research communications\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Crystal structure of di­chlorido­bis­­(1,3-diazinane-2-thione-κS)cadmium

aDepartment of Chemistry, University of Engineering and Technology, Lahore 54890, Pakistan, bDepartment of Physics, University of Sargodha, Sargodha, Pakistan, and cDepartment of Chemistry, King Fahd University of Petroleum and Minerals, Dhahran 31261, Saudi Arabia
*Correspondence e-mail: saeed_a786@hotmail.com

Edited by M. Zeller, Youngstown State University, USA (Received 20 August 2015; accepted 6 November 2015; online 14 November 2015)

In the structure of the title compound, [CdCl2(C4H8N2S)2], the CdII atom is coordinated by two chloride ions and two 1,3-diazinane-2-thione (Diaz) mol­ecules through their S atoms. The geometry around the CdII atom is distorted tetra­hedral, with bond angles in the range 101.55 (7)–117.91 (8)°. The CH2 groups of one Diaz ligand are disordered over two sets of sites with an occupancy ratio of 0.711 (12):0.289 (12). The mol­ecular structure is stabilized by intra­molecular N—H⋯Cl hydrogen-bonding inter­actions, generating a butterfly syn conformation. Inter­molecular N—H⋯Cl and N—H⋯S inter­actions lead to the formation of a three-dimensional network structure. The structure has been determined from a crystal twinned by nonmerohedry, by a 180° rotation around the reciprocal c axis. The twin ratio refined to 0.8866 (6):0.1134 (6).

1. Chemical context

Cadmium is considered to be a soft Lewis acid and possesses high affininty towards sulfur donor ligands such as thio­nes. Upon exposure to living systems, it preferablly inter­acts with sulfur-containing biomoleules. Therefore, complexes of cadmium with thio­nes are important as structural models to understand metal–sulfur inter­actions in biological systems (Akrivos, 2001[Akrivos, P. D. (2001). Coord. Chem. Rev. 213, 181-210.]; Bell et al., 2004[Bell, N. A., Clegg, W., Coles, S. J., Constable, C. P., Harrington, R. W., Hursthouse, M. B., Light, M. E., Raper, E. S., Sammon, C. & Walker, M. R. (2004). Inorg. Chim. Acta, 357, 2091-2099.]). In view of this, the crystal structures of several cadmium complexes of thio­nes, such as imidazolidine-2-thione (Imt) and 1,3-di­azinane-2-thione (Diaz), have been reported (Ahmad et al., 2012[Ahmad, S., Amir, Q., Naz, G., Fettouhi, M., Isab, A. A., Rüffer, T. & Lang, H. (2012). J. Chem. Crystallogr. 42, 615-620.]; Al-Arfaj et al., 1998[Al-Arfaj, A. R., Reibenspies, J. H., Isab, A. A. & Hussain, M. S. (1998). Acta Cryst. C54, 51-53.]; Bell et al., 2004[Bell, N. A., Clegg, W., Coles, S. J., Constable, C. P., Harrington, R. W., Hursthouse, M. B., Light, M. E., Raper, E. S., Sammon, C. & Walker, M. R. (2004). Inorg. Chim. Acta, 357, 2091-2099.]; Lobana et al., 2008[Lobana, T. S., Sharma, R., Sharma, R., Sultana, R. & Butcher, R. J. (2008). Z. Anorg. Allg. Chem. 634, 718-723.]; Malik et al., 2010[Malik, M. R., Ali, S., Fettouhi, M., Isab, A. A. & Ahmad, S. (2010). J. Struct. Chem. 51, 976-979.]; Mahmood et al., 2012[Mahmood, R., Ghulam Hussain, S., Fettouhi, M., Isab, A. A. & Ahmad, S. (2012). Acta Cryst. E68, m1352-m1353.], 2015[Mahmood, R., Hussain, S. G., Isab, A. A., Fettouhi, M., Fazal, A. & Ahmad, S. (2015). J. Struct. Chem. 56, 463-467.]; Wazeer et al., 2007[Wazeer, M. I. M., Isab, A. A. & Fettouhi, M. (2007). Polyhedron, 26, 1725-1730.]). The complexity of structures of the L2CdX2 type (where L is a thione and X is a halide or pseudohalide) ranges from mononuclear tetra­hedral complexes to polymeric octa­hedral species. We have reported recently the crystal structures of three cadmium complexes of Diaz, namely, [CdI2(Diaz)2], [Cd(CH3COO)2(Diaz)2] and [Cd(Diaz)4]SO4 (Ahmad et al., 2012[Ahmad, S., Amir, Q., Naz, G., Fettouhi, M., Isab, A. A., Rüffer, T. & Lang, H. (2012). J. Chem. Crystallogr. 42, 615-620.]; Mahmood et al., 2012[Mahmood, R., Ghulam Hussain, S., Fettouhi, M., Isab, A. A. & Ahmad, S. (2012). Acta Cryst. E68, m1352-m1353.], 2015[Mahmood, R., Hussain, S. G., Isab, A. A., Fettouhi, M., Fazal, A. & Ahmad, S. (2015). J. Struct. Chem. 56, 463-467.]). To learn more about the structural aspects of cadmium complexes, we report here the crystal structure of a cadmium chloride complex of 1,3-diazinane-2-thione, i.e. [CdCl2(Diaz)2], (I)[link]. The spectroscopic properties of the compound have been reported previously (Wazeer et al., 2007[Wazeer, M. I. M., Isab, A. A. & Fettouhi, M. (2007). Polyhedron, 26, 1725-1730.]).

2. Structural commentary

In the mol­ecular structure of (I)[link] (Fig. 1[link]), the CdII atom is bonded to two S atoms, each belonging to a Diaz mol­ecule, and two chloride ions. The coordination geometry at the CdII atom is distorted tetra­hedral, with the following bond angles: S—Cd—S = 105.08 (3)°, Cl—Cd—Cl = 101.61 (3)° and S—Cd—Cl in the range 108.91 (2)–118.00 (3)°. The Cl—Cd—Cl bond angle is significantly smaller than the other bond angles, which could be due to the involvement of Cl in intra­molecular (N—H⋯Cl) hydrogen bonding. The Cd—S and Cd—Cl bond lengths are in agreement with those reported for related compounds (Ahmad et al., 2011[Ahmad, S., Altaf, M., Stoeckli-Evans, H., Isab, A. A., Malik, M. R., Ali, S. & Shuja, S. (2011). J. Chem. Crystallogr. 41, 1099-1104.], 2012[Ahmad, S., Amir, Q., Naz, G., Fettouhi, M., Isab, A. A., Rüffer, T. & Lang, H. (2012). J. Chem. Crystallogr. 42, 615-620.]; Al-Arfaj et al., 1998[Al-Arfaj, A. R., Reibenspies, J. H., Isab, A. A. & Hussain, M. S. (1998). Acta Cryst. C54, 51-53.]; Bell et al., 2004[Bell, N. A., Clegg, W., Coles, S. J., Constable, C. P., Harrington, R. W., Hursthouse, M. B., Light, M. E., Raper, E. S., Sammon, C. & Walker, M. R. (2004). Inorg. Chim. Acta, 357, 2091-2099.]; Lobana et al., 2008[Lobana, T. S., Sharma, R., Sharma, R., Sultana, R. & Butcher, R. J. (2008). Z. Anorg. Allg. Chem. 634, 718-723.]; Malik et al., 2010[Malik, M. R., Ali, S., Fettouhi, M., Isab, A. A. & Ahmad, S. (2010). J. Struct. Chem. 51, 976-979.]; Mahmood et al., 2012[Mahmood, R., Ghulam Hussain, S., Fettouhi, M., Isab, A. A. & Ahmad, S. (2012). Acta Cryst. E68, m1352-m1353.], 2015[Mahmood, R., Hussain, S. G., Isab, A. A., Fettouhi, M., Fazal, A. & Ahmad, S. (2015). J. Struct. Chem. 56, 463-467.]; Wazeer et al., 2007[Wazeer, M. I. M., Isab, A. A. & Fettouhi, M. (2007). Polyhedron, 26, 1725-1730.]). The two Diaz six-membered rings adopt half-chair conformations. In one of the two rings (the one involving atom S2), two of the methyl­ene C atoms (C7 and C8) are disordered over two positions. The SCN2 moieties of the Diaz ligands are essentially planar and the corresponding C—S and C—N bond lengths are in the ranges 1.730 (3)–1.731 (3) and 1.318 (3)–1.327 (3) Å, respectively. The C—S bond length is slightly longer than in the free ligand [1.720 (2) Å [Popovic et al., 2001[Popovic, Z., Matkovic-Calogovic, D., Pavlovic, G., Soldin, Z., Giester, G., Rajic, M. & Vikic-Topic, D. (2001). Croat. Chem. Acta, 74, 359-380.]]. The shorter N—C(S) bond length compared to N—C(C) [1.456 (4) Å] is consistent with a significant N—C(S) double-bond character associated with an electronic delocalization towards the metal ion upon coordination. Compound (I)[link] is related to that of the reported complexes [ZnCl2(Diaz)2] (Malik et al., 2011[Malik, M. R., Vasylyeva, V., Merz, K., Metzler-Nolte, N., Saleem, M., Ali, S., Isab, A. A., Munawar, K. S. & Ahmad, S. (2011). Inorg. Chim. Acta, 376, 207-211.]) and [CdI2(Diaz)2] (Ahmad et al., 2012[Ahmad, S., Amir, Q., Naz, G., Fettouhi, M., Isab, A. A., Rüffer, T. & Lang, H. (2012). J. Chem. Crystallogr. 42, 615-620.]) that both crystallize in space group C2/c. They show an equivalent degree of distortion from tetra­hedral configuration as in (I)[link]. However, in [CdCl2(Dmtu)2] and [CdBr2(Dmtu)2] (Dmtu = N,N′-di­methyl­thio­urea), the coordination geom­etry at the CdII atom is almost perfectly tetra­hedral (Ahmad et al., 2011[Ahmad, S., Altaf, M., Stoeckli-Evans, H., Isab, A. A., Malik, M. R., Ali, S. & Shuja, S. (2011). J. Chem. Crystallogr. 41, 1099-1104.]; Malik et al., 2010[Malik, M. R., Ali, S., Fettouhi, M., Isab, A. A. & Ahmad, S. (2010). J. Struct. Chem. 51, 976-979.]).

[Scheme 1]
[Figure 1]
Figure 1
A view of the molecular structure of the title compound, showing the atom-numbering scheme. The displacement ellipsoids are drawn at the 50% probability level. The minor-occupancy C atoms are connected by dashed lines.

3. Supra­molecular features

Compound (I)[link] shows both intra- and inter­molecular hydrogen-bonding inter­actions. One chloride anion (Cl2) is engaged in intra­molecular N—H⋯Cl hydrogen-bonding inter­actions with one N—H group of each of the two Diaz ligands (Table 1[link]). This results in a butterfly syn conformation, where the two Diaz six-membered rings reside on the same side of the CdS2 plane. When such inter­actions are not effective, an anti conformation may be observed, where the two Diaz rings are located anti relative to the CdS2 plane. This situation is observed in [CdI2(Diaz)2] (Ahmad et al., 2012[Ahmad, S., Amir, Q., Naz, G., Fettouhi, M., Isab, A. A., Rüffer, T. & Lang, H. (2012). J. Chem. Crystallogr. 42, 615-620.]). The second chloride (Cl1) anion undergoes inter­molecular hydrogen-bonding inter­actions with one N—H group of a Diaz ligand belonging to an adjacent complex mol­ecule, hence generating a chain structure along the a axis (Fig. 2[link]). Furthermore, zigzag inter­chain N—H⋯S inter­actions take place, giving rise to a three-dimensional hydrogen-bonding network.

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
N1—H1⋯Cl2 0.86 2.46 3.230 (3) 149
N2—H2⋯S2i 0.86 2.55 3.363 (2) 159
N3A—H3C⋯Cl2 0.86 2.46 3.196 (3) 144
N3B—H3D⋯Cl2 0.86 2.48 3.196 (3) 141
N4A—H4C⋯Cl1ii 0.86 2.44 3.270 (3) 162
N4B—H4D⋯Cl1ii 0.86 2.46 3.270 (3) 157
Symmetry codes: (i) [-x+1, y-{\script{1\over 2}}, -z-{\script{1\over 2}}]; (ii) x+1, y, z.
[Figure 2]
Figure 2
The packing diagram for (I)[link], showing the hydrogen-bonding inter­actions. The minor-occupancy disordered atoms have been omitted for clarity.

4. Database survey

A search of the Cambridge Structural Database (Groom & Allen, 2014[Groom, C. R. & Allen, F. H. (2014). Angew. Chem. Int. Ed. 53, 662-671.]) for cadmium complexes of 1,3-diazinane-2-thione yielded three structures including the above mentioned [CdI2(Diaz)2] (Ahmad et al., 2012[Ahmad, S., Amir, Q., Naz, G., Fettouhi, M., Isab, A. A., Rüffer, T. & Lang, H. (2012). J. Chem. Crystallogr. 42, 615-620.]). Although the structure of [ZnCl2(Diaz)2] (Malik et al., 2011[Malik, M. R., Vasylyeva, V., Merz, K., Metzler-Nolte, N., Saleem, M., Ali, S., Isab, A. A., Munawar, K. S. & Ahmad, S. (2011). Inorg. Chim. Acta, 376, 207-211.]) is similar to (I), the structure of a related mercury(II) complex is significantly different. It crystallizes in an ionic form, with {[Hg(Diaz)2]2+}2 cations and {[HgCl4]2−}2 anions (Popovic et al., 2001[Popovic, Z., Matkovic-Calogovic, D., Pavlovic, G., Soldin, Z., Giester, G., Rajic, M. & Vikic-Topic, D. (2001). Croat. Chem. Acta, 74, 359-380.]).

5. Synthesis and crystallization

1,3-Diazinane-2-thione (Diaz) was prepared according to the literature procedure of Ahmad et al. (2012[Ahmad, S., Amir, Q., Naz, G., Fettouhi, M., Isab, A. A., Rüffer, T. & Lang, H. (2012). J. Chem. Crystallogr. 42, 615-620.]). The complex was prepared by adding a solution of Diaz (0.24 g, 2.0 mmol) in methanol (15 ml) to an aqueous solution (5 ml) of cadmium chloride (1.0 mmol, 0.21 g) and stirring the resulting mixture for 30 min. The colourless solution was filtered and the filtrate was kept at room temperature for crystallization. After 48 h, light-yellow crystals were obtained. The crystals were washed with methanol and dried in air (yield: 0.25 g, 0.60 mmol, 60%). The spectroscopic data of compound (I)[link] have been reported previously (Wazeer et al., 2007[Wazeer, M. I. M., Isab, A. A. & Fettouhi, M. (2007). Polyhedron, 26, 1725-1730.]).

6. Refinement details

Crystal data, data collection and structure refinement details are summarized in Table 2[link]. The crystal under investigation was found to be twinned by non-merohedry. The orientation matrices for the two components were identified using the program CELL NOW (Sheldrick, 2005[Sheldrick, G. M. (2005). CELL NOW. University of Göttingen, Germany.]), with the two components being related by a 180° rotation around the real/reciprocal axis [104]/(001). The two components were integrated using SAINT resulting in the following statistics: 7087 reflections (2024 unique) involved domain 1 only (mean I/σ = 23.7), 6799 reflections (1938 unique) involved domain 2 only (mean I/σ = 8.6) and 6567 reflections (1969 unique) the two domains (mean I/σ = 23.2).

Table 2
Experimental details

Crystal data
Chemical formula [CdCl2(C4H8N2S)2]
Mr 415.67
Crystal system, space group Monoclinic, P21/c
Temperature (K) 296
a, b, c (Å) 8.5078 (8), 14.7201 (13), 12.0019 (10)
β (°) 101.016 (4)
V3) 1475.4 (2)
Z 4
Radiation type Mo Kα
μ (mm−1) 2.11
Crystal size (mm) 0.40 × 0.30 × 0.28
 
Data collection
Diffractometer Bruker APEXII CCD
Absorption correction Multi-scan (TWINABS; Sheldrick, 2009[Sheldrick, G. M. (2009). TWINABS. University of Göttingen, Germany.])
Tmin, Tmax 0.487, 0.589
No. of measured, independent and observed [I > 2σ(I)] reflections 3512, 3512, 3110
Rint 0.037
(sin θ/λ)max−1) 0.657
 
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.029, 0.077, 1.05
No. of reflections 3512
No. of parameters 184
No. of restraints 50
H-atom treatment H-atom parameters constrained
Δρmax, Δρmin (e Å−3) 0.56, −1.18
Computer programs: APEX2 and SAINT (Bruker, 2007[Bruker (2007). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]) and CELL NOW (Sheldrick, 2005[Sheldrick, G. M. (2005). CELL NOW. University of Göttingen, Germany.]), SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]), SHELXL2014 (Sheldrick, 2015[Sheldrick, G. M. (2015). Acta Cryst. C71, 3-8.]) and ORTEP-3 for Windows (Farrugia, 2012[Farrugia, L. J. (2012). J. Appl. Cryst. 45, 849-854.]).

The exact twin matrix identified by the integration program was found to be 1.00176 −0.00043 0.00606, −0.00069 −1.00042 0.00237, −0.52475 −0.00141 −1.00198. The structure was solved using direct methods with only the non-overlapping reflections of component 1. The structure was refined using the hklf 5 routine with all reflections of component 1 (including the overlapping ones) resulting in a BASF value of 0.1134 (6).

The C atoms of one Diaz moiety (C6/C7/C8) are disordered over two sets of sites, with an occupancy ratio of 0.715 (11):0.285 (11). Atoms N3A and N4A were constrained to have identical positions and displacement parameters as their equivalent partners in the major moiety, but their H atoms were included in the disorder model. Major and minor moieties were restrained to have similar geometries [SAME command in SHELX2014 (Sheldrick, 2015[Sheldrick, G. M. (2015). Acta Cryst. C71, 3-8.])], and their atoms were subjected to a rigid-bond restraint (RIGU command in SHELX2014). The anisotropic displacement parameters of these C atoms were also subjected to a rigid-bond restraint (RIGU).

H atoms were placed at calculated positions and allowed to ride, with C—H and N—H distances of 0.97 and 0.86 Å, respectively, and with Uiso(H) = 1.2Ueq(C,N).

Supporting information


Computing details top

Data collection: APEX2 (Bruker, 2007); cell refinement: SAINT (Bruker, 2007); data reduction: SAINT (Bruker, 2007) and CELL NOW (Sheldrick,2005); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL2014 (Sheldrick, 2015); molecular graphics: ORTEP-3 for Windows (Farrugia, 2012); software used to prepare material for publication: SHELXL2014 (Sheldrick, 2015).

Dichloridobis(1,3-diazinane-2-thione-κS)cadmium top
Crystal data top
[CdCl2(C4H8N2S)2]F(000) = 824
Mr = 415.67Dx = 1.871 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
a = 8.5078 (8) ÅCell parameters from 3110 reflections
b = 14.7201 (13) Åθ = 2.2–27.9°
c = 12.0019 (10) ŵ = 2.11 mm1
β = 101.016 (4)°T = 296 K
V = 1475.4 (2) Å3Block, light yellow
Z = 40.40 × 0.30 × 0.28 mm
Data collection top
Bruker APEXII CCD
diffractometer
3512 independent reflections
Radiation source: fine-focus sealed tube3110 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.037
Detector resolution: 7.6 pixels mm-1θmax = 27.9°, θmin = 2.2°
φ and ω scansh = 1110
Absorption correction: multi-scan
(TWINABS; Sheldrick, 2009)
k = 019
Tmin = 0.487, Tmax = 0.589l = 015
3512 measured reflections
Refinement top
Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.029H-atom parameters constrained
wR(F2) = 0.077 w = 1/[σ2(Fo2) + (0.0414P)2 + 0.727P]
where P = (Fo2 + 2Fc2)/3
S = 1.05(Δ/σ)max = 0.001
3512 reflectionsΔρmax = 0.56 e Å3
184 parametersΔρmin = 1.18 e Å3
50 restraintsExtinction correction: SHELXL2014 (Sheldrick 2015), Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4
Primary atom site location: structure-invariant direct methodsExtinction coefficient: 0.0020 (4)
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/UeqOcc. (<1)
Cd10.24350 (2)0.25053 (2)0.17323 (2)0.03632 (9)
Cl10.00058 (10)0.33253 (7)0.25626 (7)0.0599 (2)
Cl20.24104 (10)0.26375 (5)0.03652 (7)0.04534 (18)
S10.26254 (11)0.08460 (5)0.22331 (6)0.04513 (19)
S20.50720 (10)0.32086 (6)0.20300 (6)0.0462 (2)
N10.2258 (3)0.04740 (16)0.0092 (2)0.0449 (6)
H10.19020.10200.00770.054*
N20.3317 (3)0.06371 (16)0.1046 (2)0.0388 (5)
H20.37240.07890.16220.047*
C10.2737 (3)0.01920 (18)0.1023 (2)0.0330 (5)
C20.2306 (5)0.0096 (2)0.0905 (2)0.0524 (8)
H2A0.14580.00810.12980.063*
H2B0.33220.00170.14220.063*
C30.2098 (4)0.1080 (2)0.0549 (3)0.0486 (8)
H3A0.22390.14660.12150.058*
H3B0.10280.11760.01130.058*
C40.3314 (4)0.1317 (2)0.0156 (3)0.0458 (7)
H4A0.43680.13470.03240.055*
H4B0.30700.19090.05000.055*
C50.6195 (3)0.35738 (18)0.0751 (2)0.0355 (6)
N3A0.5543 (3)0.37659 (18)0.0138 (2)0.0446 (6)0.715 (11)
H3C0.45260.37000.00770.053*0.715 (11)
C6A0.6473 (10)0.4084 (17)0.1216 (8)0.058 (4)0.715 (11)
H6A0.67160.35750.17330.069*0.715 (11)
H6B0.58460.45190.15530.069*0.715 (11)
C7A0.7995 (6)0.4519 (5)0.1047 (5)0.0599 (18)0.715 (11)
H7A0.86630.46510.17780.072*0.715 (11)
H7B0.77590.50860.06390.072*0.715 (11)
C8A0.8876 (8)0.3891 (5)0.0382 (5)0.0501 (17)0.715 (11)
H8A0.98210.41880.02140.060*0.715 (11)
H8B0.92060.33440.08150.060*0.715 (11)
N4A0.7753 (3)0.3665 (2)0.0678 (2)0.0503 (7)0.715 (11)
H4C0.81380.35870.12840.060*0.715 (11)
N3B0.5543 (3)0.37659 (18)0.0138 (2)0.0446 (6)0.285 (11)
H3D0.45190.37180.00430.053*0.285 (11)
C6B0.637 (2)0.405 (4)0.126 (2)0.054 (9)0.285 (11)
H6C0.59850.37010.18370.065*0.285 (11)
H6D0.61630.46860.13740.065*0.285 (11)
C7B0.8121 (14)0.3903 (11)0.1362 (9)0.051 (4)0.285 (11)
H7C0.83690.32640.14890.062*0.285 (11)
H7D0.86980.42420.20050.062*0.285 (11)
C8B0.864 (2)0.4215 (12)0.0283 (11)0.055 (5)0.285 (11)
H8C0.84040.48550.01540.066*0.285 (11)
H8D0.97870.41290.03480.066*0.285 (11)
N4B0.7753 (3)0.3665 (2)0.0678 (2)0.0503 (7)0.285 (11)
H4D0.82390.34160.11660.060*0.285 (11)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Cd10.03251 (13)0.03676 (13)0.03966 (13)0.00136 (8)0.00685 (9)0.00459 (8)
Cl10.0476 (4)0.0886 (6)0.0445 (4)0.0300 (4)0.0115 (3)0.0120 (4)
Cl20.0537 (5)0.0469 (4)0.0391 (3)0.0049 (3)0.0180 (3)0.0017 (3)
S10.0669 (5)0.0369 (4)0.0326 (3)0.0009 (3)0.0120 (3)0.0021 (3)
S20.0460 (4)0.0624 (5)0.0318 (3)0.0169 (4)0.0118 (3)0.0020 (3)
N10.0633 (17)0.0344 (12)0.0418 (12)0.0098 (12)0.0219 (12)0.0036 (10)
N20.0451 (14)0.0345 (12)0.0377 (11)0.0040 (10)0.0103 (10)0.0032 (10)
C10.0331 (14)0.0331 (13)0.0325 (11)0.0029 (11)0.0055 (10)0.0001 (10)
C20.076 (2)0.0485 (18)0.0372 (14)0.0022 (16)0.0223 (15)0.0047 (13)
C30.059 (2)0.0433 (17)0.0426 (15)0.0060 (15)0.0084 (14)0.0090 (13)
C40.0532 (19)0.0357 (15)0.0456 (15)0.0055 (14)0.0024 (14)0.0042 (12)
C50.0371 (15)0.0351 (14)0.0354 (12)0.0034 (11)0.0093 (11)0.0050 (10)
N3A0.0331 (13)0.0609 (16)0.0413 (12)0.0057 (11)0.0113 (10)0.0080 (11)
C6A0.055 (4)0.078 (9)0.042 (3)0.014 (4)0.011 (3)0.015 (4)
C7A0.049 (3)0.066 (4)0.064 (3)0.009 (3)0.010 (2)0.021 (3)
C8A0.032 (3)0.057 (4)0.059 (3)0.000 (3)0.004 (2)0.006 (3)
N4A0.0349 (14)0.0725 (19)0.0463 (13)0.0056 (12)0.0151 (11)0.0070 (12)
N3B0.0331 (13)0.0609 (16)0.0413 (12)0.0057 (11)0.0113 (10)0.0080 (11)
C6B0.042 (7)0.07 (2)0.046 (8)0.008 (7)0.008 (5)0.015 (9)
C7B0.044 (6)0.058 (9)0.050 (5)0.005 (5)0.005 (4)0.015 (5)
C8B0.036 (7)0.067 (10)0.060 (6)0.007 (7)0.004 (5)0.008 (6)
N4B0.0349 (14)0.0725 (19)0.0463 (13)0.0056 (12)0.0151 (11)0.0070 (12)
Geometric parameters (Å, º) top
Cd1—Cl12.4361 (8)N3A—C6A1.458 (7)
Cd1—S12.5280 (8)N3A—H3C0.8600
Cd1—Cl22.5290 (8)C6A—C7A1.493 (12)
Cd1—S22.5571 (8)C6A—H6A0.9700
S1—C11.730 (3)C6A—H6B0.9700
S2—C51.731 (3)C7A—C8A1.510 (8)
N1—C11.327 (3)C7A—H7A0.9700
N1—C21.456 (4)C7A—H7B0.9700
N1—H10.8600C8A—N4A1.476 (6)
N2—C11.319 (3)C8A—H8A0.9700
N2—C41.464 (4)C8A—H8B0.9700
N2—H20.8600N4A—H4C0.8600
C2—C31.511 (5)N3B—C6B1.456 (15)
C2—H2A0.9700N3B—H3D0.8600
C2—H2B0.9700C6B—C7B1.484 (19)
C3—C41.497 (4)C6B—H6C0.9700
C3—H3A0.9700C6B—H6D0.9700
C3—H3B0.9700C7B—C8B1.518 (15)
C4—H4A0.9700C7B—H7C0.9700
C4—H4B0.9700C7B—H7D0.9700
C5—N4B1.318 (4)C8B—N4B1.492 (13)
C5—N4A1.318 (4)C8B—H8C0.9700
C5—N3B1.324 (3)C8B—H8D0.9700
C5—N3A1.324 (3)N4B—H4D0.8600
Cl1—Cd1—S1118.00 (3)N3A—C6A—H6A109.5
Cl1—Cd1—Cl2101.61 (3)C7A—C6A—H6A109.5
S1—Cd1—Cl2108.91 (2)N3A—C6A—H6B109.5
Cl1—Cd1—S2116.15 (3)C7A—C6A—H6B109.5
S1—Cd1—S2105.08 (3)H6A—C6A—H6B108.1
Cl2—Cd1—S2106.39 (3)C6A—C7A—C8A109.9 (8)
C1—S1—Cd1109.50 (9)C6A—C7A—H7A109.7
C5—S2—Cd1110.63 (9)C8A—C7A—H7A109.7
C1—N1—C2123.1 (2)C6A—C7A—H7B109.7
C1—N1—H1118.4C8A—C7A—H7B109.7
C2—N1—H1118.4H7A—C7A—H7B108.2
C1—N2—C4124.4 (2)N4A—C8A—C7A106.8 (5)
C1—N2—H2117.8N4A—C8A—H8A110.4
C4—N2—H2117.8C7A—C8A—H8A110.4
N2—C1—N1118.9 (2)N4A—C8A—H8B110.4
N2—C1—S1117.3 (2)C7A—C8A—H8B110.4
N1—C1—S1123.8 (2)H8A—C8A—H8B108.6
N1—C2—C3109.7 (2)C5—N4A—C8A123.9 (3)
N1—C2—H2A109.7C5—N4A—H4C118.1
C3—C2—H2A109.7C8A—N4A—H4C118.1
N1—C2—H2B109.7C5—N3B—C6B127.0 (7)
C3—C2—H2B109.7C5—N3B—H3D116.5
H2A—C2—H2B108.2C6B—N3B—H3D116.5
C4—C3—C2109.1 (3)N3B—C6B—C7B109.7 (14)
C4—C3—H3A109.9N3B—C6B—H6C109.7
C2—C3—H3A109.9C7B—C6B—H6C109.7
C4—C3—H3B109.9N3B—C6B—H6D109.7
C2—C3—H3B109.9C7B—C6B—H6D109.7
H3A—C3—H3B108.3H6C—C6B—H6D108.2
N2—C4—C3110.5 (2)C6B—C7B—C8B109.7 (18)
N2—C4—H4A109.5C6B—C7B—H7C109.7
C3—C4—H4A109.5C8B—C7B—H7C109.7
N2—C4—H4B109.5C6B—C7B—H7D109.7
C3—C4—H4B109.5C8B—C7B—H7D109.7
H4A—C4—H4B108.1H7C—C7B—H7D108.2
N4B—C5—N3B119.7 (3)N4B—C8B—C7B107.9 (11)
N4A—C5—N3A119.7 (3)N4B—C8B—H8C110.1
N4B—C5—S2117.9 (2)C7B—C8B—H8C110.1
N4A—C5—S2117.9 (2)N4B—C8B—H8D110.1
N3B—C5—S2122.4 (2)C7B—C8B—H8D110.1
N3A—C5—S2122.4 (2)H8C—C8B—H8D108.4
C5—N3A—C6A122.9 (4)C5—N4B—C8B117.5 (7)
C5—N3A—H3C118.5C5—N4B—H4D121.3
C6A—N3A—H3C118.5C8B—N4B—H4D121.3
N3A—C6A—C7A110.8 (7)
C4—N2—C1—N17.1 (4)S2—C5—N3A—C6A179.3 (12)
C4—N2—C1—S1172.2 (2)C5—N3A—C6A—C7A24 (2)
C2—N1—C1—N21.5 (4)N3A—C6A—C7A—C8A51.6 (17)
C2—N1—C1—S1177.7 (3)C6A—C7A—C8A—N4A55.3 (10)
Cd1—S1—C1—N2160.02 (19)N3A—C5—N4A—C8A5.9 (6)
Cd1—S1—C1—N120.8 (3)S2—C5—N4A—C8A174.4 (4)
C1—N1—C2—C329.8 (4)C7A—C8A—N4A—C534.2 (8)
N1—C2—C3—C453.7 (4)N4B—C5—N3B—C6B2 (3)
C1—N2—C4—C319.8 (4)S2—C5—N3B—C6B178 (3)
C2—C3—C4—N249.1 (3)C5—N3B—C6B—C7B12 (5)
Cd1—S2—C5—N4B157.6 (2)N3B—C6B—C7B—C8B43 (4)
Cd1—S2—C5—N4A157.6 (2)C6B—C7B—C8B—N4B61 (3)
Cd1—S2—C5—N3B22.8 (3)N3B—C5—N4B—C8B16.5 (9)
Cd1—S2—C5—N3A22.8 (3)S2—C5—N4B—C8B163.2 (8)
N4A—C5—N3A—C6A0.4 (12)C7B—C8B—N4B—C547.6 (16)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1···Cl20.862.463.230 (3)149
N2—H2···S2i0.862.553.363 (2)159
N3A—H3C···Cl20.862.463.196 (3)144
N3B—H3D···Cl20.862.483.196 (3)141
N4A—H4C···Cl1ii0.862.443.270 (3)162
N4B—H4D···Cl1ii0.862.463.270 (3)157
C7B—H7C···Cl1iii0.972.853.769 (16)159
Symmetry codes: (i) x+1, y1/2, z1/2; (ii) x+1, y, z; (iii) x+1, y+1/2, z+1/2.
 

Acknowledgements

The authors acknowledge the provision of funds for the purchase of diffractometer and encouragement by the Vice Chancellor, University of Sargodha, Pakistan.

References

First citationAhmad, S., Altaf, M., Stoeckli-Evans, H., Isab, A. A., Malik, M. R., Ali, S. & Shuja, S. (2011). J. Chem. Crystallogr. 41, 1099–1104.  Web of Science CSD CrossRef CAS Google Scholar
First citationAhmad, S., Amir, Q., Naz, G., Fettouhi, M., Isab, A. A., Rüffer, T. & Lang, H. (2012). J. Chem. Crystallogr. 42, 615–620.  Web of Science CSD CrossRef CAS Google Scholar
First citationAkrivos, P. D. (2001). Coord. Chem. Rev. 213, 181–210.  Web of Science CrossRef CAS Google Scholar
First citationAl-Arfaj, A. R., Reibenspies, J. H., Isab, A. A. & Hussain, M. S. (1998). Acta Cryst. C54, 51–53.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationBell, N. A., Clegg, W., Coles, S. J., Constable, C. P., Harrington, R. W., Hursthouse, M. B., Light, M. E., Raper, E. S., Sammon, C. & Walker, M. R. (2004). Inorg. Chim. Acta, 357, 2091–2099.  Web of Science CSD CrossRef CAS Google Scholar
First citationBruker (2007). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationFarrugia, L. J. (2012). J. Appl. Cryst. 45, 849–854.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationGroom, C. R. & Allen, F. H. (2014). Angew. Chem. Int. Ed. 53, 662–671.  Web of Science CSD CrossRef CAS Google Scholar
First citationLobana, T. S., Sharma, R., Sharma, R., Sultana, R. & Butcher, R. J. (2008). Z. Anorg. Allg. Chem. 634, 718–723.  Web of Science CSD CrossRef CAS Google Scholar
First citationMahmood, R., Ghulam Hussain, S., Fettouhi, M., Isab, A. A. & Ahmad, S. (2012). Acta Cryst. E68, m1352–m1353.  CSD CrossRef IUCr Journals Google Scholar
First citationMahmood, R., Hussain, S. G., Isab, A. A., Fettouhi, M., Fazal, A. & Ahmad, S. (2015). J. Struct. Chem. 56, 463–467.  Web of Science CSD CrossRef CAS Google Scholar
First citationMalik, M. R., Ali, S., Fettouhi, M., Isab, A. A. & Ahmad, S. (2010). J. Struct. Chem. 51, 976–979.  Web of Science CrossRef CAS Google Scholar
First citationMalik, M. R., Vasylyeva, V., Merz, K., Metzler-Nolte, N., Saleem, M., Ali, S., Isab, A. A., Munawar, K. S. & Ahmad, S. (2011). Inorg. Chim. Acta, 376, 207–211.  Web of Science CSD CrossRef CAS Google Scholar
First citationPopovic, Z., Matkovic-Calogovic, D., Pavlovic, G., Soldin, Z., Giester, G., Rajic, M. & Vikic-Topic, D. (2001). Croat. Chem. Acta, 74, 359–380.  CAS Google Scholar
First citationSheldrick, G. M. (2005). CELL NOW. University of Göttingen, Germany.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSheldrick, G. M. (2009). TWINABS. University of Göttingen, Germany.  Google Scholar
First citationSheldrick, G. M. (2015). Acta Cryst. C71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar
First citationWazeer, M. I. M., Isab, A. A. & Fettouhi, M. (2007). Polyhedron, 26, 1725–1730.  Web of Science CSD CrossRef CAS Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds