organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Crystal structure of (1R,3S,8R,11R)-11-acetyl-3,7,7-tri­methyl-10-oxatri­cyclo­[6.4.0.01,3]dodecan-9-one

aLaboratoire de Physico-Chimie Moléculaire et Synthèse Organique, Département de Chimie Faculté des Sciences Semlalia BP, 2390 Marrakech 40001, Morocco, and bLaboratoire de Chimie de Coordination, 205 route de Narbonne, 31077 Toulouse, Cedex 04, France
*Correspondence e-mail: a.auhmani@uca.ma

Edited by D.-J. Xu, Zhejiang University (Yuquan Campus), China (Received 19 November 2015; accepted 29 November 2015; online 6 December 2015)

The title compound, C16H24O3, is built up from three fused rings, a six-membered, a seven-membered and a three-membered ring. The absolute configuration of the title compound was determined as (1R,3S,8R,11R) based on the synthetic pathway. The six-membered ring has an half-chair conformation whereas the seven-membered ring displays a boat conformation. In the cyrstal, C—H⋯O hydrogen bonds build up a two-dimensional network parallel to (0 0 1). The crystal studied was an inversion twin with a minor twin component of 34%.

1. Related literature

For biological activities of terpenic lactones, see: Hall et al. (1987[Hall, I. H., Grippo, A. A., Lee, K. H., Chaney, S. G. & Holbrook, D. J. (1987). Pharm. Res. 4, 509-514.]); Ohnishi et al. (1997[Ohnishi, M., Yoshimi, N., Kawamori, T., Ino, N., Hirose, Y., Tanaka, T., Yamahara, J., Miyata, H. & Mori, H. (1997). Jpn. J. Cancer Res. 88, 111-119.]); Ghosh & Karin (2002[Ghosh, S. & Karin, M. (2002). Cell, 109, S81-S96.]); Bremner & Heinrich (2002[Bremner, P. & Heinrich, M. (2002). J. Pharm. Pharmacol. 54, 453-472.]); Francois et al. (1996[François, G., Passreiter, C. M., Woerdenbag, H. J. & Van Looveren, M. (1996). Planta Med. 62, 126-129.]); Rabe et al. (2002[Rabe, T., Mullholland, D. & van Staden, J. (2002). J. Ethnopharmacol. 80, 91-94.]); Calera et al. (1995[Calera, M. R., Soto, F., Sanchez, P., Bye, R., Hernandez-Bautista, B. B., Anaya, A. L., Lotina-Hennsen, B. & Mata, R. (1995). Phytochemistry, 40, 419-425.]). For the synthesis, see: Bimoussa et al. (2014[Bimoussa, A., Auhmani, A., Ait Itto, M. Y., Daran, J.-C. & Auhmani, A. (2014). Acta Cryst. E70, o480.]). For the ring puckering parameters, see: Boessenkool & Boyens (1980[Boessenkool, I. K. & Boeyens, J. C. A. (1980). J. Cryst. Mol. Struct. 10, 11-18.]). For the absolute configuration, see: Parsons et al. (2013[Parsons, S., Flack, H. D. & Wagner, T. (2013). Acta Cryst. B69, 249-259.]); Hooft et al. (2008[Hooft, R. W. W., Straver, L. H. & Spek, A. L. (2008). J. Appl. Cryst. 41, 96-103.]). For the refinement of twined crystals, see: Cooper et al. (2002[Cooper, R. I., Gould, R. O., Parsons, S. & Watkin, D. J. (2002). J. Appl. Cryst. 35, 168-174.]).

[Scheme 1]

2. Experimental

2.1. Crystal data

  • C16H24O3

  • Mr = 264.35

  • Monoclinic, P 21

  • a = 6.4443 (6) Å

  • b = 8.4437 (7) Å

  • c = 13.7083 (12) Å

  • β = 98.654 (9)°

  • V = 737.43 (11) Å3

  • Z = 2

  • Mo Kα radiation

  • μ = 0.08 mm−1

  • T = 180 K

  • 0.52 × 0.45 × 0.25 mm

2.2. Data collection

  • Agilent Xcalibur (Eos, Gemini ultra) diffractometer

  • Absorption correction: multi-scan (CrysAlis PRO; Agilent, 2014[Agilent (2014). CrysAlis PRO. Agilent Technologies Ltd, Abingdon, England.]). Tmin = 0.717, Tmax = 1.000

