focus sealed tube1752 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.025
phi and ω scansθmax = 25.0°, θmin = 2.7°
Absorption correction: multi-scan
(SADABS; Bruker, 2004)
h = 1314
Tmin = 0.500, Tmax = 0.616k = 1414
14939 measured reflectionsl = 1716
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.054Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.183H-atom parameters constrained
S = 1.12 w = 1/[σ2(Fo2) + (0.1089P)2 + 19.3777P]
where P = (Fo2 + 2Fc2)/3
1924 reflections(Δ/σ)max = 0.006
109 parametersΔρmax = 1.98 e Å3
30 restraintsΔρmin = 1.65 e Å3
Crystal data top
[Cd2(C6H13N2)2Cl6]V = 2185.7 (6) Å3
Mr = 663.86Z = 4
Orthorhombic, PbcaMo Kα radiation
a = 12.317 (2) ŵ = 2.68 mm1
b = 12.289 (2) ÅT = 296 K
c = 14.440 (2) Å0.3 × 0.2 × 0.2 mm
Data collection top
Bruker APEXII CCD
diffractometer
1924 independent reflections
Absorption correction: multi-scan
(SADABS; Bruker, 2004)
1752 reflections with I > 2σ(I)
Tmin = 0.500, Tmax = 0.616Rint = 0.025
14939 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.05430 restraints
wR(F2) = 0.183H-atom parameters constrained
S = 1.12 w = 1/[σ2(Fo2) + (0.1089P)2 + 19.3777P]
where P = (Fo2 + 2Fc2)/3
1924 reflectionsΔρmax = 1.98 e Å3
109 parametersΔρmin = 1.65 e Å3
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > 2sigma(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Cd10.42960 (2)0.138551 (19)0.535783 (17)0.03153 (7)
Cl20.37788 (6)0.25484 (6)0.40100 (5)0.02553 (17)
Cl30.28196 (6)0.11273 (6)0.65621 (5)0.02369 (17)
Cl40.61656 (7)0.05552 (8)0.54294 (8)0.0606 (3)
C10.4234 (3)0.3697 (3)0.6469 (3)0.0453 (12)
H1A0.37320.33440.68900.054*
H1B0.38330.39210.59230.054*
C30.5670 (3)0.2551 (3)0.7038 (2)0.0401 (9)
H3A0.62630.20780.68530.048*
H3B0.51770.21280.74180.048*
N10.5090 (2)0.2930 (2)0.62028 (18)0.0284 (7)
C40.5890 (3)0.3502 (3)0.5617 (3)0.0418 (10)
H4A0.55260.37990.50780.050*
H4B0.64320.29870.54040.050*
C20.4742 (3)0.4710 (3)0.6946 (3)0.0512 (12)
H2A0.46240.53520.65680.061*
H2B0.44030.48290.75440.061*
N20.5912 (3)0.4521 (3)0.7064 (2)0.0429 (8)
H20.62080.50960.73700.051*
C50.6446 (4)0.4414 (3)0.6140 (3)0.0553 (12)
H5A0.72110.42510.62180.066*
H5B0.63810.50910.57990.066*
C60.6123 (4)0.3495 (3)0.7611 (3)0.0537 (10)
H6A0.57630.35310.82080.064*
H6B0.68950.34000.77130.064*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Cd10.03132 (14)0.02795 (13)0.03533 (14)0.00383 (9)0.00315 (9)0.00071 (9)
Cl20.0293 (3)0.0249 (3)0.0224 (3)0.0010 (3)0.0047 (3)0.0066 (3)
Cl30.0201 (3)0.0231 (3)0.0278 (3)0.0002 (3)0.0055 (3)0.0068 (3)
Cl40.0362 (4)0.0375 (4)0.1082 (7)0.0139 (4)0.0311 (4)0.0347 (4)
C10.0315 (19)0.042 (2)0.062 (2)0.0035 (15)0.0005 (17)0.0087 (17)
C30.0468 (17)0.0325 (15)0.0408 (16)0.0022 (13)0.0054 (14)0.0003 (14)
N10.0269 (12)0.0237 (12)0.0346 (13)0.0007 (10)0.0030 (11)0.0011 (11)
C40.0393 (18)0.0414 (19)0.0448 (19)0.0063 (16)0.0128 (17)0.0046 (16)
C20.041 (2)0.0406 (19)0.072 (2)0.0050 (17)0.003 (2)0.0175 (19)
N20.0411 (14)0.0361 (14)0.0515 (15)0.0060 (12)0.0063 (13)0.0092 (12)
C50.054 (2)0.0381 (19)0.074 (3)0.0152 (17)0.024 (2)0.0006 (19)
C60.0584 (17)0.0475 (16)0.0551 (17)0.0017 (15)0.0138 (16)0.0050 (15)
Geometric parameters (Å, º) top
