research communications
N-(trimethylsilyl)silanaminato]molybdenum(VI)
of nitridobis(trimethylsilanolato)[1,1,1-trimethyl-aCollege of Chemistry, Beijing Normal University, Beijing 100875, People's Republic of China, and bInstitute of Chemistry, Chinese Academy of Sciences, Beijing 100190, People's Republic of China
*Correspondence e-mail: haoxiang@iccas.ac.cn, pjiao@bnu.edu.cn
In the title compound, [Mo(C6H18NSi2)(C3H9OSi)2N], the MoVI cation is located on a mirror plane and is coordinated by a nitride anion, a 1,1,1-trimethyl-N-(trimethylsilyl)silanaminate anion and two trimethylsilanolate anions in a distorted tetrahedral geometry; the N atom and two Si atoms of the 1,1,1-trimethyl-N-(trimethylsilyl)silanaminato anionic ligand are also located on the mirror plane. The Mo≡N bond length of 1.633 (6) Å is much shorter than the Mo—N single-bond length of 1.934 (7) Å. No hydrogen bonding is observed in the crystal structure.
Keywords: crystal structure; molybdenum complex; nitride; trimethylsilyl oxide; hexamethyldisilazide.
CCDC reference: 1432821
1. Chemical context
The title compound, nitridobis(trimethylsilanolato)[1,1,1-trimethyl-N-(trimethylsilyl)σilanaminato]molybdenum, is a precursor for the preparation of nitridotris(triphenylsilanolato)molybdenum, which can generate alkylidynetris(triphenylsilanolato)molybdenum, a superbly active catalyst for alkyne metathesis reactions (Bindl et al., 2009; Heppekausen et al., 2010). The structure of the title compound has been characterized by IR, 1H and 13C NMR and low resolution MS spectroscopy (Chiu et al., 1998; Bindl et al., 2009; Heppekausen et al., 2010). However, to our knowledge no crystal data have been reported because the title compound is an oil at room temperature, and is highly sensitive to air and moisture.
2. Structural commentary
In the crystal, the title complex (Fig. 1) resides on a crystallographic mirror plane, therefore, the consists of half of the complex. Atoms Mo1, N1, N2, Si2, Si3, C4, and C6 lie on the mirror plane. The compound is a mononuclear metal complex. The MoVI complex adopts a slightly distorted tetrahedral geometry. The Mo1≡N1 triple bond length is 1.633 (6) Å, which is shorter than the Mo≡N triple bond length in the B(C6F5)3 complex [1.696 (3) Å; Finke & Moore, 2010), but is very close to that in the pyridine complex [1.640 (3) Å; Chiu et al., 1998). This is reasonable because the nitrido group is the terminal group in both the tile complex and the pyridine complex, whereas the nitrido group also bonds to the boron atom in the B(C6F5)3 complex. The Mo1—N2 bond length [1.934 (7) Å] is longer than that in the B(C6F5)3 complex [1.914 (3) Å], but is shorter than that in the pyridine complex [1.973 (3) Å]. The Mo1—O1 bond length [1.886 (3) Å] is longer than those in the B(C6F5)3 complex [1.838 (3), 1.839 (3) Å], but is shorter than those in the pyridine complex [1.921 (3), 1.924 (2) Å]. It is also reasonable that the Mo1—N2 and Mo1—O1 bonds are strengthened in the B(C6F5)3 complex, but weakened in the pyridine complex. In the B(C6F5)3 complex, the Mo1≡N1 bond is weakened due to the formation of a N1→B bond. Therefore, the rest of the bonds to the central Mo atom are strengthened. In the pyridine complex, however, the central Mo atom is five-coordinated with an extra bond between Mo and the nitrogen atom of pyridine. Since the Mo1≡N1 triple bond is retained, the Mo1—N2 and Mo1—O1 bonds are weakened. Our assumption is that the central Mo atom has the same valence (+VI) in all three compounds.
4. Database survey
The crystal structures of two similar compounds, i.e. the pyridine and tris(pentafluorophenyl)borane complexes of the title compound, have been reported by Chiu et al. (1998) and Finke & Moore (2010), respectively. The crystal structures of other related nitridomolybdenum complexes include nitridomolybdenum complexes with alkoxy (Chan et al., 1986; Gdula et al., 2005; Finke & Moore, 2010; Wiedner et al., 2011), silyloxy (Kim & DeKock, 1989; Chiu et al., 1996; Bindl et al., 2009; Heppekausen et al., 2010; Heppekausen et al., 2012), aryloxy (Zeller et al., 2005; Wiedner et al., 2011), amido (Gebeyehu et al., 1991; Kim et al., 1994; Laplaza et al., 1996; Tsai et al., 1999; Sceats et al., 2004; Figueroa et al., 2006; Curley et al., 2008; Yandulov et al., 2003; Wampler & Schrock, 2007; Reithofer et al., 2010; DiFranco et al., 2013) and other ligands (Caulton et al., 1995; Peters et al., 1996; Agapie et al., 2000; Chisholm et al., 2002; Sarkar et al., 2008).
5. Synthesis and crystallization
The title compound was synthesized according to a literature method (Bindl et al., 2009). A flask was charged with Na2MoO4 (40 mmol, 8.24 g), Me3SiCl (160 mmol, 20.4 mL) and freshly distilled 1,2-dimethoxyethane (280 mL). The mixture was vigorously stirred under reflux for 16 h under N2. After cooling to room temperature, the white suspension in the flask was place into a filled with Ar. The solvent was evaporated and the light-blue residue suspended in freshly distilled hexane (280 ml). Solid LiN(SiMe3)2 (80 mmol, 13.4 g) was added in three portions over 1 h to the suspension. The brownish green mixture was stirred at room temperature for a further 4 h. For work-up, the suspension was filtered through a pad of Celite under Ar, the brown filtrate was concentrated and the residue distilled under high vacuum to give the title compound as a light-brown oil (3.4 g, 19% yield based on Na2MoO4). This oily product was left at 288 K for several days to give colorless crystals suitable for single-crystal X-ray diffraction.
The crystals were first examined under a microscope. In order to avoid melting and reacting with air and moisture, crystals had to be submerged in several drops of inert oil cooled by ice. Then the selected crystal was quickly (less than 2 seconds) transferred to the cold nitrogen flow of the diffractometer. Initially, data collection was completed at 173 K. However, the final reduced data were not satisfactory. The unit-cell parameters were similar to those in Table 1, but Rmerge was around 0.1. We suspected that there might be some kind of at 173 K, but did not perform any further investigations. By setting the temperature to 248 K, we found that the single crystal was stable, and the diffraction spots/patterns appeared acceptable. Therefore, data collection was completed at 248 K.
6. Refinement
Crystal data, data collection and structure . The title complex resides on a crystallographic mirror plane. Therefore, only half of the complex is unique. Atoms Mo1, N1, N2, Si2, Si3, C4, and C6 lie on the mirror plane exactly. The Si(CH3)3 groups are highly disordered in the structure. Therefore, it is probably inappropriate to split the Si(CH3)3 group into two parts. Instead, the Si(CH3)3 groups are modeled in an ordered way, as if they are not disordered. In consequence, the Si—C bond lengths differ quite largely, and the ADPs of the methyl carbons are very eccentric. Therefore, several restraints were used including `SADI 0.01 Si1 C1 Si1 C2 Si1 C3 Si2 C4 Si2 C5 Si3 C6 Si3 C7' (similar Si—C bond length) and `ISOR 0.01 0.02 C1 C2 C3 C6 C7' (isotropic ADPs approximately). The C-bound H atoms were placed in calculated positions and treated as riding atoms: C—H = 0.97 Å with Uiso(H) = 1.5Ueq(C).
details are summarized in Table 1Supporting information
CCDC reference: 1432821
https://doi.org/10.1107/S2056989015021192/xu5878sup1.cif
contains datablocks I, global. DOI:Structure factors: contains datablock I. DOI: https://doi.org/10.1107/S2056989015021192/xu5878Isup2.hkl
Supporting information file. DOI: https://doi.org/10.1107/S2056989015021192/xu5878Isup3.cdx
Data collection: CrystalClear (Rigaku, 2008); cell
CrystalClear (Rigaku, 2008); data reduction: CrystalClear (Rigaku, 2008); program(s) used to solve structure: SHELXS2013 (Sheldrick, 2008); program(s) used to refine structure: SHELXL2014 (Sheldrick, 2015); molecular graphics: OLEX2 (Dolomanov et al., 2009); software used to prepare material for publication: CIFTAB (Sheldrick, 2008).[Mo(C6H18NSi2)(C3H9OSi)2N] | Dx = 1.156 Mg m−3 |
Mr = 448.73 | Mo Kα radiation, λ = 0.71073 Å |
Orthorhombic, Pnma | Cell parameters from 8012 reflections |
a = 10.685 (2) Å | θ = 2.5–27.4° |
b = 18.236 (4) Å | µ = 0.70 mm−1 |
c = 13.228 (3) Å | T = 248 K |
V = 2577.5 (9) Å3 | Block, colorless |
Z = 4 | 0.50 × 0.45 × 0.42 mm |
F(000) = 944 |
Rigaku Saturn724+ CCD diffractometer | 2995 independent reflections |
Radiation source: Sealed Tube | 2801 reflections with I > 2σ(I) |
Detector resolution: 28.5714 pixels mm-1 | Rint = 0.046 |
ω scans at fixed χ = 45° | θmax = 27.4°, θmin = 3.3° |
Absorption correction: multi-scan (CrystalClear; Rigaku, 2008) | h = −9→13 |
Tmin = 0.417, Tmax = 1.000 | k = −23→12 |
9635 measured reflections | l = −17→17 |
Refinement on F2 | 51 restraints |
Least-squares matrix: full | Hydrogen site location: inferred from neighbouring sites |
R[F2 > 2σ(F2)] = 0.068 | H-atom parameters constrained |
wR(F2) = 0.195 | w = 1/[σ2(Fo2) + (0.0923P)2 + 2.659P] where P = (Fo2 + 2Fc2)/3 |
S = 1.19 | (Δ/σ)max = 0.003 |
2995 reflections | Δρmax = 0.72 e Å−3 |
106 parameters | Δρmin = −0.73 e Å−3 |
Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes. |
x | y | z | Uiso*/Ueq | ||
Mo1 | 0.66543 (5) | 0.7500 | 0.47814 (4) | 0.0529 (2) | |
Si1 | 0.7956 (2) | 0.58706 (10) | 0.44615 (17) | 0.0902 (6) | |
Si2 | 0.39517 (18) | 0.7500 | 0.39202 (15) | 0.0622 (5) | |
Si3 | 0.4241 (2) | 0.7500 | 0.62778 (19) | 0.1028 (10) | |
O1 | 0.7220 (3) | 0.66325 (17) | 0.4154 (3) | 0.0663 (8) | |
N1 | 0.7248 (6) | 0.7500 | 0.5919 (5) | 0.0750 (17) | |
N2 | 0.4871 (6) | 0.7500 | 0.5029 (4) | 0.0657 (15) | |
C1 | 0.9544 (8) | 0.6185 (7) | 0.4818 (10) | 0.196 (6) | |
H1A | 1.0049 | 0.5767 | 0.5013 | 0.294* | |
H1B | 0.9929 | 0.6430 | 0.4246 | 0.294* | |
H1C | 0.9485 | 0.6524 | 0.5381 | 0.294* | |
C2 | 0.7505 (14) | 0.5537 (6) | 0.5716 (7) | 0.203 (6) | |
H2A | 0.7959 | 0.5089 | 0.5866 | 0.305* | |
H2B | 0.7705 | 0.5906 | 0.6219 | 0.305* | |
H2C | 0.6613 | 0.5439 | 0.5728 | 0.305* | |
C3 | 0.8115 (14) | 0.5296 (6) | 0.3335 (8) | 0.255 (8) | |
H3A | 0.8547 | 0.4846 | 0.3510 | 0.383* | |
H3B | 0.7291 | 0.5180 | 0.3072 | 0.383* | |
H3C | 0.8590 | 0.5558 | 0.2825 | 0.383* | |
C4 | 0.4993 (7) | 0.7500 | 0.2804 (5) | 0.080 (2) | |
H4A | 0.4491 | 0.7500 | 0.2193 | 0.119* | |
H4B | 0.5517 | 0.7066 | 0.2817 | 0.119* | |
C5 | 0.2968 (7) | 0.6661 (4) | 0.3858 (7) | 0.117 (3) | |
H5A | 0.2470 | 0.6670 | 0.3245 | 0.175* | |
H5B | 0.3502 | 0.6231 | 0.3855 | 0.175* | |
H5C | 0.2419 | 0.6644 | 0.4441 | 0.175* | |
C6 | 0.2517 (7) | 0.7500 | 0.6258 (11) | 0.170 (6) | |
H6A | 0.2202 | 0.7500 | 0.6945 | 0.255* | |
H6B | 0.2221 | 0.7066 | 0.5908 | 0.255* | |
C7 | 0.4771 (8) | 0.6677 (4) | 0.6971 (6) | 0.143 (3) | |
H7A | 0.4424 | 0.6682 | 0.7648 | 0.214* | |
H7B | 0.4490 | 0.6240 | 0.6619 | 0.214* | |
H7C | 0.5678 | 0.6676 | 0.7009 | 0.214* |
U11 | U22 | U33 | U12 | U13 | U23 | |
Mo1 | 0.0528 (4) | 0.0577 (4) | 0.0483 (3) | 0.000 | −0.0068 (2) | 0.000 |
Si1 | 0.1046 (13) | 0.0658 (9) | 0.1000 (13) | 0.0228 (9) | 0.0059 (11) | 0.0208 (9) |
Si2 | 0.0523 (10) | 0.0781 (12) | 0.0563 (10) | 0.000 | −0.0071 (8) | 0.000 |
Si3 | 0.0779 (16) | 0.177 (3) | 0.0534 (12) | 0.000 | 0.0106 (11) | 0.000 |
O1 | 0.073 (2) | 0.0543 (17) | 0.072 (2) | 0.0035 (16) | −0.0098 (17) | 0.0003 (15) |
N1 | 0.078 (4) | 0.085 (4) | 0.062 (3) | 0.000 | −0.020 (3) | 0.000 |
N2 | 0.051 (3) | 0.097 (4) | 0.049 (3) | 0.000 | −0.007 (2) | 0.000 |
C1 | 0.134 (8) | 0.189 (11) | 0.265 (13) | 0.050 (9) | −0.032 (8) | 0.061 (9) |
C2 | 0.261 (13) | 0.140 (8) | 0.209 (11) | 0.017 (9) | 0.030 (11) | 0.097 (8) |
C3 | 0.394 (17) | 0.138 (8) | 0.233 (14) | 0.132 (10) | −0.047 (11) | −0.063 (9) |
C4 | 0.069 (4) | 0.119 (6) | 0.050 (3) | 0.000 | −0.010 (3) | 0.000 |
C5 | 0.100 (5) | 0.128 (6) | 0.121 (6) | −0.041 (5) | −0.012 (5) | −0.001 (5) |
C6 | 0.116 (9) | 0.294 (15) | 0.101 (8) | 0.000 | 0.035 (7) | 0.000 |
C7 | 0.176 (8) | 0.173 (8) | 0.080 (4) | −0.033 (7) | 0.018 (5) | 0.043 (5) |
Mo1—N1 | 1.633 (6) | C1—H1C | 0.9700 |
Mo1—N2 | 1.934 (7) | C2—H2A | 0.9700 |
Mo1—O1i | 1.886 (3) | C2—H2B | 0.9700 |
Mo1—O1 | 1.886 (3) | C2—H2C | 0.9700 |
Si1—O1 | 1.648 (4) | C3—H3A | 0.9700 |
Si1—C3 | 1.830 (8) | C3—H3B | 0.9700 |
Si1—C2 | 1.832 (7) | C3—H3C | 0.9700 |
Si1—C1 | 1.852 (8) | C4—H4A | 0.9700 |
Si2—N2 | 1.766 (6) | C4—H4B | 0.9700 |
Si2—C4 | 1.849 (6) | C5—H5A | 0.9700 |
Si2—C5 | 1.859 (6) | C5—H5B | 0.9700 |
Si2—C5i | 1.859 (6) | C5—H5C | 0.9700 |
Si3—N2 | 1.783 (7) | C6—H6A | 0.9700 |
Si3—C6 | 1.842 (8) | C6—H6B | 0.9700 |
Si3—C7i | 1.848 (6) | C7—H7A | 0.9700 |
Si3—C7 | 1.848 (6) | C7—H7B | 0.9700 |
C1—H1A | 0.9700 | C7—H7C | 0.9700 |
C1—H1B | 0.9700 | ||
N1—Mo1—O1i | 106.33 (16) | H1A—C1—H1C | 109.5 |
N1—Mo1—O1 | 106.34 (16) | H1B—C1—H1C | 109.5 |
O1i—Mo1—O1 | 114.0 (2) | Si1—C2—H2A | 109.5 |
N1—Mo1—N2 | 103.1 (3) | Si1—C2—H2B | 109.5 |
O1i—Mo1—N2 | 112.98 (13) | H2A—C2—H2B | 109.5 |
O1—Mo1—N2 | 112.98 (13) | Si1—C2—H2C | 109.5 |
O1—Si1—C3 | 109.0 (4) | H2A—C2—H2C | 109.5 |
O1—Si1—C2 | 112.2 (4) | H2B—C2—H2C | 109.5 |
C3—Si1—C2 | 124.9 (6) | Si1—C3—H3A | 109.5 |
O1—Si1—C1 | 103.8 (4) | Si1—C3—H3B | 109.5 |
C3—Si1—C1 | 107.4 (7) | H3A—C3—H3B | 109.5 |
C2—Si1—C1 | 96.5 (6) | Si1—C3—H3C | 109.5 |
N2—Si2—C4 | 109.2 (3) | H3A—C3—H3C | 109.5 |
N2—Si2—C5 | 110.6 (3) | H3B—C3—H3C | 109.5 |
C4—Si2—C5 | 107.8 (3) | Si2—C4—H4A | 109.5 |
N2—Si2—C5i | 110.6 (3) | Si2—C4—H4B | 109.5 |
C4—Si2—C5i | 107.8 (3) | H4A—C4—H4B | 109.5 |
C5—Si2—C5i | 110.9 (5) | Si2—C5—H5A | 109.5 |
N2—Si3—C6 | 111.3 (5) | Si2—C5—H5B | 109.5 |
N2—Si3—C7i | 110.1 (3) | H5A—C5—H5B | 109.5 |
C6—Si3—C7i | 108.3 (4) | Si2—C5—H5C | 109.5 |
N2—Si3—C7 | 110.1 (3) | H5A—C5—H5C | 109.5 |
C6—Si3—C7 | 108.3 (4) | H5B—C5—H5C | 109.5 |
C7i—Si3—C7 | 108.6 (6) | Si3—C6—H6A | 109.5 |
Si1—O1—Mo1 | 138.7 (2) | Si3—C6—H6B | 109.5 |
Si2—N2—Si3 | 124.0 (4) | H6A—C6—H6B | 109.5 |
Si2—N2—Mo1 | 114.0 (3) | Si3—C7—H7A | 109.5 |
Si3—N2—Mo1 | 121.9 (3) | Si3—C7—H7B | 109.5 |
Si1—C1—H1A | 109.5 | H7A—C7—H7B | 109.5 |
Si1—C1—H1B | 109.5 | Si3—C7—H7C | 109.5 |
H1A—C1—H1B | 109.5 | H7A—C7—H7C | 109.5 |
Si1—C1—H1C | 109.5 | H7B—C7—H7C | 109.5 |
C3—Si1—O1—Mo1 | 179.5 (6) | C4—Si2—N2—Mo1 | 0.000 (1) |
C2—Si1—O1—Mo1 | 36.8 (7) | C5—Si2—N2—Mo1 | 118.4 (3) |
C1—Si1—O1—Mo1 | −66.3 (6) | C5i—Si2—N2—Mo1 | −118.4 (3) |
N1—Mo1—O1—Si1 | 9.5 (4) | C6—Si3—N2—Si2 | 0.000 (1) |
O1i—Mo1—O1—Si1 | 126.4 (3) | C7i—Si3—N2—Si2 | −120.1 (3) |
N2—Mo1—O1—Si1 | −102.8 (4) | C7—Si3—N2—Si2 | 120.1 (3) |
C4—Si2—N2—Si3 | 180.000 (1) | C6—Si3—N2—Mo1 | 180.000 (1) |
C5—Si2—N2—Si3 | −61.6 (3) | C7i—Si3—N2—Mo1 | 59.9 (3) |
C5i—Si2—N2—Si3 | 61.6 (3) | C7—Si3—N2—Mo1 | −59.9 (3) |
Symmetry code: (i) x, −y+3/2, z. |
Acknowledgements
The authors gratefully acknowledge financial support from the National Natural Science Foundation of China and Ministry of Education.
References
Agapie, T., Odom, A. L. & Cummins, C. C. (2000). Inorg. Chem. 39, 174–179. Web of Science CSD CrossRef PubMed CAS Google Scholar
Bindl, M., Stade, R., Heilmann, E. K., Picot, A., Goddard, R. & Fürstner, A. (2009). J. Am. Chem. Soc. 131, 9468–9470. Web of Science CSD CrossRef PubMed CAS Google Scholar
Caulton, K. G., Chisholm, M. H., Doherty, S. & Folting, K. (1995). Organometallics, 14, 2585–2588. CSD CrossRef CAS Web of Science Google Scholar
Chan, D. M.-T., Chisholm, M. H., Folting, K., Huffman, J. C. & Marchant, N. S. (1986). Inorg. Chem. 25, 4170–4174. CSD CrossRef CAS Web of Science Google Scholar
Chisholm, M. H., Davidson, E. R., Pink, M. & Quinlan, K. B. (2002). Inorg. Chem. 41, 3437–3443. Web of Science CSD CrossRef PubMed CAS Google Scholar
Chiu, H.-T., Chen, Y.-P., Chuang, S.-H., Jen, J.-S., Lee, G.-H. & Peng, S.-M. (1996). Chem. Commun. pp. 139–140. CSD CrossRef Web of Science Google Scholar
Chiu, H.-T., Chuang, S.-H., Lee, G.-H. & Peng, S.-M. (1998). Adv. Mater. 10, 1475–1479. CrossRef CAS Google Scholar
Curley, J. J., Cook, T. R., Reece, S. Y., Müller, P. & Cummins, C. C. (2008). J. Am. Chem. Soc. 130, 9394–9405. Web of Science CSD CrossRef PubMed CAS Google Scholar
DiFranco, S. A., Staples, R. J. & Odom, A. L. (2013). Dalton Trans. 42, 2530–2539. Web of Science CSD CrossRef CAS PubMed Google Scholar
Dolomanov, O. V., Bourhis, L. J., Gildea, R. J., Howard, J. A. K. & Puschmann, H. (2009). J. Appl. Cryst. 42, 339–341. Web of Science CrossRef CAS IUCr Journals Google Scholar
Figueroa, J. S., Piro, N. A., Clough, C. R. & Cummins, C. C. (2006). J. Am. Chem. Soc. 128, 940–950. Web of Science CSD CrossRef PubMed CAS Google Scholar
Finke, A. D. & Moore, J. S. (2010). Chem. Commun. 46, 7939–7941. Web of Science CSD CrossRef CAS Google Scholar
Gdula, R. L., Johnson, M. J. A. & Ockwig, N. W. (2005). Inorg. Chem. 44, 9140–9142. Web of Science CSD CrossRef PubMed CAS Google Scholar
Gebeyehu, Z., Weller, F., Neumüller, B. & Dehnicke, K. (1991). Z. Anorg. Allg. Chem. 593, 99–110. CSD CrossRef CAS Web of Science Google Scholar
Heppekausen, J., Stade, R., Goddard, R. & Fürstner, A. (2010). J. Am. Chem. Soc. 132, 11045–11057. Web of Science CSD CrossRef CAS PubMed Google Scholar
Heppekausen, J., Stade, R., Kondoh, A., Seidel, G., Goddard, R. & Fürstner, A. (2012). Chem. Eur. J. 18, 10281–10299. Web of Science CSD CrossRef CAS PubMed Google Scholar
Kim, G.-S. & DeKock, C. W. (1989). Chem. Commun. pp. 1166–1168. CrossRef Web of Science Google Scholar
Kim, J. C., Rees, W. S. Jr & Goedken, V. L. (1994). Inorg. Chem. 33, 3191–3194. CSD CrossRef CAS Web of Science Google Scholar
Laplaza, C. E., Johnson, M. J. A., Peters, J. C., Odom, A. L., Kim, E., Cummins, C. C., George, G. N. & Pickering, I. J. (1996). J. Am. Chem. Soc. 118, 8623–8638. CSD CrossRef CAS Web of Science Google Scholar
Peters, J. C., Johnson, A. R., Odom, A. L., Wanandi, P. W., Davis, W. M. & Cummins, C. C. (1996). J. Am. Chem. Soc. 118, 10175–10188. CSD CrossRef CAS Web of Science Google Scholar
Reithofer, M. R., Schrock, R. R. & Müller, P. (2010). J. Am. Chem. Soc. 132, 8349–8358. Web of Science CSD CrossRef CAS PubMed Google Scholar
Rigaku (2008). CrystalClear. Rigaku Corporation, Tokyo, Japan. Google Scholar
Sarkar, S., Carlson, A. R., Veige, M. K., Falkowski, J. M., Abboud, K. A. & Veige, A. S. (2008). J. Am. Chem. Soc. 130, 1116–1117. Web of Science CSD CrossRef PubMed CAS Google Scholar
Sceats, E. L., Figueroa, J. S., Cummins, C. C., Loening, N. M., Van der Wel, P. & Griffin, R. G. (2004). Polyhedron, 23, 2751–2768. Web of Science CSD CrossRef CAS Google Scholar
Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. Web of Science CrossRef CAS IUCr Journals Google Scholar
Sheldrick, G. M. (2015). Acta Cryst. C71, 3–8. Web of Science CrossRef IUCr Journals Google Scholar
Tsai, Y.-C., Johnson, M. J. A., Mindiola, D. J., Cummins, C. C., Klooster, W. T. & Koetzle, T. F. (1999). J. Am. Chem. Soc. 121, 10426–10427. Web of Science CSD CrossRef CAS Google Scholar
Wampler, K. M. & Schrock, R. R. (2007). Inorg. Chem. 46, 8463–8465. Web of Science CSD CrossRef PubMed CAS Google Scholar
Wiedner, E. S., Gallagher, K. J., Johnson, M. J. A. & Kampf, J. W. (2011). Inorg. Chem. 50, 5936–5945. Web of Science CSD CrossRef CAS PubMed Google Scholar
Yandulov, D. V., Schrock, R. R., Rheingold, A. L., Ceccarelli, C. & Davis, W. M. (2003). Inorg. Chem. 42, 796–813. Web of Science CSD CrossRef PubMed CAS Google Scholar
Zeller, J., Büschel, S., Reiser, B. K. H., Begum, F. & Radius, U. (2005). Eur. J. Inorg. Chem. pp. 2037–2043. Web of Science CSD CrossRef Google Scholar
This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.