  • 7878 measured reflections

  • 7878 independent reflections

  • 7173 reflections with I > 2σ(I)

  • Rint = 0.041

2.3. Refinement

  • R[F2 > 2σ(F2)] = 0.061

  • wR(F2) = 0.141

  • S = 1.05

  • 7878 reflections

  • 177 parameters

  • 1 restraint

  • H-atom parameters constrained

  • Δρmax = 0.31 e Å−3

  • Δρmin = −0.34 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
C11—H11A⋯O2i 0.99 2.40 3.184 (6) 136
C16—H16C⋯O2ii 0.98 2.37 3.262 (8) 152
Symmetry codes: (i) x-1, y, z; (ii) [-x+1, y-{\script{1\over 2}}, -z+1].

Data collection: CrysAlis PRO (Agilent, 2014[Agilent (2014). CrysAlis PRO. Agilent Technologies Ltd, Abingdon, England.]); cell refinement: CrysAlis PRO; data reduction: CrysAlis PRO; program(s) used to solve structure: SIR97 (Altomare et al., 1999[Altomare, A., Burla, M. C., Camalli, M., Cascarano, G. L., Giacovazzo, C., Guagliardi, A., Moliterni, A. G. G., Polidori, G. & Spagna, R. (1999). J. Appl. Cryst. 32, 115-119.]); program(s) used to refine structure: SHELXL2013 (Sheldrick, 2015[Sheldrick, G. M. (2015). Acta Cryst. C71, 3-8.]); molecular graphics: ORTEPIII (Burnett & Johnson, 1996[Burnett, M. N. & Johnson, C. K. (1996). ORTEPIII. Report ORNL-6895. Oak Ridge National Laboratory, Tennessee, USA.]) and ORTEP-3 for Windows (Farrugia, 2012[Farrugia, L. J. (2012). J. Appl. Cryst. 45, 849-854.]); software used to prepare material for publication: SHELXL2013.

Supporting information


Chemical context top

In recent years many terpenic lactones were shown to exhibit broad spectrum of biological activities such anti­cancer activity (Hall et al., 1987, Ohnishi et al., 1997), anti-inflammatory activity (Ghosh & Karin, 2002; Bremner & Heinrich, 2002), anti-malarial activity (Francois et al., 1996), anti­viral activity, anti­bacterial activity (Rabe et al., 2002) and anti­fungal activity (Calera et al., 1995).

Their structural diversity and potential biological activities have made further inter­est for the drug discovery research. Thus, In order to prepare new lactones using natural products, we have prepared (1R,3S,8R,11R)-11-acetyl-3,7,7-tri­methyl-10-oxatri­cyclo­[6.4.0.01,3]dodecan-9-one from β-himachalène (sesquiterpenic hydro­carbon). The title compound was prepared by an oxidative cleavage of (1S,3S,8R,9S,10R)-9,10-Ep­oxy-3,7,7,10-tetra­methyl­tri­cyclo­[6.4.0.01,3]do­decane (Bimoussa et al., 2014) using periodic acid as oxydant.

Structural commentary top

The compound is built up from three fused rings, a six membered and a seven membered rings; these last ring is fused with a three membered ring (Fig. 1). The six-membered-ring has an half chair conformation with puckering parameters: Q = 0.469 (3) Å, θ = 39.3 (4)° and φ = 213.6 (6)°, whereas the seven-membered ring displays a boat conformation with puckering amplitudes: Q2 = 1.130 (4) and Q3 =0.044 (4) (Boessenkool & Boyens, 1980).

The absolute configuration (1S,3R,8S,10S) is deduced from the chemical pathway. The refinement of the Flack's parameter (-0.0 (10)) (Parsons et al., 2013) as well as the Hooft's parameter (Hooft et al., 2008) do not allow to define reliably the absolute configuration.

Supra­molecular features top

There are weak C—H···O hydrogen bonds building a two dimensional network parallel to the (0 0 1) plane (Fig. 2).

Database survey top

A search of the Cambridge Structural Database gave no hits with related structures.

Synthesis and crystallization top

In 100 ml flask containing (0.120g, (0.515 mmol) of (1S,3S,8R,9S,10R)-9,10-Ep­oxy-3,7,7,10-tetra­methyl­tri­cyclo­[6.4.0.01,3]do­decane in 6ml of CCl4, 6 ml of aceto­nitrile and 6ml of watter was added 0.427 g (2.06 mmol) of periodic acid (NaIO4) and 4.70 mg (0.0179 mmol) of RuCl3,3H2O ( 3.5%). The reaction mixture was stirred at 0°C for 20 min and for 24h at room temperature. The reaction mixture was extracted with di­chloro­methane (3x 20ml) and the organic layer were dried over Na2SO4 and concentrated under reduced pressure. The crude product was purified by chromatography on silica gel (230–400 mesh) with Hexane/ethyl acetate (85:15) as eluent to give the title compound (1R,3S,8R,11R)-11-acetyl-3,7,7-tri­methyl-10-oxatri­cyclo­[6.4.0.01,3]dodecan-9-one in 46% yield. X-ray quality crystals were obtained by slow evaporation from a petroleum ether solution of the title compound.

Refinement details top

The crystal is twinned and has been refined as a 2-component twin with the following matrix using ROTAX (Parsons 1 Gould; Cooper et al., 2002): 180.0 degree rotation about 1. 0. 0. direct lattice direction: [ 1.000 0.000 0.000] [ 0.000 -1.000 0.000] [ -0.640 0.000 -1.000] BASF = 0.34

Related literature top

For biological activities of terpenic lactones, see: Hall et al. (1987); Ohnishi et al. (1997); Ghosh & Karin (2002); Bremner & Heinrich (2002); Francois et al. (1996); Rabe et al. (2002); Calera et al. (1995). For the synthesis, see: Bimoussa et al. (2014). For the ring puckering parameters, see: Boessenkool & Boyens (1980). For the absolute configuration, see: Parsons et al. (2013); Hooft et al. (2008). For the refinement of twined crystals, see: Cooper et al. (2002).

Structure description top

In recent years many terpenic lactones were shown to exhibit broad spectrum of biological activities such anti­cancer activity (Hall et al., 1987, Ohnishi et al., 1997), anti-inflammatory activity (Ghosh & Karin, 2002; Bremner & Heinrich, 2002), anti-malarial activity (Francois et al., 1996), anti­viral activity, anti­bacterial activity (Rabe et al., 2002) and anti­fungal activity (Calera et al., 1995).

Their structural diversity and potential biological activities have made further inter­est for the drug discovery research. Thus, In order to prepare new lactones using natural products, we have prepared (1R,3S,8R,11R)-11-acetyl-3,7,7-tri­methyl-10-oxatri­cyclo­[6.4.0.01,3]dodecan-9-one from β-himachalène (sesquiterpenic hydro­carbon). The title compound was prepared by an oxidative cleavage of (1S,3S,8R,9S,10R)-9,10-Ep­oxy-3,7,7,10-tetra­methyl­tri­cyclo­[6.4.0.01,3]do­decane (Bimoussa et al., 2014) using periodic acid as oxydant.

The compound is built up from three fused rings, a six membered and a seven membered rings; these last ring is fused with a three membered ring (Fig. 1). The six-membered-ring has an half chair conformation with puckering parameters: Q = 0.469 (3) Å, θ = 39.3 (4)° and φ = 213.6 (6)°, whereas the seven-membered ring displays a boat conformation with puckering amplitudes: Q2 = 1.130 (4) and Q3 =0.044 (4) (Boessenkool & Boyens, 1980).

The absolute configuration (1S,3R,8S,10S) is deduced from the chemical pathway. The refinement of the Flack's parameter (-0.0 (10)) (Parsons et al., 2013) as well as the Hooft's parameter (Hooft et al., 2008) do not allow to define reliably the absolute configuration.

There are weak C—H···O hydrogen bonds building a two dimensional network parallel to the (0 0 1) plane (Fig. 2).

A search of the Cambridge Structural Database gave no hits with related structures.

For biological activities of terpenic lactones, see: Hall et al. (1987); Ohnishi et al. (1997); Ghosh & Karin (2002); Bremner & Heinrich (2002); Francois et al. (1996); Rabe et al. (2002); Calera et al. (1995). For the synthesis, see: Bimoussa et al. (2014). For the ring puckering parameters, see: Boessenkool & Boyens (1980). For the absolute configuration, see: Parsons et al. (2013); Hooft et al. (2008). For the refinement of twined crystals, see: Cooper et al. (2002).

Synthesis and crystallization top

In 100 ml flask containing (0.120g, (0.515 mmol) of (1S,3S,8R,9S,10R)-9,10-Ep­oxy-3,7,7,10-tetra­methyl­tri­cyclo­[6.4.0.01,3]do­decane in 6ml of CCl4, 6 ml of aceto­nitrile and 6ml of watter was added 0.427 g (2.06 mmol) of periodic acid (NaIO4) and 4.70 mg (0.0179 mmol) of RuCl3,3H2O ( 3.5%). The reaction mixture was stirred at 0°C for 20 min and for 24h at room temperature. The reaction mixture was extracted with di­chloro­methane (3x 20ml) and the organic layer were dried over Na2SO4 and concentrated under reduced pressure. The crude product was purified by chromatography on silica gel (230–400 mesh) with Hexane/ethyl acetate (85:15) as eluent to give the title compound (1R,3S,8R,11R)-11-acetyl-3,7,7-tri­methyl-10-oxatri­cyclo­[6.4.0.01,3]dodecan-9-one in 46% yield. X-ray quality crystals were obtained by slow evaporation from a petroleum ether solution of the title compound.

Refinement details top

The crystal is twinned and has been refined as a 2-component twin with the following matrix using ROTAX (Parsons 1 Gould; Cooper et al., 2002): 180.0 degree rotation about 1. 0. 0. direct lattice direction: [ 1.000 0.000 0.000] [ 0.000 -1.000 0.000] [ -0.640 0.000 -1.000] BASF = 0.34

Computing details top

Data collection: CrysAlis PRO (Agilent, 2014); cell refinement: CrysAlis PRO (Agilent, 2014); data reduction: CrysAlis PRO (Agilent, 2014); program(s) used to solve structure: SIR97 (Altomare et al., 1999); program(s) used to refine structure: SHELXL2013 (Sheldrick, 2015); molecular graphics: ORTEPIII (Burnett & Johnson, 1996) and ORTEP-3 for Windows (Farrugia, 2012); software used to prepare material for publication: SHELXL2013 (Sheldrick, 2015).

Figures top
[Figure 1] Fig. 1. Molecular view of the title compound with the atom-labeling scheme. Displacement ellipsoids are drawn at the 50% probability level. H atoms are represented as small circle of arbitrary radii.
[Figure 2] Fig. 2. Packing view showing the C—H···O hydrogen bonds building a two-dimensional network. H bonds are shown as dashed lines. [Symmetry codes: (i) x + 1, y, z; (ii) -x + 1, y + 1/2, -z + 1].
(1R,3S,8R,11R)-11-Acetyl-3,7,7-trimethyl-10-oxatricyclo[6.4.0.01,3]dodecan-9-one top
Crystal data top
C16H24O3F(000) = 288
Mr = 264.35Dx = 1.191 Mg m3
Monoclinic, P21Mo Kα radiation, λ = 0.71073 Å
a = 6.4443 (6) ÅCell parameters from 2697 reflections
b = 8.4437 (7) Åθ = 4.0–28.4°
c = 13.7083 (12) ŵ = 0.08 mm1
β = 98.654 (9)°T = 180 K
V = 737.43 (11) Å3Box, colourless
Z = 20.52 × 0.45 × 0.25 mm
Data collection top
Agilent Xcalibur (Eos, Gemini ultra)
diffractometer
7878 independent reflections
Radiation source: Enhance (Mo) X-ray Source7173 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.041
Detector resolution: 16.1978 pixels mm-1θmax = 26.4°, θmin = 3.0°
ω scansh = 88
Absorption correction: multi-scan
(CrysAlis PRO; Agilent, 2014).
k = 1010
Tmin = 0.717, Tmax = 1.000l = 1716
7878 measured reflections
Refinement top
Refinement on F21 restraint
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.061H-atom parameters constrained
wR(F2) = 0.141 w = 1/[σ2(Fo2) + (0.0238P)2 + 0.9242P]
where P = (Fo2 + 2Fc2)/3
S = 1.05(Δ/σ)max < 0.001
7878 reflectionsΔρmax = 0.31 e Å3
177 parametersΔρmin = 0.34 e Å3
Crystal data top
C16H24O3V = 737.43 (11) Å3
Mr = 264.35Z = 2
Monoclinic, P21Mo Kα radiation
a = 6.4443 (6) ŵ = 0.08 mm1
b = 8.4437 (7) ÅT = 180 K
c = 13.7083 (12) Å0.52 × 0.45 × 0.25 mm
β = 98.654 (9)°
Data collection top
Agilent Xcalibur (Eos, Gemini ultra)
diffractometer
7878 independent reflections
Absorption correction: multi-scan
(CrysAlis PRO; Agilent, 2014).
7173 reflections with I > 2σ(I)
Tmin = 0.717, Tmax = 1.000Rint = 0.041
7878 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0611 restraint
wR(F2) = 0.141H-atom parameters constrained
S = 1.05Δρmax = 0.31 e Å3
7878 reflectionsΔρmin = 0.34 e Å3
177 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
C10.2887 (8)0.3804 (6)0.2813 (4)0.0237 (11)
C20.3418 (9)0.2072 (6)0.2798 (4)0.0297 (12)
H2A0.28940.13780.32890.036*
H2B0.48110.17760.26340.036*
C30.1834 (8)0.2745 (7)0.1985 (4)0.0274 (12)
C40.2531 (10)0.2989 (7)0.0992 (4)0.0359 (14)
H4A0.20610.20790.05590.043*
H4B0.40840.30230.10780.043*
C50.1648 (11)0.4526 (8)0.0492 (4)0.0482 (17)
H5A0.02180.43150.01400.058*
H5B0.25340.48400.00060.058*
C60.1541 (10)0.5920 (7)0.1208 (4)0.0402 (15)
H6A0.10000.68520.08110.048*
H6B0.04870.56500.16370.048*
C70.3540 (9)0.6425 (7)0.1873 (4)0.0378 (14)
C80.4454 (8)0.5023 (6)0.2584 (4)0.0278 (13)
H80.54660.44430.22280.033*
C90.5737 (8)0.5692 (7)0.3498 (4)0.0319 (13)
C100.3256 (8)0.4700 (7)0.4541 (4)0.0266 (12)
H100.37970.36660.48300.032*
C110.1686 (8)0.4366 (6)0.3621 (3)0.0234 (11)
H11A0.08880.53400.34080.028*
H11B0.06800.35410.37620.028*
C120.0452 (8)0.2292 (7)0.1912 (4)0.0371 (15)
H12A0.06640.12310.16230.056*
H12B0.13150.30570.14930.056*
H12C0.08600.22920.25720.056*
C130.5222 (11)0.6924 (9)0.1249 (5)0.061 (2)
H13A0.64700.73010.16840.091*
H13B0.46690.77750.07970.091*
H13C0.55970.60140.08680.091*
C140.2968 (11)0.7879 (7)0.2460 (5)0.0483 (17)
H14A0.24970.87430.20020.072*
H14B0.42040.82210.29170.072*
H14C0.18390.75960.28340.072*
C150.2174 (8)0.5569 (7)0.5301 (4)0.0301 (12)
C160.0480 (9)0.4660 (7)0.5691 (4)0.0372 (14)
H16A0.08550.48160.52540.056*
H16B0.03490.50370.63550.056*
H16C0.08360.35310.57180.056*
O10.5017 (6)0.5651 (5)0.4367 (3)0.0370 (10)
O20.7419 (6)0.6310 (6)0.3489 (3)0.0476 (11)
O30.2640 (7)0.6912 (5)0.5555 (3)0.0415 (10)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
C10.021 (3)0.023 (3)0.027 (3)0.002 (2)0.003 (2)0.003 (2)
C20.034 (3)0.023 (3)0.033 (3)0.003 (2)0.006 (3)0.001 (3)
C30.029 (3)0.025 (3)0.029 (3)0.002 (2)0.005 (2)0.005 (2)
C40.044 (3)0.037 (4)0.027 (3)0.000 (3)0.007 (3)0.005 (3)
C50.069 (5)0.048 (4)0.028 (3)0.006 (4)0.009 (3)0.005 (3)
C60.053 (4)0.032 (3)0.034 (3)0.012 (3)0.002 (3)0.011 (3)
C70.043 (3)0.027 (3)0.047 (3)0.004 (3)0.019 (3)0.006 (3)
C80.026 (3)0.024 (3)0.037 (3)0.000 (2)0.014 (3)0.003 (2)
C90.018 (2)0.027 (3)0.052 (3)0.004 (2)0.010 (3)0.002 (3)
C100.026 (3)0.023 (3)0.030 (3)0.001 (2)0.003 (2)0.003 (2)
C110.022 (2)0.027 (3)0.022 (2)0.002 (2)0.007 (2)0.002 (2)
C120.031 (3)0.039 (4)0.040 (3)0.001 (3)0.002 (3)0.009 (3)
C130.067 (5)0.056 (5)0.067 (4)0.008 (4)0.032 (4)0.019 (4)
C140.059 (4)0.021 (3)0.064 (4)0.006 (3)0.008 (4)0.004 (3)
C150.031 (3)0.030 (3)0.027 (3)0.013 (3)0.003 (2)0.001 (3)
C160.041 (3)0.036 (3)0.038 (3)0.001 (3)0.018 (3)0.006 (3)
O10.0256 (19)0.043 (2)0.041 (2)0.004 (2)0.0022 (18)0.013 (2)
O20.023 (2)0.044 (3)0.077 (3)0.008 (2)0.010 (2)0.011 (2)
O30.050 (3)0.030 (2)0.043 (2)0.001 (2)0.003 (2)0.012 (2)
Geometric parameters (Å, º) top
C1—C21.503 (7)C9—O21.205 (6)
C1—C81.507 (7)C9—O11.343 (6)
C1—C111.520 (7)C10—O11.438 (6)
C1—C31.523 (7)C10—C111.519 (7)
C2—C31.505 (7)C10—C151.527 (7)
C2—H2A0.9900C10—H101.0000
C2—H2B0.9900C11—H11A0.9900
C3—C121.511 (7)C11—H11B0.9900
C3—C41.511 (7)C12—H12A0.9800
C4—C51.537 (9)C12—H12B0.9800
C4—H4A0.9900C12—H12C0.9800
C4—H4B0.9900C13—H13A0.9800
C5—C61.541 (8)C13—H13B0.9800
C5—H5A0.9900C13—H13C0.9800
C5—H5B0.9900C14—H14A0.9800
C6—C71.523 (8)C14—H14B0.9800
C6—H6A0.9900C14—H14C0.9800
C6—H6B0.9900C15—O31.211 (7)
C7—C131.537 (8)C15—C161.498 (8)
C7—C141.542 (8)C16—H16A0.9800
C7—C81.590 (7)C16—H16B0.9800
C8—C91.503 (7)C16—H16C0.9800
C8—H81.0000
C2—C1—C8120.0 (5)C1—C8—H8105.9
C2—C1—C11117.1 (5)C7—C8—H8105.9
C8—C1—C11111.7 (4)O2—C9—O1116.9 (5)
C2—C1—C359.6 (3)O2—C9—C8122.5 (5)
C8—C1—C3118.9 (5)O1—C9—C8120.6 (4)
C11—C1—C3120.5 (4)O1—C10—C11114.2 (4)
C1—C2—C360.8 (4)O1—C10—C15107.3 (4)
C1—C2—H2A117.7C11—C10—C15109.9 (4)
C3—C2—H2A117.7O1—C10—H10108.4
C1—C2—H2B117.7C11—C10—H10108.4
C3—C2—H2B117.7C15—C10—H10108.4
H2A—C2—H2B114.8C10—C11—C1108.3 (4)
C2—C3—C12120.0 (5)C10—C11—H11A110.0
C2—C3—C4117.3 (5)C1—C11—H11A110.0
C12—C3—C4113.2 (5)C10—C11—H11B110.0
C2—C3—C159.5 (3)C1—C11—H11B110.0
C12—C3—C1121.3 (4)H11A—C11—H11B108.4
C4—C3—C1115.6 (5)C3—C12—H12A109.5
C3—C4—C5112.1 (5)C3—C12—H12B109.5
C3—C4—H4A109.2H12A—C12—H12B109.5
C5—C4—H4A109.2C3—C12—H12C109.5
C3—C4—H4B109.2H12A—C12—H12C109.5
C5—C4—H4B109.2H12B—C12—H12C109.5
H4A—C4—H4B107.9C7—C13—H13A109.5
C4—C5—C6114.2 (4)C7—C13—H13B109.5
C4—C5—H5A108.7H13A—C13—H13B109.5
C6—C5—H5A108.7C7—C13—H13C109.5
C4—C5—H5B108.7H13A—C13—H13C109.5
C6—C5—H5B108.7H13B—C13—H13C109.5
H5A—C5—H5B107.6C7—C14—H14A109.5
C7—C6—C5118.7 (5)C7—C14—H14B109.5
C7—C6—H6A107.6H14A—C14—H14B109.5
C5—C6—H6A107.6C7—C14—H14C109.5
C7—C6—H6B107.6H14A—C14—H14C109.5
C5—C6—H6B107.6H14B—C14—H14C109.5
H6A—C6—H6B107.1O3—C15—C16122.7 (5)
C6—C7—C13110.3 (5)O3—C15—C10121.8 (5)
C6—C7—C14106.7 (5)C16—C15—C10115.4 (5)
C13—C7—C14108.4 (5)C15—C16—H16A109.5
C6—C7—C8111.1 (5)C15—C16—H16B109.5
C13—C7—C8108.5 (5)H16A—C16—H16B109.5
C14—C7—C8111.6 (5)C15—C16—H16C109.5
C9—C8—C1112.6 (4)H16A—C16—H16C109.5
C9—C8—C7109.7 (5)H16B—C16—H16C109.5
C1—C8—C7116.0 (4)C9—O1—C10123.2 (4)
C9—C8—H8105.9
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C11—H11A···O2i0.992.403.184 (6)136
C16—H16C···O2ii0.982.373.262 (8)152
Symmetry codes: (i) x1, y, z; (ii) x+1, y1/2, z+1.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C11—H11A···O2i0.992.403.184 (6)135.7
C16—H16C···O2ii0.982.373.262 (8)151.8
Symmetry codes: (i) x1, y, z; (ii) x+1, y1/2, z+1.
 