Cd1—Cl22.4972 (8)N1—C41.477 (5)
Cd1—Cl32.5361 (8)C4—H4A0.9700
Cd1—Cl4i2.7025 (11)C4—H4B0.9700
Cd1—Cl42.5207 (10)C4—C51.515 (6)
Cd1—N12.460 (3)C2—H2A0.9700
Cl4—Cd1i2.7025 (11)C2—H2B0.9700
C1—H1A0.9700C2—N21.470 (5)
C1—H1B0.9700N2—H20.9100
C1—N11.465 (5)N2—C51.493 (5)
C1—C21.555 (6)N2—C61.510 (5)
C3—H3A0.9700C5—H5A0.9700
C3—H3B0.9700C5—H5B0.9700
C3—N11.477 (4)C6—H6A0.9700
C3—C61.530 (6)C6—H6B0.9700
Cl2—Cd1—Cl3115.03 (3)N1—C4—H4B109.3
Cl2—Cd1—Cl4119.78 (3)N1—C4—C5111.6 (3)
Cl2—Cd1—Cl4i97.09 (3)H4A—C4—H4B108.0
Cl3—Cd1—Cl4i91.56 (3)C5—C4—H4A109.3
Cl4—Cd1—Cl3125.19 (3)C5—C4—H4B109.3
Cl4—Cd1—Cl4i81.50 (3)C1—C2—H2A110.0
N1—Cd1—Cl292.66 (6)C1—C2—H2B110.0
N1—Cd1—Cl392.39 (6)H2A—C2—H2B108.3
N1—Cd1—Cl485.91 (7)N2—C2—C1108.6 (3)
N1—Cd1—Cl4i166.77 (6)N2—C2—H2A110.0
Cd1—Cl4—Cd1i98.50 (3)N2—C2—H2B110.0
H1A—C1—H1B108.2C2—N2—H2109.0
N1—C1—H1A109.7C2—N2—C5110.0 (3)
N1—C1—H1B109.7C2—N2—C6111.2 (3)
N1—C1—C2110.0 (3)C5—N2—H2109.0
C2—C1—H1A109.7C5—N2—C6108.5 (3)
C2—C1—H1B109.7C6—N2—H2109.0
H3A—C3—H3B107.9C4—C5—H5A110.1
N1—C3—H3A109.2C4—C5—H5B110.1
N1—C3—H3B109.2N2—C5—C4108.2 (3)
N1—C3—C6112.2 (3)N2—C5—H5A110.1
C6—C3—H3A109.2N2—C5—H5B110.1
C6—C3—H3B109.2H5A—C5—H5B108.4
C1—N1—Cd1109.9 (2)C3—C6—H6A110.4
C1—N1—C3109.7 (3)C3—C6—H6B110.4
C1—N1—C4108.9 (3)N2—C6—C3106.7 (3)
C3—N1—Cd1110.70 (19)N2—C6—H6A110.4
C4—N1—Cd1110.4 (2)N2—C6—H6B110.4
C4—N1—C3107.2 (3)H6A—C6—H6B108.6
N1—C4—H4A109.3
Cd1—N1—C4—C5176.4 (2)C1—C2—N2—C563.5 (4)
Cl2—Cd1—Cl4—Cd1i93.35 (4)C1—C2—N2—C656.8 (4)
Cl2—Cd1—N1—C167.3 (2)C3—N1—C4—C555.7 (4)
Cl2—Cd1—N1—C3171.4 (2)N1—Cd1—Cl4—Cd1i175.92 (7)
Cl2—Cd1—N1—C452.9 (2)N1—C1—C2—N25.9 (5)
Cl3—Cd1—Cl4—Cd1i85.88 (4)N1—C3—C6—N25.6 (4)
Cl3—Cd1—N1—C147.9 (2)N1—C4—C5—N26.1 (4)
Cl3—Cd1—N1—C373.4 (2)C2—C1—N1—Cd1176.3 (3)
Cl3—Cd1—N1—C4168.1 (2)C2—C1—N1—C361.8 (4)
Cl4i—Cd1—Cl4—Cd1i0.0C2—C1—N1—C455.2 (4)
Cl4—Cd1—N1—C1173.0 (2)C2—N2—C5—C456.7 (4)
Cl4i—Cd1—N1—C1155.2 (3)C2—N2—C6—C363.1 (4)
Cl4—Cd1—N1—C351.7 (2)C5—N2—C6—C358.0 (4)
Cl4i—Cd1—N1—C333.9 (4)C6—C3—N1—Cd1176.8 (3)
Cl4—Cd1—N1—C466.8 (2)C6—C3—N1—C155.5 (4)
Cl4i—Cd1—N1—C484.7 (4)C6—C3—N1—C462.7 (4)
C1—N1—C4—C562.9 (4)C6—N2—C5—C465.1 (4)
Symmetry code: (i) x+1, y, z+1.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N2—H2···Cl3ii0.912.333.205 (3)162
Symmetry code: (ii) x+1, y+1/2, z+3/2.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N2—H2···Cl3i0.912.333.205 (3)161.9
Symmetry code: (i) x+1, y+1/2, z+3/2.
 

Acknowledgements

This work was financially supported by the NSF of Jiangsu Province (BK20131244) and the Qing Lan Project of Jiangsu Province.

References

First citationBrandenburg, K. (2006). DIAMOND. Crystal Impact GbR, Bonn, Germany.  Google Scholar
First citationBruker (2004). APEX2, SADABS and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationCai, Y. (2011). Acta Cryst. C67, m13–m16.  Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
First citationChen, L. Z., Huang, D. D., Pan, Q. J. & Zhang, L. (2014). J. Mol. Struct. 1078, 68–73.  Web of Science CSD CrossRef CAS Google Scholar
First citationDolomanov, O. V., Bourhis, L. J., Gildea, R. J., Howard, J. A. K. & Puschmann, H. (2009). J. Appl. Cryst. 42, 339–341.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds