metal-organic compounds
catena-poly[1,3-dibenzylbenzimidazolium [[chloridomercurate(II)]-di-μ-chlorido]]
ofaUnité de Recherche de Chimie de l'Environnement et Moléculaire Structurale, CHEMS, Université Frères Montouri Constantine, 25000, Algeria, bDépartement Sciences de la Matière, Faculté des Sciences Exactes et Sciences de la Nature et de la Vie, Université Oum El Bouaghi, Algeria, cLaboratoire des Produits Naturels d'Origine Végétale et de Synthèse Organique, PHYSYNOR; Université Frères Montouri Constantine, 25000 Constantine, Algeria, and dDépartement de Chimie, Université frères Montouri Constantine, 25000 , Algeria
*Correspondence e-mail: bouacida_sofiane@yahoo.fr
The 21H19N2)[HgCl3]}n, comprises one-half of the cationic molecule, the other half being generated by application of twofold rotation symmetry, one Hg and two Cl atoms. The HgII atom, lying on a twofold rotation axis, exhibits a distorted triangular coordination environment and is surrounded by three Cl atoms with Hg—Cl distances in the range 2.359 (2)–2.4754 (13) Å. Two additional longer distances [Hg⋯Cl = 3.104 (14) Å] lead to the formation of polymeric [HgCl1/1Cl4/2]− chains extending along [001]. The crystal packing can be described by cationic layers alternating parallel to (-110) with the anionic chains located between the layers. The packing is consolidated by π–π stacking interactions between the benzene rings of the central benzimidazole entities, with centroid-to-centroid distances of 3.643 (3) Å.
of the polymeric title compound, {(CCCDC reference: 1440716
1. Related literature
Benzimidazoles and their derivatives show anti-oxidant (Kuş et al., 2004), antifungal (Preston, 1974) and anthelminthic (Hazelton et al., 1995) properties and have applications in pharmacy and agriculture (Malek et al., 2006). They can also be used as epoxy resin curing agents, catalysts, metallic surface treatment agents (Li et al., 2003; Abboud et al., 2006) or as ionic liquids (Li et al., 2011; Chen et al., 2008). For the importance of transition metals ions in biological processes, see: Kaim & Schwederski (1994). For bond lengths of delocalized systems, see: Ennajih et al. (2009).
2. Experimental
2.1. Crystal data
|
2.3. Refinement
|
Data collection: APEX2 (Bruker, 2011); cell SAINT (Bruker, 2011); data reduction: SAINT; program(s) used to solve structure: SIR2002 (Burla et al., 2005); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 for Windows (Farrugia, 2012) and DIAMOND (Brandenburg & Berndt, 2001); software used to prepare material for publication: WinGX (Farrugia, 2012).
Supporting information
CCDC reference: 1440716
https://doi.org/10.1107/S2056989015023427/wm5248sup1.cif
contains datablock I. DOI:Structure factors: contains datablock I. DOI: https://doi.org/10.1107/S2056989015023427/wm5248Isup2.hkl
1,3-Dibenzylbenzimidazolium trichloridomercurate(II) was synthesized by reaction of 1 mmol of 1,3-dibenzylbenzimidazolium chloride with 1 mmol of mercury(II) chloride in methanol at room temperature. The solid obtained was recrystallized in methanol to yield yellow crystals of the title compound suitable for X-ray diffraction.
H atoms were localized from difference maps but were modelled in calculated positions and treated as riding on their parent atom with C—H = 0.93 Å (aromatic), C—H = 0.97 Å (methylene) with Uiso(H) = 1.2Ueq(Caromatic or Cmethylene).
Benzimidazoles and their derivatives show anti-oxidant (Kuş et al., 2004), antifungal (Preston, 1974) and anthelminthic (Hazelton et al., 1995) properties and have applications in pharmacy and agriculture (Malek et al., 2006). They can also be used as epoxy resin curing agents, catalysts, metallic surface treatment agents (Li et al., 2003; Abboud et al., 2006) or as ionic liquids (Li et al., 2011; Chen et al., 2008). For the importance of transition metals ions in biological processes, see: Kaim & Schwederski (1994). For bond lengths of delocalized systems, see: Ennajih et al. (2009).
Data collection: APEX2 (Bruker, 2011); cell
SAINT (Bruker, 2011); data reduction: SAINT (Bruker, 2011); program(s) used to solve structure: SIR2002 (Burla et al., 2005); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 for Windows (Farrugia, 2012) and DIAMOND (Brandenburg & Berndt, 2001); software used to prepare material for publication: WinGX (Farrugia, 2012).(C21H19N2)[HgCl3] | F(000) = 1160 |
Mr = 606.32 | Dx = 1.901 Mg m−3 |
Monoclinic, C2/c | Mo Kα radiation, λ = 0.71073 Å |
Hall symbol: -C 2yc | Cell parameters from 2352 reflections |
a = 20.3669 (11) Å | θ = 2.7–22.8° |
b = 14.8837 (7) Å | µ = 7.65 mm−1 |
c = 7.2154 (4) Å | T = 295 K |
β = 104.372 (2)° | Prism, yellow |
V = 2118.79 (19) Å3 | 0.19 × 0.11 × 0.05 mm |
Z = 4 |
Bruker APEXII CCD diffractometer | 2401 independent reflections |
Radiation source: Enraf Nonius FR590 | 1571 reflections with I > 2σ(I) |
Graphite monochromator | Rint = 0.042 |
CCD rotation images, thick slices scans | θmax = 27.5°, θmin = 2.7° |
Absorption correction: multi-scan (SADABS; Bruker, 2011) | h = −26→26 |
Tmin = 0.646, Tmax = 0.746 | k = −18→13 |
8306 measured reflections | l = −9→9 |
Refinement on F2 | Primary atom site location: structure-invariant direct methods |
Least-squares matrix: full | Secondary atom site location: difference Fourier map |
R[F2 > 2σ(F2)] = 0.038 | Hydrogen site location: inferred from neighbouring sites |
wR(F2) = 0.085 | H-atom parameters constrained |
S = 1.00 | w = 1/[σ2(Fo2) + (0.0419P)2] where P = (Fo2 + 2Fc2)/3 |
2401 reflections | (Δ/σ)max = 0.002 |
124 parameters | Δρmax = 2.02 e Å−3 |
0 restraints | Δρmin = −0.41 e Å−3 |
(C21H19N2)[HgCl3] | V = 2118.79 (19) Å3 |
Mr = 606.32 | Z = 4 |
Monoclinic, C2/c | Mo Kα radiation |
a = 20.3669 (11) Å | µ = 7.65 mm−1 |
b = 14.8837 (7) Å | T = 295 K |
c = 7.2154 (4) Å | 0.19 × 0.11 × 0.05 mm |
β = 104.372 (2)° |
Bruker APEXII CCD diffractometer | 2401 independent reflections |
Absorption correction: multi-scan (SADABS; Bruker, 2011) | 1571 reflections with I > 2σ(I) |
Tmin = 0.646, Tmax = 0.746 | Rint = 0.042 |
8306 measured reflections |
R[F2 > 2σ(F2)] = 0.038 | 0 restraints |
wR(F2) = 0.085 | H-atom parameters constrained |
S = 1.00 | Δρmax = 2.02 e Å−3 |
2401 reflections | Δρmin = −0.41 e Å−3 |
124 parameters |
Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes. |
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > 2sigma(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger. |
x | y | z | Uiso*/Ueq | ||
Hg1 | 1 | 0.050020 (19) | 0.25 | 0.05935 (16) | |
Cl2 | 0.91850 (7) | −0.05454 (8) | 0.33958 (18) | 0.0473 (3) | |
Cl1 | 1 | 0.20850 (14) | 0.25 | 0.0888 (9) | |
N1 | 0.9472 (2) | 0.3140 (3) | 0.6672 (6) | 0.0415 (10) | |
C4 | 1 | 0.2622 (5) | 0.75 | 0.0484 (19) | |
H4 | 1 | 0.1998 | 0.75 | 0.058* | |
C6 | 0.8265 (3) | 0.3186 (3) | 0.6596 (8) | 0.0446 (13) | |
C3 | 0.9676 (2) | 0.4034 (3) | 0.6988 (6) | 0.0348 (11) | |
C1 | 0.9672 (3) | 0.5616 (3) | 0.6966 (8) | 0.0463 (14) | |
H1 | 0.9458 | 0.6165 | 0.6613 | 0.056* | |
C2 | 0.9314 (3) | 0.4838 (4) | 0.6393 (7) | 0.0418 (12) | |
H2 | 0.8868 | 0.4841 | 0.5667 | 0.05* | |
C5 | 0.8795 (3) | 0.2814 (4) | 0.5694 (8) | 0.0524 (14) | |
H5A | 0.8789 | 0.2163 | 0.5749 | 0.063* | |
H5B | 0.8694 | 0.299 | 0.4359 | 0.063* | |
C7 | 0.8324 (3) | 0.3053 (4) | 0.8527 (9) | 0.0569 (15) | |
H7 | 0.8683 | 0.2721 | 0.9258 | 0.068* | |
C11 | 0.7722 (3) | 0.3668 (4) | 0.5561 (9) | 0.0574 (15) | |
H11 | 0.768 | 0.3764 | 0.4263 | 0.069* | |
C8 | 0.7847 (4) | 0.3418 (5) | 0.9352 (9) | 0.0751 (19) | |
H8 | 0.7893 | 0.3342 | 1.0658 | 0.09* | |
C9 | 0.7303 (3) | 0.3891 (5) | 0.8308 (12) | 0.075 (2) | |
H9 | 0.6982 | 0.4127 | 0.8894 | 0.091* | |
C10 | 0.7238 (3) | 0.4013 (4) | 0.6396 (12) | 0.0695 (18) | |
H10 | 0.6869 | 0.4327 | 0.5663 | 0.083* |
U11 | U22 | U33 | U12 | U13 | U23 | |
Hg1 | 0.0830 (3) | 0.02880 (19) | 0.0678 (2) | 0 | 0.02171 (18) | 0 |
Cl2 | 0.0457 (8) | 0.0495 (8) | 0.0472 (7) | −0.0016 (6) | 0.0120 (6) | 0.0026 (6) |
Cl1 | 0.146 (3) | 0.0298 (12) | 0.0719 (15) | 0 | −0.0079 (15) | 0 |
N1 | 0.037 (3) | 0.031 (2) | 0.053 (3) | −0.0031 (19) | 0.006 (2) | −0.0073 (19) |
C4 | 0.043 (5) | 0.033 (4) | 0.068 (5) | 0 | 0.010 (4) | 0 |
C6 | 0.031 (3) | 0.032 (3) | 0.064 (4) | −0.005 (2) | −0.002 (3) | −0.008 (2) |
C3 | 0.037 (3) | 0.033 (3) | 0.036 (3) | 0.003 (2) | 0.012 (2) | −0.003 (2) |
C1 | 0.055 (3) | 0.029 (3) | 0.056 (3) | 0.011 (2) | 0.014 (3) | 0.006 (2) |
C2 | 0.039 (3) | 0.042 (3) | 0.042 (3) | 0.003 (2) | 0.006 (2) | −0.003 (2) |
C5 | 0.044 (3) | 0.048 (3) | 0.059 (3) | −0.005 (3) | 0.001 (3) | −0.018 (3) |
C7 | 0.042 (4) | 0.060 (4) | 0.063 (4) | −0.004 (3) | 0.001 (3) | 0.003 (3) |
C11 | 0.048 (4) | 0.056 (4) | 0.062 (4) | −0.007 (3) | 0.001 (3) | 0.002 (3) |
C8 | 0.068 (5) | 0.098 (6) | 0.062 (4) | −0.013 (4) | 0.020 (4) | −0.012 (4) |
C9 | 0.052 (4) | 0.075 (5) | 0.106 (6) | −0.007 (4) | 0.033 (4) | −0.027 (4) |
C10 | 0.043 (4) | 0.053 (4) | 0.109 (6) | 0.000 (3) | 0.012 (4) | −0.001 (4) |
Hg1—Cl1 | 2.359 (2) | C1—C2 | 1.376 (7) |
Hg1—Cl2i | 2.4754 (13) | C1—H1 | 0.93 |
Hg1—Cl2 | 2.4754 (13) | C2—H2 | 0.93 |
N1—C4 | 1.336 (6) | C5—H5A | 0.97 |
N1—C3 | 1.397 (6) | C5—H5B | 0.97 |
N1—C5 | 1.466 (6) | C7—C8 | 1.372 (9) |
C4—N1ii | 1.336 (6) | C7—H7 | 0.93 |
C4—H4 | 0.93 | C11—C10 | 1.375 (9) |
C6—C11 | 1.374 (7) | C11—H11 | 0.93 |
C6—C7 | 1.383 (8) | C8—C9 | 1.370 (10) |
C6—C5 | 1.499 (7) | C8—H8 | 0.93 |
C3—C3ii | 1.344 (9) | C9—C10 | 1.365 (10) |
C3—C2 | 1.414 (7) | C9—H9 | 0.93 |
C1—C1ii | 1.367 (11) | C10—H10 | 0.93 |
Cl1—Hg1—Cl2i | 128.95 (3) | N1—C5—C6 | 111.2 (4) |
Cl1—Hg1—Cl2 | 128.95 (3) | N1—C5—H5A | 109.4 |
Cl2i—Hg1—Cl2 | 102.09 (6) | C6—C5—H5A | 109.4 |
C4—N1—C3 | 107.6 (4) | N1—C5—H5B | 109.4 |
C4—N1—C5 | 125.5 (4) | C6—C5—H5B | 109.4 |
C3—N1—C5 | 126.8 (4) | H5A—C5—H5B | 108 |
N1ii—C4—N1 | 109.7 (6) | C8—C7—C6 | 119.1 (6) |
N1ii—C4—H4 | 125.2 | C8—C7—H7 | 120.4 |
N1—C4—H4 | 125.2 | C6—C7—H7 | 120.4 |
C11—C6—C7 | 118.7 (6) | C6—C11—C10 | 121.7 (6) |
C11—C6—C5 | 121.8 (5) | C6—C11—H11 | 119.2 |
C7—C6—C5 | 119.5 (5) | C10—C11—H11 | 119.2 |
C3ii—C3—N1 | 107.5 (3) | C9—C8—C7 | 121.9 (6) |
C3ii—C3—C2 | 122.2 (3) | C9—C8—H8 | 119 |
N1—C3—C2 | 130.2 (4) | C7—C8—H8 | 119 |
C1ii—C1—C2 | 122.7 (3) | C10—C9—C8 | 119.1 (6) |
C1ii—C1—H1 | 118.7 | C10—C9—H9 | 120.4 |
C2—C1—H1 | 118.7 | C8—C9—H9 | 120.4 |
C1—C2—C3 | 115.1 (5) | C9—C10—C11 | 119.5 (6) |
C1—C2—H2 | 122.5 | C9—C10—H10 | 120.2 |
C3—C2—H2 | 122.5 | C11—C10—H10 | 120.2 |
C3—N1—C4—N1ii | 0.1 (2) | C11—C6—C5—N1 | 123.0 (5) |
C5—N1—C4—N1ii | −177.2 (5) | C7—C6—C5—N1 | −56.1 (7) |
C4—N1—C3—C3ii | −0.2 (6) | C11—C6—C7—C8 | −1.0 (8) |
C5—N1—C3—C3ii | 177.1 (5) | C5—C6—C7—C8 | 178.1 (5) |
C4—N1—C3—C2 | 179.0 (4) | C7—C6—C11—C10 | −0.5 (8) |
C5—N1—C3—C2 | −3.7 (8) | C5—C6—C11—C10 | −179.6 (5) |
C1ii—C1—C2—C3 | 0.0 (9) | C6—C7—C8—C9 | 1.7 (10) |
C3ii—C3—C2—C1 | −1.1 (8) | C7—C8—C9—C10 | −0.8 (10) |
N1—C3—C2—C1 | 179.8 (5) | C8—C9—C10—C11 | −0.7 (10) |
C4—N1—C5—C6 | 121.4 (5) | C6—C11—C10—C9 | 1.3 (9) |
C3—N1—C5—C6 | −55.4 (7) |
Symmetry codes: (i) −x+2, y, −z+1/2; (ii) −x+2, y, −z+3/2. |
Experimental details
Crystal data | |
Chemical formula | (C21H19N2)[HgCl3] |
Mr | 606.32 |
Crystal system, space group | Monoclinic, C2/c |
Temperature (K) | 295 |
a, b, c (Å) | 20.3669 (11), 14.8837 (7), 7.2154 (4) |
β (°) | 104.372 (2) |
V (Å3) | 2118.79 (19) |
Z | 4 |
Radiation type | Mo Kα |
µ (mm−1) | 7.65 |
Crystal size (mm) | 0.19 × 0.11 × 0.05 |
Data collection | |
Diffractometer | Bruker APEXII CCD |
Absorption correction | Multi-scan (SADABS; Bruker, 2011) |
Tmin, Tmax | 0.646, 0.746 |
No. of measured, independent and observed [I > 2σ(I)] reflections | 8306, 2401, 1571 |
Rint | 0.042 |
(sin θ/λ)max (Å−1) | 0.650 |
Refinement | |
R[F2 > 2σ(F2)], wR(F2), S | 0.038, 0.085, 1.00 |
No. of reflections | 2401 |
No. of parameters | 124 |
H-atom treatment | H-atom parameters constrained |
Δρmax, Δρmin (e Å−3) | 2.02, −0.41 |
Computer programs: APEX2 (Bruker, 2011), SAINT (Bruker, 2011), SIR2002 (Burla et al., 2005), SHELXL97 (Sheldrick, 2008), ORTEP-3 for Windows (Farrugia, 2012) and DIAMOND (Brandenburg & Berndt, 2001), WinGX (Farrugia, 2012).
Acknowledgements
Thanks are due to MESRS and DG–RSDT (Ministére de l'Enseignement Supérieur et de la Recherche Scientifique et la Direction Générale de la Recherche – Algérie) for financial support.
References
Abboud, Y., Abourriche, A., Saffaj, T., Berrada, M., Charrouf, M., Bennamara, A., Cherqaoui, A. & Takky, D. (2006). Appl. Surf. Sci. 252, 8178–8184. Web of Science CrossRef CAS Google Scholar
Brandenburg, K. & Berndt, M. (2001). DIAMOND. Crystal Impact, Bonn, Germany. Google Scholar
Bruker (2011). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA. Google Scholar
Burla, M. C., Caliandro, R., Camalli, M., Carrozzini, B., Cascarano, G. L., De Caro, L., Giacovazzo, C., Polidori, G. & Spagna, R. (2005). J. Appl. Cryst. 38, 381–388. Web of Science CrossRef CAS IUCr Journals Google Scholar
Chen, S.-H., Zhao, Q. & Xu, X.-W. (2008). J. Chem. Sci. 120, 481–483. Web of Science CrossRef CAS Google Scholar
Ennajih, H., Bouhfid, R., Zouihri, H., Essassi, E. M. & Ng, S. W. (2009). Acta Cryst. E65, o2321. Web of Science CSD CrossRef IUCr Journals Google Scholar
Farrugia, L. J. (2012). J. Appl. Cryst. 45, 849–854. Web of Science CrossRef CAS IUCr Journals Google Scholar
Hazelton, J. C., Iddon, B., Suschitzky, H. & Woolley, L. H. (1995). Tetrahedron, 51, 10771–10794. CrossRef CAS Web of Science Google Scholar
Kaim, W. & Schwederski, B. (1994). In Bioinorganic chemistry: inorganic elements in the chemistry of life, an introduction and guide, Inorganic Chemistry: A Textbook series. Chichester: John Wiley & Sons. Google Scholar
Kuş, C., Ayhan-Kilcigil, G., Can Eke, B. & Işcan, M. (2004). Arch. Pharm. Res. 27, 156–163. Web of Science PubMed Google Scholar
Li, Q. F., He, R. H., Jensen, J. O. & Bjerrum, N. J. (2003). Chem. Mater. 15, 4896–4915. Web of Science CrossRef CAS Google Scholar
Li, W., Wang, Y., Wang, Z., Dai, L. & Wang, Y. (2011). Catal. Lett. 141, 1651–1658. Web of Science CrossRef CAS Google Scholar
Malek, K., Puc, A., Schroeder, G., Rybachenko, V. I. & Proniewicz, L. M. (2006). Chem. Phys. 327, 439–451. Web of Science CrossRef CAS Google Scholar
Preston, P. N. (1974). Chem. Rev. 74, 279–314. CrossRef CAS Web of Science Google Scholar
Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. Web of Science CrossRef CAS IUCr Journals Google Scholar
This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.