References

First citationAgilent (2014). CrysAlis PRO. Agilent Technologies Ltd, Abingdon, England.  Google Scholar
First citationAltomare, A., Burla, M. C., Camalli, M., Cascarano, G. L., Giacovazzo, C., Guagliardi, A., Moliterni, A. G. G., Polidori, G. & Spagna, R. (1999). J. Appl. Cryst. 32, 115–119.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationBimoussa, A., Auhmani, A., Ait Itto, M. Y., Daran, J.-C. & Auhmani, A. (2014). Acta Cryst. E70, o480.  CSD CrossRef IUCr Journals Google Scholar
First citationBoessenkool, I. K. & Boeyens, J. C. A. (1980). J. Cryst. Mol. Struct. 10, 11–18.  CrossRef CAS Web of Science Google Scholar
First citationBremner, P. & Heinrich, M. (2002). J. Pharm. Pharmacol. 54, 453–472.  Web of Science CrossRef PubMed CAS Google Scholar
First citationBurnett, M. N. & Johnson, C. K. (1996). ORTEPIII. Report ORNL-6895. Oak Ridge National Laboratory, Tennessee, USA.  Google Scholar
First citationCalera, M. R., Soto, F., Sanchez, P., Bye, R., Hernandez-Bautista, B. B., Anaya, A. L., Lotina-Hennsen, B. & Mata, R. (1995). Phytochemistry, 40, 419–425.  CrossRef CAS PubMed Web of Science Google Scholar
First citationCooper, R. I., Gould, R. O., Parsons, S. & Watkin, D. J. (2002). J. Appl. Cryst. 35, 168–174.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationFarrugia, L. J. (2012). J. Appl. Cryst. 45, 849–854.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationFrançois, G., Passreiter, C. M., Woerdenbag, H. J. & Van Looveren, M. (1996). Planta Med. 62, 126–129.  PubMed Web of Science Google Scholar
First citationGhosh, S. & Karin, M. (2002). Cell, 109, S81–S96.  Web of Science CrossRef PubMed CAS Google Scholar
First citationHall, I. H., Grippo, A. A., Lee, K. H., Chaney, S. G. & Holbrook, D. J. (1987). Pharm. Res. 4, 509–514.  CrossRef CAS PubMed Web of Science Google Scholar
First citationHooft, R. W. W., Straver, L. H. & Spek, A. L. (2008). J. Appl. Cryst. 41, 96–103.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationOhnishi, M., Yoshimi, N., Kawamori, T., Ino, N., Hirose, Y., Tanaka, T., Yamahara, J., Miyata, H. & Mori, H. (1997). Jpn. J. Cancer Res. 88, 111–119.  CrossRef CAS PubMed Google Scholar
First citationParsons, S., Flack, H. D. & Wagner, T. (2013). Acta Cryst. B69, 249–259.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationRabe, T., Mullholland, D. & van Staden, J. (2002). J. Ethnopharmacol. 80, 91–94.  Web of Science CrossRef PubMed CAS Google Scholar
First citationSheldrick, G. M. (2015). Acta Cryst. C71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds