organic compounds
R,3S,8R,11R)-11-acetyl-3,7,7-trimethyl-10-oxatricyclo[6.4.0.01,3]dodecan-9-one
of (1aLaboratoire de Physico-Chimie Moléculaire et Synthèse Organique, Département de Chimie Faculté des Sciences Semlalia BP, 2390 Marrakech 40001, Morocco, and bLaboratoire de Chimie de Coordination, 205 route de Narbonne, 31077 Toulouse, Cedex 04, France
*Correspondence e-mail: a.auhmani@uca.ma
The title compound, C16H24O3, is built up from three fused rings, a six-membered, a seven-membered and a three-membered ring. The of the title compound was determined as (1R,3S,8R,11R) based on the synthetic pathway. The six-membered ring has an half-chair conformation whereas the seven-membered ring displays a boat conformation. In the cyrstal, C—H⋯O hydrogen bonds build up a two-dimensional network parallel to (0 0 1). The crystal studied was an with a minor twin component of 34%.
Keywords: Lactones; fused rings; biological activities; crystal structure.
CCDC reference: 1439412
1. Related literature
For biological activities of terpenic et al. (1987); Ohnishi et al. (1997); Ghosh & Karin (2002); Bremner & Heinrich (2002); Francois et al. (1996); Rabe et al. (2002); Calera et al. (1995). For the synthesis, see: Bimoussa et al. (2014). For the ring puckering parameters, see: Boessenkool & Boyens (1980). For the see: Parsons et al. (2013); Hooft et al. (2008). For the of twined crystals, see: Cooper et al. (2002).
see: Hall2. Experimental
2.1. Crystal data
|
2.3. Refinement
|
|
Data collection: CrysAlis PRO (Agilent, 2014); cell CrysAlis PRO; data reduction: CrysAlis PRO; program(s) used to solve structure: SIR97 (Altomare et al., 1999); program(s) used to refine structure: SHELXL2013 (Sheldrick, 2015); molecular graphics: ORTEPIII (Burnett & Johnson, 1996) and ORTEP-3 for Windows (Farrugia, 2012); software used to prepare material for publication: SHELXL2013.
Supporting information
CCDC reference: 1439412
https://doi.org/10.1107/S2056989015022847/xu5880sup1.cif
contains datablocks I, New_Global_Publ_Block. DOI:Structure factors: contains datablock I. DOI: https://doi.org/10.1107/S2056989015022847/xu5880Isup2.hkl
Supporting information file. DOI: https://doi.org/10.1107/S2056989015022847/xu5880Isup3.cml
In recent years many terpenic
were shown to exhibit broad spectrum of biological activities such anticancer activity (Hall et al., 1987, Ohnishi et al., 1997), anti-inflammatory activity (Ghosh & Karin, 2002; Bremner & Heinrich, 2002), anti-malarial activity (Francois et al., 1996), antiviral activity, antibacterial activity (Rabe et al., 2002) and antifungal activity (Calera et al., 1995).Their structural diversity and potential biological activities have made further interest for the drug discovery research. Thus, In order to prepare new β-himachalène (sesquiterpenic hydrocarbon). The title compound was prepared by an oxidative cleavage of (1S,3S,8R,9S,10R)-9,10-Epoxy-3,7,7,10-tetramethyltricyclo[6.4.0.01,3]dodecane (Bimoussa et al., 2014) using periodic acid as oxydant.
using natural products, we have prepared (1R,3S,8R,11R)-11-acetyl-3,7,7-trimethyl-10-oxatricyclo[6.4.0.01,3]dodecan-9-one fromThe compound is built up from three fused rings, a six membered and a seven membered rings; these last ring is fused with a three membered ring (Fig. 1). The six-membered-ring has an half chair conformation with puckering parameters: Q = 0.469 (3) Å, θ = 39.3 (4)° and φ = 213.6 (6)°, whereas the seven-membered ring displays a boat conformation with puckering amplitudes: Q2 = 1.130 (4) and Q3 =0.044 (4) (Boessenkool & Boyens, 1980).
The
(1S,3R,8S,10S) is deduced from the chemical pathway. The of the Flack's parameter (-0.0 (10)) (Parsons et al., 2013) as well as the Hooft's parameter (Hooft et al., 2008) do not allow to define reliably the absolute configuration.There are weak C—H···O hydrogen bonds building a two dimensional network parallel to the (0 0 1) plane (Fig. 2).
In 100 ml flask containing (0.120g, (0.515 mmol) of (1S,3S,8R,9S,10R)-9,10-Epoxy-3,7,7,10-tetramethyltricyclo[6.4.0.01,3]dodecane in 6ml of CCl4, 6 ml of acetonitrile and 6ml of watter was added 0.427 g (2.06 mmol) of periodic acid (NaIO4) and 4.70 mg (0.0179 mmol) of RuCl3,3H2O ( 3.5%). The reaction mixture was stirred at 0°C for 20 min and for 24h at room temperature. The reaction mixture was extracted with dichloromethane (3x 20ml) and the organic layer were dried over Na2SO4 and concentrated under reduced pressure. The crude product was purified by
on silica gel (230–400 mesh) with Hexane/ethyl acetate (85:15) as to give the title compound (1R,3S,8R,11R)-11-acetyl-3,7,7-trimethyl-10-oxatricyclo[6.4.0.01,3]dodecan-9-one in 46% yield. X-ray quality crystals were obtained by slow evaporation from a petroleum ether solution of the title compound.In recent years many terpenic
were shown to exhibit broad spectrum of biological activities such anticancer activity (Hall et al., 1987, Ohnishi et al., 1997), anti-inflammatory activity (Ghosh & Karin, 2002; Bremner & Heinrich, 2002), anti-malarial activity (Francois et al., 1996), antiviral activity, antibacterial activity (Rabe et al., 2002) and antifungal activity (Calera et al., 1995).Their structural diversity and potential biological activities have made further interest for the drug discovery research. Thus, In order to prepare new β-himachalène (sesquiterpenic hydrocarbon). The title compound was prepared by an oxidative cleavage of (1S,3S,8R,9S,10R)-9,10-Epoxy-3,7,7,10-tetramethyltricyclo[6.4.0.01,3]dodecane (Bimoussa et al., 2014) using periodic acid as oxydant.
using natural products, we have prepared (1R,3S,8R,11R)-11-acetyl-3,7,7-trimethyl-10-oxatricyclo[6.4.0.01,3]dodecan-9-one fromThe compound is built up from three fused rings, a six membered and a seven membered rings; these last ring is fused with a three membered ring (Fig. 1). The six-membered-ring has an half chair conformation with puckering parameters: Q = 0.469 (3) Å, θ = 39.3 (4)° and φ = 213.6 (6)°, whereas the seven-membered ring displays a boat conformation with puckering amplitudes: Q2 = 1.130 (4) and Q3 =0.044 (4) (Boessenkool & Boyens, 1980).
The
(1S,3R,8S,10S) is deduced from the chemical pathway. The of the Flack's parameter (-0.0 (10)) (Parsons et al., 2013) as well as the Hooft's parameter (Hooft et al., 2008) do not allow to define reliably the absolute configuration.There are weak C—H···O hydrogen bonds building a two dimensional network parallel to the (0 0 1) plane (Fig. 2).
A search of the Cambridge Structural Database gave no hits with related structures.
For biological activities of terpenic
see: Hall et al. (1987); Ohnishi et al. (1997); Ghosh & Karin (2002); Bremner & Heinrich (2002); Francois et al. (1996); Rabe et al. (2002); Calera et al. (1995). For the synthesis, see: Bimoussa et al. (2014). For the ring puckering parameters, see: Boessenkool & Boyens (1980). For the see: Parsons et al. (2013); Hooft et al. (2008). For the of twined crystals, see: Cooper et al. (2002).In 100 ml flask containing (0.120g, (0.515 mmol) of (1S,3S,8R,9S,10R)-9,10-Epoxy-3,7,7,10-tetramethyltricyclo[6.4.0.01,3]dodecane in 6ml of CCl4, 6 ml of acetonitrile and 6ml of watter was added 0.427 g (2.06 mmol) of periodic acid (NaIO4) and 4.70 mg (0.0179 mmol) of RuCl3,3H2O ( 3.5%). The reaction mixture was stirred at 0°C for 20 min and for 24h at room temperature. The reaction mixture was extracted with dichloromethane (3x 20ml) and the organic layer were dried over Na2SO4 and concentrated under reduced pressure. The crude product was purified by
on silica gel (230–400 mesh) with Hexane/ethyl acetate (85:15) as to give the title compound (1R,3S,8R,11R)-11-acetyl-3,7,7-trimethyl-10-oxatricyclo[6.4.0.01,3]dodecan-9-one in 46% yield. X-ray quality crystals were obtained by slow evaporation from a petroleum ether solution of the title compound. detailsThe crystal is twinned and has been refined as a 2-component twin with the following matrix using ROTAX (Parsons 1 Gould; Cooper et al., 2002): 180.0 degree rotation about 1. 0. 0.
direction: [ 1.000 0.000 0.000] [ 0.000 -1.000 0.000] [ -0.640 0.000 -1.000] BASF = 0.34Data collection: CrysAlis PRO (Agilent, 2014); cell
CrysAlis PRO (Agilent, 2014); data reduction: CrysAlis PRO (Agilent, 2014); program(s) used to solve structure: SIR97 (Altomare et al., 1999); program(s) used to refine structure: SHELXL2013 (Sheldrick, 2015); molecular graphics: ORTEPIII (Burnett & Johnson, 1996) and ORTEP-3 for Windows (Farrugia, 2012); software used to prepare material for publication: SHELXL2013 (Sheldrick, 2015).C16H24O3 | F(000) = 288 |
Mr = 264.35 | Dx = 1.191 Mg m−3 |
Monoclinic, P21 | Mo Kα radiation, λ = 0.71073 Å |
a = 6.4443 (6) Å | Cell parameters from 2697 reflections |
b = 8.4437 (7) Å | θ = 4.0–28.4° |
c = 13.7083 (12) Å | µ = 0.08 mm−1 |
β = 98.654 (9)° | T = 180 K |
V = 737.43 (11) Å3 | Box, colourless |
Z = 2 | 0.52 × 0.45 × 0.25 mm |
Agilent Xcalibur (Eos, Gemini ultra) diffractometer | 7878 independent reflections |
Radiation source: Enhance (Mo) X-ray Source | 7173 reflections with I > 2σ(I) |
Graphite monochromator | Rint = 0.041 |
Detector resolution: 16.1978 pixels mm-1 | θmax = 26.4°, θmin = 3.0° |
ω scans | h = −8→8 |
Absorption correction: multi-scan (CrysAlis PRO; Agilent, 2014). | k = −10→10 |
Tmin = 0.717, Tmax = 1.000 | l = −17→16 |
7878 measured reflections |
Refinement on F2 | 1 restraint |
Least-squares matrix: full | Hydrogen site location: inferred from neighbouring sites |
R[F2 > 2σ(F2)] = 0.061 | H-atom parameters constrained |
wR(F2) = 0.141 | w = 1/[σ2(Fo2) + (0.0238P)2 + 0.9242P] where P = (Fo2 + 2Fc2)/3 |
S = 1.05 | (Δ/σ)max < 0.001 |
7878 reflections | Δρmax = 0.31 e Å−3 |
177 parameters | Δρmin = −0.34 e Å−3 |
C16H24O3 | V = 737.43 (11) Å3 |
Mr = 264.35 | Z = 2 |
Monoclinic, P21 | Mo Kα radiation |
a = 6.4443 (6) Å | µ = 0.08 mm−1 |
b = 8.4437 (7) Å | T = 180 K |
c = 13.7083 (12) Å | 0.52 × 0.45 × 0.25 mm |
β = 98.654 (9)° |
Agilent Xcalibur (Eos, Gemini ultra) diffractometer | 7878 independent reflections |
Absorption correction: multi-scan (CrysAlis PRO; Agilent, 2014). | 7173 reflections with I > 2σ(I) |
Tmin = 0.717, Tmax = 1.000 | Rint = 0.041 |
7878 measured reflections |
R[F2 > 2σ(F2)] = 0.061 | 1 restraint |
wR(F2) = 0.141 | H-atom parameters constrained |
S = 1.05 | Δρmax = 0.31 e Å−3 |
7878 reflections | Δρmin = −0.34 e Å−3 |
177 parameters |
Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes. |
x | y | z | Uiso*/Ueq | ||
C1 | 0.2887 (8) | 0.3804 (6) | 0.2813 (4) | 0.0237 (11) | |
C2 | 0.3418 (9) | 0.2072 (6) | 0.2798 (4) | 0.0297 (12) | |
H2A | 0.2894 | 0.1378 | 0.3289 | 0.036* | |
H2B | 0.4811 | 0.1776 | 0.2634 | 0.036* | |
C3 | 0.1834 (8) | 0.2745 (7) | 0.1985 (4) | 0.0274 (12) | |
C4 | 0.2531 (10) | 0.2989 (7) | 0.0992 (4) | 0.0359 (14) | |
H4A | 0.2061 | 0.2079 | 0.0559 | 0.043* | |
H4B | 0.4084 | 0.3023 | 0.1078 | 0.043* | |
C5 | 0.1648 (11) | 0.4526 (8) | 0.0492 (4) | 0.0482 (17) | |
H5A | 0.0218 | 0.4315 | 0.0140 | 0.058* | |
H5B | 0.2534 | 0.4840 | −0.0006 | 0.058* | |
C6 | 0.1541 (10) | 0.5920 (7) | 0.1208 (4) | 0.0402 (15) | |
H6A | 0.1000 | 0.6852 | 0.0811 | 0.048* | |
H6B | 0.0487 | 0.5650 | 0.1637 | 0.048* | |
C7 | 0.3540 (9) | 0.6425 (7) | 0.1873 (4) | 0.0378 (14) | |
C8 | 0.4454 (8) | 0.5023 (6) | 0.2584 (4) | 0.0278 (13) | |
H8 | 0.5466 | 0.4443 | 0.2228 | 0.033* | |
C9 | 0.5737 (8) | 0.5692 (7) | 0.3498 (4) | 0.0319 (13) | |
C10 | 0.3256 (8) | 0.4700 (7) | 0.4541 (4) | 0.0266 (12) | |
H10 | 0.3797 | 0.3666 | 0.4830 | 0.032* | |
C11 | 0.1686 (8) | 0.4366 (6) | 0.3621 (3) | 0.0234 (11) | |
H11A | 0.0888 | 0.5340 | 0.3408 | 0.028* | |
H11B | 0.0680 | 0.3541 | 0.3762 | 0.028* | |
C12 | −0.0452 (8) | 0.2292 (7) | 0.1912 (4) | 0.0371 (15) | |
H12A | −0.0664 | 0.1231 | 0.1623 | 0.056* | |
H12B | −0.1315 | 0.3057 | 0.1493 | 0.056* | |
H12C | −0.0860 | 0.2292 | 0.2572 | 0.056* | |
C13 | 0.5222 (11) | 0.6924 (9) | 0.1249 (5) | 0.061 (2) | |
H13A | 0.6470 | 0.7301 | 0.1684 | 0.091* | |
H13B | 0.4669 | 0.7775 | 0.0797 | 0.091* | |
H13C | 0.5597 | 0.6014 | 0.0868 | 0.091* | |
C14 | 0.2968 (11) | 0.7879 (7) | 0.2460 (5) | 0.0483 (17) | |
H14A | 0.2497 | 0.8743 | 0.2002 | 0.072* | |
H14B | 0.4204 | 0.8221 | 0.2917 | 0.072* | |
H14C | 0.1839 | 0.7596 | 0.2834 | 0.072* | |
C15 | 0.2174 (8) | 0.5569 (7) | 0.5301 (4) | 0.0301 (12) | |
C16 | 0.0480 (9) | 0.4660 (7) | 0.5691 (4) | 0.0372 (14) | |
H16A | −0.0855 | 0.4816 | 0.5254 | 0.056* | |
H16B | 0.0349 | 0.5037 | 0.6355 | 0.056* | |
H16C | 0.0836 | 0.3531 | 0.5718 | 0.056* | |
O1 | 0.5017 (6) | 0.5651 (5) | 0.4367 (3) | 0.0370 (10) | |
O2 | 0.7419 (6) | 0.6310 (6) | 0.3489 (3) | 0.0476 (11) | |
O3 | 0.2640 (7) | 0.6912 (5) | 0.5555 (3) | 0.0415 (10) |
U11 | U22 | U33 | U12 | U13 | U23 | |
C1 | 0.021 (3) | 0.023 (3) | 0.027 (3) | 0.002 (2) | 0.003 (2) | −0.003 (2) |
C2 | 0.034 (3) | 0.023 (3) | 0.033 (3) | 0.003 (2) | 0.006 (3) | −0.001 (3) |
C3 | 0.029 (3) | 0.025 (3) | 0.029 (3) | 0.002 (2) | 0.005 (2) | −0.005 (2) |
C4 | 0.044 (3) | 0.037 (4) | 0.027 (3) | 0.000 (3) | 0.007 (3) | −0.005 (3) |
C5 | 0.069 (5) | 0.048 (4) | 0.028 (3) | 0.006 (4) | 0.009 (3) | 0.005 (3) |
C6 | 0.053 (4) | 0.032 (3) | 0.034 (3) | 0.012 (3) | 0.002 (3) | 0.011 (3) |
C7 | 0.043 (3) | 0.027 (3) | 0.047 (3) | 0.004 (3) | 0.019 (3) | 0.006 (3) |
C8 | 0.026 (3) | 0.024 (3) | 0.037 (3) | 0.000 (2) | 0.014 (3) | −0.003 (2) |
C9 | 0.018 (2) | 0.027 (3) | 0.052 (3) | 0.004 (2) | 0.010 (3) | −0.002 (3) |
C10 | 0.026 (3) | 0.023 (3) | 0.030 (3) | 0.001 (2) | 0.003 (2) | −0.003 (2) |
C11 | 0.022 (2) | 0.027 (3) | 0.022 (2) | −0.002 (2) | 0.007 (2) | −0.002 (2) |
C12 | 0.031 (3) | 0.039 (4) | 0.040 (3) | 0.001 (3) | 0.002 (3) | −0.009 (3) |
C13 | 0.067 (5) | 0.056 (5) | 0.067 (4) | −0.008 (4) | 0.032 (4) | 0.019 (4) |
C14 | 0.059 (4) | 0.021 (3) | 0.064 (4) | 0.006 (3) | 0.008 (4) | 0.004 (3) |
C15 | 0.031 (3) | 0.030 (3) | 0.027 (3) | 0.013 (3) | −0.003 (2) | −0.001 (3) |
C16 | 0.041 (3) | 0.036 (3) | 0.038 (3) | 0.001 (3) | 0.018 (3) | −0.006 (3) |
O1 | 0.0256 (19) | 0.043 (2) | 0.041 (2) | −0.004 (2) | 0.0022 (18) | −0.013 (2) |
O2 | 0.023 (2) | 0.044 (3) | 0.077 (3) | −0.008 (2) | 0.010 (2) | −0.011 (2) |
O3 | 0.050 (3) | 0.030 (2) | 0.043 (2) | 0.001 (2) | 0.003 (2) | −0.012 (2) |
C1—C2 | 1.503 (7) | C9—O2 | 1.205 (6) |
C1—C8 | 1.507 (7) | C9—O1 | 1.343 (6) |
C1—C11 | 1.520 (7) | C10—O1 | 1.438 (6) |
C1—C3 | 1.523 (7) | C10—C11 | 1.519 (7) |
C2—C3 | 1.505 (7) | C10—C15 | 1.527 (7) |
C2—H2A | 0.9900 | C10—H10 | 1.0000 |
C2—H2B | 0.9900 | C11—H11A | 0.9900 |
C3—C12 | 1.511 (7) | C11—H11B | 0.9900 |
C3—C4 | 1.511 (7) | C12—H12A | 0.9800 |
C4—C5 | 1.537 (9) | C12—H12B | 0.9800 |
C4—H4A | 0.9900 | C12—H12C | 0.9800 |
C4—H4B | 0.9900 | C13—H13A | 0.9800 |
C5—C6 | 1.541 (8) | C13—H13B | 0.9800 |
C5—H5A | 0.9900 | C13—H13C | 0.9800 |
C5—H5B | 0.9900 | C14—H14A | 0.9800 |
C6—C7 | 1.523 (8) | C14—H14B | 0.9800 |
C6—H6A | 0.9900 | C14—H14C | 0.9800 |
C6—H6B | 0.9900 | C15—O3 | 1.211 (7) |
C7—C13 | 1.537 (8) | C15—C16 | 1.498 (8) |
C7—C14 | 1.542 (8) | C16—H16A | 0.9800 |
C7—C8 | 1.590 (7) | C16—H16B | 0.9800 |
C8—C9 | 1.503 (7) | C16—H16C | 0.9800 |
C8—H8 | 1.0000 | ||
C2—C1—C8 | 120.0 (5) | C1—C8—H8 | 105.9 |
C2—C1—C11 | 117.1 (5) | C7—C8—H8 | 105.9 |
C8—C1—C11 | 111.7 (4) | O2—C9—O1 | 116.9 (5) |
C2—C1—C3 | 59.6 (3) | O2—C9—C8 | 122.5 (5) |
C8—C1—C3 | 118.9 (5) | O1—C9—C8 | 120.6 (4) |
C11—C1—C3 | 120.5 (4) | O1—C10—C11 | 114.2 (4) |
C1—C2—C3 | 60.8 (4) | O1—C10—C15 | 107.3 (4) |
C1—C2—H2A | 117.7 | C11—C10—C15 | 109.9 (4) |
C3—C2—H2A | 117.7 | O1—C10—H10 | 108.4 |
C1—C2—H2B | 117.7 | C11—C10—H10 | 108.4 |
C3—C2—H2B | 117.7 | C15—C10—H10 | 108.4 |
H2A—C2—H2B | 114.8 | C10—C11—C1 | 108.3 (4) |
C2—C3—C12 | 120.0 (5) | C10—C11—H11A | 110.0 |
C2—C3—C4 | 117.3 (5) | C1—C11—H11A | 110.0 |
C12—C3—C4 | 113.2 (5) | C10—C11—H11B | 110.0 |
C2—C3—C1 | 59.5 (3) | C1—C11—H11B | 110.0 |
C12—C3—C1 | 121.3 (4) | H11A—C11—H11B | 108.4 |
C4—C3—C1 | 115.6 (5) | C3—C12—H12A | 109.5 |
C3—C4—C5 | 112.1 (5) | C3—C12—H12B | 109.5 |
C3—C4—H4A | 109.2 | H12A—C12—H12B | 109.5 |
C5—C4—H4A | 109.2 | C3—C12—H12C | 109.5 |
C3—C4—H4B | 109.2 | H12A—C12—H12C | 109.5 |
C5—C4—H4B | 109.2 | H12B—C12—H12C | 109.5 |
H4A—C4—H4B | 107.9 | C7—C13—H13A | 109.5 |
C4—C5—C6 | 114.2 (4) | C7—C13—H13B | 109.5 |
C4—C5—H5A | 108.7 | H13A—C13—H13B | 109.5 |
C6—C5—H5A | 108.7 | C7—C13—H13C | 109.5 |
C4—C5—H5B | 108.7 | H13A—C13—H13C | 109.5 |
C6—C5—H5B | 108.7 | H13B—C13—H13C | 109.5 |
H5A—C5—H5B | 107.6 | C7—C14—H14A | 109.5 |
C7—C6—C5 | 118.7 (5) | C7—C14—H14B | 109.5 |
C7—C6—H6A | 107.6 | H14A—C14—H14B | 109.5 |
C5—C6—H6A | 107.6 | C7—C14—H14C | 109.5 |
C7—C6—H6B | 107.6 | H14A—C14—H14C | 109.5 |
C5—C6—H6B | 107.6 | H14B—C14—H14C | 109.5 |
H6A—C6—H6B | 107.1 | O3—C15—C16 | 122.7 (5) |
C6—C7—C13 | 110.3 (5) | O3—C15—C10 | 121.8 (5) |
C6—C7—C14 | 106.7 (5) | C16—C15—C10 | 115.4 (5) |
C13—C7—C14 | 108.4 (5) | C15—C16—H16A | 109.5 |
C6—C7—C8 | 111.1 (5) | C15—C16—H16B | 109.5 |
C13—C7—C8 | 108.5 (5) | H16A—C16—H16B | 109.5 |
C14—C7—C8 | 111.6 (5) | C15—C16—H16C | 109.5 |
C9—C8—C1 | 112.6 (4) | H16A—C16—H16C | 109.5 |
C9—C8—C7 | 109.7 (5) | H16B—C16—H16C | 109.5 |
C1—C8—C7 | 116.0 (4) | C9—O1—C10 | 123.2 (4) |
C9—C8—H8 | 105.9 |
D—H···A | D—H | H···A | D···A | D—H···A |
C11—H11A···O2i | 0.99 | 2.40 | 3.184 (6) | 136 |
C16—H16C···O2ii | 0.98 | 2.37 | 3.262 (8) | 152 |
Symmetry codes: (i) x−1, y, z; (ii) −x+1, y−1/2, −z+1. |
D—H···A | D—H | H···A | D···A | D—H···A |
C11—H11A···O2i | 0.99 | 2.40 | 3.184 (6) | 135.7 |
C16—H16C···O2ii | 0.98 | 2.37 | 3.262 (8) | 151.8 |
Symmetry codes: (i) x−1, y, z; (ii) −x+1, y−1/2, −z+1. |
References
Agilent (2014). CrysAlis PRO. Agilent Technologies Ltd, Abingdon, England. Google Scholar
Altomare, A., Burla, M. C., Camalli, M., Cascarano, G. L., Giacovazzo, C., Guagliardi, A., Moliterni, A. G. G., Polidori, G. & Spagna, R. (1999). J. Appl. Cryst. 32, 115–119. Web of Science CrossRef CAS IUCr Journals Google Scholar
Bimoussa, A., Auhmani, A., Ait Itto, M. Y., Daran, J.-C. & Auhmani, A. (2014). Acta Cryst. E70, o480. CSD CrossRef IUCr Journals Google Scholar
Boessenkool, I. K. & Boeyens, J. C. A. (1980). J. Cryst. Mol. Struct. 10, 11–18. CrossRef CAS Web of Science Google Scholar
Bremner, P. & Heinrich, M. (2002). J. Pharm. Pharmacol. 54, 453–472. Web of Science CrossRef PubMed CAS Google Scholar
Burnett, M. N. & Johnson, C. K. (1996). ORTEPIII. Report ORNL-6895. Oak Ridge National Laboratory, Tennessee, USA. Google Scholar
Calera, M. R., Soto, F., Sanchez, P., Bye, R., Hernandez-Bautista, B. B., Anaya, A. L., Lotina-Hennsen, B. & Mata, R. (1995). Phytochemistry, 40, 419–425. CrossRef CAS PubMed Web of Science Google Scholar
Cooper, R. I., Gould, R. O., Parsons, S. & Watkin, D. J. (2002). J. Appl. Cryst. 35, 168–174. Web of Science CrossRef CAS IUCr Journals Google Scholar
Farrugia, L. J. (2012). J. Appl. Cryst. 45, 849–854. Web of Science CrossRef CAS IUCr Journals Google Scholar
François, G., Passreiter, C. M., Woerdenbag, H. J. & Van Looveren, M. (1996). Planta Med. 62, 126–129. PubMed Web of Science Google Scholar
Ghosh, S. & Karin, M. (2002). Cell, 109, S81–S96. Web of Science CrossRef PubMed CAS Google Scholar
Hall, I. H., Grippo, A. A., Lee, K. H., Chaney, S. G. & Holbrook, D. J. (1987). Pharm. Res. 4, 509–514. CrossRef CAS PubMed Web of Science Google Scholar
Hooft, R. W. W., Straver, L. H. & Spek, A. L. (2008). J. Appl. Cryst. 41, 96–103. Web of Science CrossRef CAS IUCr Journals Google Scholar
Ohnishi, M., Yoshimi, N., Kawamori, T., Ino, N., Hirose, Y., Tanaka, T., Yamahara, J., Miyata, H. & Mori, H. (1997). Jpn. J. Cancer Res. 88, 111–119. CrossRef CAS PubMed Google Scholar
Parsons, S., Flack, H. D. & Wagner, T. (2013). Acta Cryst. B69, 249–259. Web of Science CrossRef CAS IUCr Journals Google Scholar
Rabe, T., Mullholland, D. & van Staden, J. (2002). J. Ethnopharmacol. 80, 91–94. Web of Science CrossRef PubMed CAS Google Scholar
Sheldrick, G. M. (2015). Acta Cryst. C71, 3–8. Web of Science CrossRef IUCr Journals Google Scholar
This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.