organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Crystal structure of (1-eth­­oxy­ethyl­­idene)di­methyl­aza­nium tetra­phenyl­borate

aFakultät Chemie/Organische Chemie, Hochschule Aalen, Beethovenstrasse 1, D-73430 Aalen, Germany
*Correspondence e-mail: willi.kantlehner@hs-aalen.de

Edited by M. Zeller, Youngstown State University, USA (Received 15 November 2015; accepted 20 November 2015; online 25 November 2015)

In the cation of the title salt, C6H14NO+·C24H20B, the C—N bond lengths are 1.297 (2), 1.464 (2) and 1.468 (2) Å, indicating double- and single-bond character, respectively. The C—O bond length of 1.309 (2) Å shows double-bond character, pointing towards charge delocalization within the NCO plane of the iminium ion. In the crystal, C—H⋯π inter­actions between the iminium H atoms and the phenyl C atoms of the anion are present. The phenyl rings form aromatic pockets, in which the iminium ions are embedded.

1. Related literature

For acetalization reactions with carboxamide-dialkyl sulfate adducts, see: Kantlehner et al. (1980[Kantlehner, W., Gutbrod, H.-D. & Funke, B. (1980). Liebigs Ann. Chem. pp. 246-252.]). For the crystal structure of (meth­oxy­methyl­idene)di­methyl­aza­nium tetra­phenyl­borate aceto­nitrile monosolvate, see: Tiritiris et al. (2014a[Tiritiris, I., Saur, S. & Kantlehner, W. (2014a). Acta Cryst. E70, o333.]). For the crystal structure of (but­oxy­methyl­idene)di­methyl­aza­nium tetra­phenyl­borate aceto­nitrile monosolvate, see: Tiritiris et al. (2014b[Tiritiris, I., Saur, S. & Kantlehner, W. (2014b). Acta Cryst. E70, o459.]). For the crystal structure of (eth­oxy­ethyl­idene)di­methyl­aza­nium ethyl sulfate, see: Tiritiris et al. (2015[Tiritiris, I., Saur, S. & Kantlehner, W. (2015). Acta Cryst. E71, o916.]). For the crystal structure analysis of alkali metal tetra­phenyl­borates, see: Behrens et al. (2012[Behrens, U., Hoffmann, F. & Olbrich, F. (2012). Organometallics, 31, 905-913.]). For the use of intensity quotients and differences in absolute structure refinement, see: Parsons et al. (2013[Parsons, S., Flack, H. D. & Wagner, T. (2013). Acta Cryst. B69, 249-259.]).

[Scheme 1]

2. Experimental

2.1. Crystal data

  • C6H14NO+·C24H20B

  • Mr = 435.39

  • Orthorhombic, P 21 21 21

  • a = 9.9849 (6) Å

  • b = 11.5293 (7) Å

  • c = 21.1980 (12) Å

  • V = 2440.3 (3) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.07 mm−1

  • T = 100 K

  • 0.54 × 0.39 × 0.18 mm

2.2. Data collection

  • Bruker Kappa APEXII DUO diffractometer

  • Absorption correction: multi-scan (Blessing, 1995[Blessing, R. H. (1995). Acta Cryst. A51, 33-38.]) Tmin = 0.726, Tmax = 0.746

  • 33864 measured reflections

  • 7520 independent reflections

  • 6825 reflections with I > 2σ(I)

  • Rint = 0.029

2.3. Refinement

  • R[F2 > 2σ(F2)] = 0.037

  • wR(F2) = 0.095

  • S = 1.03

  • 7520 reflections

  • 302 parameters

  • H-atom parameters constrained

  • Δρmax = 0.25 e Å−3

  • Δρmin = −0.23 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

Cg1, Cg2 and Cg3 are the centroids of the C7–C12, C13–C18 and C25–C30 rings, respectively.

D—H⋯A D—H H⋯A DA D—H⋯A
C3—H3ACg1 0.99 2.67 3.572 (2) 151
C5—H5BCg2 0.98 2.70 3.450 (2) 134
C6—H6BCg3 0.98 2.72 3.692 (2) 175

Data collection: APEX2 (Bruker, 2008[Bruker (2008). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2008[Bruker (2008). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL2014 (Sheldrick, 2015[Sheldrick, G. M. (2015). Acta Cryst. C71, 3-8.]); molecular graphics: DIAMOND (Brandenburg & Putz, 2005[Brandenburg, K. & Putz, H. (2005). DIAMOND. Crystal Impact GbR, Bonn, Germany.]); software used to prepare material for publication: SHELXL2014.

Supporting information


Comment top

Carboxamide-dialkyl sulfate adducts are salts that can be used for acetalization reactions (Kantlehner et al., 1980). The 1:1 adduct of N,N-dimethylacetamide and diethyl sulfate, known as (ethoxyethylidene)dimethylazanium ethyl sulfate (Tiritiris et al., 2015) is one of them. By reaction with sodium tetraphenylborate in acetonitrile, it was possible to achieve an anion exchange and to obtain the title compound. The structure analysis reveals that the bond lengths and angles in the cation are in very good agreement with the data obtained from the structure analysis of (ethoxyethylidene)dimethylazanium ethyl sulfate (Tiritiris et al., 2015). In the tetraphenylborate salt, the C5–N1 bond length is 1.468 (2) Å, C6–N1 = 1.464 (2) Å and C1–N1 = 1.297 (2) Å, showing single and double bond character, respectively. The C–N1–C angles are: 115.24 (12)° (C5–N1–C6), 122.11 (13)° (C1–N1–C5) and 122.65 (13)° (C1–N1–C6), which indicates a nearly trigonal-planar surrounding of the nitrogen centre by the carbon atoms (Fig. 1). The C–O bond length shows with 1.309 (2) Å double bond character. The positive charge is completely delocalized on the plane formed by the atoms N1, C1 and O1 (Fig. 1). The C3–O1 bond length of 1.471 (2) Å is indicating single bond character. The bond lengths and angles in the tetraphenylborate ions are in good agreement with the data from the crystal structure analysis of the alkali metal tetraphenylborates (Behrens et al., 2012). C–H···π interactions between the iminium hydrogen atoms of –N(CH3)2 and –CH2 groups and the phenyl carbon atoms (centroids: Cg1 = C7—C12, Cg2 = C13—C18 and Cg3 = C25—C30) of the tetraphenylborate ion are present (Fig. 2), ranging from 2.67 to 2.72 Å (Tab. 1). Such a type of interactions were also observed in the iminium salts (methoxymethylidene)dimethylazanium tetraphenylborate acetonitrile monosolvate (Tiritiris et al., 2014a) and (butoxymethylidene)dimethylazanium tetraphenylborate acetonitrile monosolvate (Tiritiris et al., 2014b). The phenyl rings form aromatic pockets, in which the guanidinium ions are embedded.

Related literature top

For acetalization reactions with carboxamide-dialkyl sulfate adducts, see: Kantlehner et al. (1980). For the crystal structure of (methoxymethylidene)dimethylazanium tetraphenylborate acetonitrile monosolvate, see: Tiritiris et al. (2014a). For the crystal structure of (butoxymethylidene)dimethylazanium tetraphenylborate acetonitrile monosolvate, see: Tiritiris et al. (2014b). For the crystal structure of (ethoxyethylidene)dimethylazanium ethyl sulfate, see: Tiritiris et al. (2015). For the crystal structure analysis of alkali metal tetraphenylborates, see: Behrens et al. (2012). The title compound crystallizes in a non-centrosymmetric space group; however, in the absence of significant anomalous scattering effects, the determined Flack parameter x = -0.2 (4) (Parsons et al., 2013) is essentially meaningless.

Experimental top

The title compound was obtained by anion exchange reaction. 1.00 g (3.66 mmol) of (ethoxyethylidene)dimethylazanium ethyl sulfate (Tiritiris et al., 2015) was dissolved in 20 ml acetonitrile and 1.25 g (3.66 mmol) of sodium tetraphenylborate in 20 ml acetonitrile was added. After stirring for one hour at room temperature, the precipitated sodium ethyl sulfate was filtered off. The title compound crystallized from a saturated acetonitrile solution after several hours at 273 K, forming colorless single crystals. Yield: 1.35 g (85%).

Refinement top

The title compound crystallizes in the non-centrosymmetric space group P212121; however, in the absence of significant anomalous scattering effects, the determined Flack parameter x = -0.2 (4) (Parsons et al., 2013) is essentially meaningless. The hydrogen atoms of the methyl groups were allowed to rotate with a fixed angle around the C–N and C–C bonds to best fit the experimental electron density, with Uiso(H) set to 1.5 Ueq(C) and d(C—H) = 0.98 Å. The remaining H atoms were placed in calculated positions with d(C—H) = 0.99 Å (H atoms in CH2 groups) and (C—H) = 0.95 Å (H atoms in aromatic rings). They were refined using a riding model, with Uiso(H) set to 1.2Ueq(C).

Structure description top

Carboxamide-dialkyl sulfate adducts are salts that can be used for acetalization reactions (Kantlehner et al., 1980). The 1:1 adduct of N,N-dimethylacetamide and diethyl sulfate, known as (ethoxyethylidene)dimethylazanium ethyl sulfate (Tiritiris et al., 2015) is one of them. By reaction with sodium tetraphenylborate in acetonitrile, it was possible to achieve an anion exchange and to obtain the title compound. The structure analysis reveals that the bond lengths and angles in the cation are in very good agreement with the data obtained from the structure analysis of (ethoxyethylidene)dimethylazanium ethyl sulfate (Tiritiris et al., 2015). In the tetraphenylborate salt, the C5–N1 bond length is 1.468 (2) Å, C6–N1 = 1.464 (2) Å and C1–N1 = 1.297 (2) Å, showing single and double bond character, respectively. The C–N1–C angles are: 115.24 (12)° (C5–N1–C6), 122.11 (13)° (C1–N1–C5) and 122.65 (13)° (C1–N1–C6), which indicates a nearly trigonal-planar surrounding of the nitrogen centre by the carbon atoms (Fig. 1). The C–O bond length shows with 1.309 (2) Å double bond character. The positive charge is completely delocalized on the plane formed by the atoms N1, C1 and O1 (Fig. 1). The C3–O1 bond length of 1.471 (2) Å is indicating single bond character. The bond lengths and angles in the tetraphenylborate ions are in good agreement with the data from the crystal structure analysis of the alkali metal tetraphenylborates (Behrens et al., 2012). C–H···π interactions between the iminium hydrogen atoms of –N(CH3)2 and –CH2 groups and the phenyl carbon atoms (centroids: Cg1 = C7—C12, Cg2 = C13—C18 and Cg3 = C25—C30) of the tetraphenylborate ion are present (Fig. 2), ranging from 2.67 to 2.72 Å (Tab. 1). Such a type of interactions were also observed in the iminium salts (methoxymethylidene)dimethylazanium tetraphenylborate acetonitrile monosolvate (Tiritiris et al., 2014a) and (butoxymethylidene)dimethylazanium tetraphenylborate acetonitrile monosolvate (Tiritiris et al., 2014b). The phenyl rings form aromatic pockets, in which the guanidinium ions are embedded.

For acetalization reactions with carboxamide-dialkyl sulfate adducts, see: Kantlehner et al. (1980). For the crystal structure of (methoxymethylidene)dimethylazanium tetraphenylborate acetonitrile monosolvate, see: Tiritiris et al. (2014a). For the crystal structure of (butoxymethylidene)dimethylazanium tetraphenylborate acetonitrile monosolvate, see: Tiritiris et al. (2014b). For the crystal structure of (ethoxyethylidene)dimethylazanium ethyl sulfate, see: Tiritiris et al. (2015). For the crystal structure analysis of alkali metal tetraphenylborates, see: Behrens et al. (2012). The title compound crystallizes in a non-centrosymmetric space group; however, in the absence of significant anomalous scattering effects, the determined Flack parameter x = -0.2 (4) (Parsons et al., 2013) is essentially meaningless.

Computing details top

Data collection: APEX2 (Bruker, 2008); cell refinement: SAINT (Bruker, 2008); data reduction: SAINT (Bruker, 2008); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL2014 (Sheldrick, 2015); molecular graphics: DIAMOND (Brandenburg & Putz, 2005); software used to prepare material for publication: SHELXL2014 (Sheldrick, 2015).

Figures top
[Figure 1] Fig. 1. The structure of the title compound with displacement ellipsoids at the 50% probability level. All hydrogen atoms were omitted for the sake of clarity.
[Figure 2] Fig. 2. C—H···π interactions (brown dashed lines) between the hydrogen atoms of the guanidinium ion and the phenyl carbon atoms (centroids) of the tetraphenylborate ion.
(1-Ethoxyethylidene)dimethylazanium tetraphenylborate top
Crystal data top
C6H14NO+·C24H20BF(000) = 936
Mr = 435.39Dx = 1.185 Mg m3
Orthorhombic, P212121Mo Kα radiation, λ = 0.71073 Å
Hall symbol: P 2ac 2abCell parameters from 6826 reflections
a = 9.9849 (6) Åθ = 2.0–30.6°
b = 11.5293 (7) ŵ = 0.07 mm1
c = 21.1980 (12) ÅT = 100 K
V = 2440.3 (3) Å3Block, colorless
Z = 40.54 × 0.39 × 0.18 mm
Data collection top
Bruker Kappa APEXII DUO
diffractometer
7520 independent reflections
Radiation source: fine-focus sealed tube6825 reflections with I > 2σ(I)
Triumph monochromatorRint = 0.029
φ scans, and ω scansθmax = 30.6°, θmin = 1.9°
Absorption correction: multi-scan
(Blessing, 1995)
h = 1414
Tmin = 0.726, Tmax = 0.746k = 1616
33864 measured reflectionsl = 2730
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.037Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.095H-atom parameters constrained
S = 1.03 w = 1/[σ2(Fo2) + (0.0527P)2 + 0.3379P]
where P = (Fo2 + 2Fc2)/3
7520 reflections(Δ/σ)max < 0.001
302 parametersΔρmax = 0.25 e Å3
0 restraintsΔρmin = 0.23 e Å3
Crystal data top
C6H14NO+·C24H20BV = 2440.3 (3) Å3
Mr = 435.39Z = 4
Orthorhombic, P212121Mo Kα radiation
a = 9.9849 (6) ŵ = 0.07 mm1
b = 11.5293 (7) ÅT = 100 K
c = 21.1980 (12) Å0.54 × 0.39 × 0.18 mm
Data collection top
Bruker Kappa APEXII DUO
diffractometer
7520 independent reflections
Absorption correction: multi-scan
(Blessing, 1995)
6825 reflections with I > 2σ(I)
Tmin = 0.726, Tmax = 0.746Rint = 0.029
33864 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0370 restraints
wR(F2) = 0.095H-atom parameters constrained
S = 1.03Δρmax = 0.25 e Å3
7520 reflectionsΔρmin = 0.23 e Å3
302 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
O10.30998 (11)0.52467 (9)0.12549 (5)0.0192 (2)
C10.21195 (15)0.59672 (13)0.11353 (7)0.0165 (3)
N10.21207 (12)0.69225 (11)0.14580 (6)0.0165 (2)
C20.10847 (17)0.57082 (16)0.06546 (7)0.0233 (3)
H2A0.03460.52810.08510.035*
H2B0.14790.52370.03180.035*
H2C0.07450.64360.04770.035*
C30.31599 (17)0.41096 (13)0.09413 (7)0.0210 (3)
H3A0.33500.42040.04860.025*
H3B0.22990.36930.09890.025*
C40.42626 (19)0.34548 (14)0.12555 (9)0.0269 (3)
H4A0.51090.38730.12000.040*
H4B0.43370.26820.10660.040*
H4C0.40670.33790.17070.040*
C50.10603 (17)0.77963 (15)0.13914 (8)0.0238 (3)
H5A0.12230.82590.10110.036*
H5B0.10600.83050.17620.036*
H5C0.01900.74080.13570.036*
C60.31634 (16)0.72012 (13)0.19196 (7)0.0210 (3)
H6A0.28010.71180.23470.031*
H6B0.34660.80010.18560.031*
H6C0.39220.66710.18650.031*
B10.74360 (16)0.96058 (13)0.13424 (7)0.0134 (3)
C70.81051 (14)1.07099 (12)0.09675 (6)0.0144 (2)
C80.74193 (16)1.17297 (13)0.08187 (7)0.0185 (3)
H80.64961.17840.09230.022*
C90.80315 (18)1.26719 (13)0.05239 (7)0.0224 (3)
H90.75241.33490.04350.027*
C100.93698 (18)1.26280 (14)0.03606 (7)0.0222 (3)
H100.97851.32610.01510.027*
C111.00906 (16)1.16413 (14)0.05094 (7)0.0212 (3)
H111.10161.16000.04080.025*
C120.94734 (15)1.07112 (13)0.08062 (7)0.0175 (3)
H120.99961.00470.09050.021*
C130.83345 (14)0.93481 (12)0.19804 (6)0.0137 (2)
C140.91903 (14)1.01811 (13)0.22415 (7)0.0160 (3)
H140.92281.09270.20520.019*
C150.99888 (15)0.99624 (15)0.27663 (7)0.0198 (3)
H151.05681.05500.29220.024*
C160.99417 (16)0.88928 (15)0.30619 (7)0.0213 (3)
H161.05040.87290.34120.026*
C170.90577 (16)0.80661 (14)0.28360 (7)0.0204 (3)
H170.89840.73400.30440.024*
C180.82782 (15)0.82896 (13)0.23073 (7)0.0168 (3)
H180.76840.77040.21610.020*
C190.74159 (14)0.84278 (12)0.09026 (6)0.0150 (3)
C200.82655 (15)0.82106 (13)0.03890 (6)0.0175 (3)
H200.88900.87910.02680.021*
C210.82289 (18)0.71751 (14)0.00481 (7)0.0220 (3)
H210.88230.70650.02970.026*
C220.73336 (19)0.63092 (15)0.02089 (8)0.0257 (3)
H220.73120.56010.00200.031*
C230.64692 (18)0.64933 (14)0.07098 (8)0.0262 (3)
H230.58420.59110.08250.031*
C240.65189 (16)0.75297 (13)0.10442 (7)0.0204 (3)
H240.59150.76340.13860.025*
C250.58849 (14)0.98927 (12)0.15445 (6)0.0140 (2)
C260.54660 (14)1.00130 (13)0.21695 (7)0.0174 (3)
H260.61060.99160.24970.021*
C270.41480 (16)1.02689 (14)0.23328 (7)0.0214 (3)
H270.39061.03410.27650.026*
C280.31913 (15)1.04184 (13)0.18703 (8)0.0210 (3)
H280.22931.06010.19790.025*
C290.35655 (15)1.02972 (13)0.12432 (8)0.0192 (3)
H290.29191.03950.09190.023*
C300.48800 (14)1.00335 (13)0.10890 (7)0.0163 (3)
H300.51090.99440.06570.020*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
O10.0211 (5)0.0158 (5)0.0209 (5)0.0032 (4)0.0016 (4)0.0033 (4)
C10.0166 (6)0.0184 (6)0.0144 (6)0.0012 (5)0.0015 (5)0.0026 (5)
N10.0149 (6)0.0174 (6)0.0173 (5)0.0023 (4)0.0008 (4)0.0024 (4)
C20.0216 (7)0.0301 (8)0.0182 (7)0.0033 (6)0.0042 (6)0.0008 (6)
C30.0261 (8)0.0157 (6)0.0211 (7)0.0004 (6)0.0048 (6)0.0046 (5)
C40.0313 (9)0.0184 (7)0.0311 (8)0.0058 (6)0.0045 (7)0.0023 (6)
C50.0200 (7)0.0230 (7)0.0285 (8)0.0090 (6)0.0034 (6)0.0038 (6)
C60.0218 (7)0.0180 (6)0.0232 (7)0.0001 (6)0.0033 (6)0.0022 (5)
B10.0127 (6)0.0143 (6)0.0132 (6)0.0006 (5)0.0005 (5)0.0001 (5)
C70.0159 (6)0.0154 (6)0.0118 (5)0.0007 (5)0.0007 (5)0.0001 (5)
C80.0172 (6)0.0178 (6)0.0207 (7)0.0007 (5)0.0051 (5)0.0010 (5)
C90.0297 (8)0.0148 (6)0.0227 (7)0.0014 (6)0.0102 (6)0.0031 (5)
C100.0315 (8)0.0199 (7)0.0153 (6)0.0096 (6)0.0039 (6)0.0031 (5)
C110.0213 (7)0.0254 (8)0.0168 (6)0.0063 (6)0.0026 (6)0.0008 (6)
C120.0173 (6)0.0190 (7)0.0162 (6)0.0009 (5)0.0018 (5)0.0019 (5)
C130.0121 (6)0.0157 (6)0.0133 (6)0.0019 (5)0.0019 (5)0.0010 (5)
C140.0167 (6)0.0172 (6)0.0140 (6)0.0009 (5)0.0011 (5)0.0003 (5)
C150.0172 (6)0.0278 (8)0.0144 (6)0.0019 (6)0.0006 (5)0.0012 (6)
C160.0188 (7)0.0313 (8)0.0139 (6)0.0060 (6)0.0011 (6)0.0017 (6)
C170.0229 (7)0.0205 (7)0.0177 (7)0.0063 (6)0.0027 (6)0.0049 (5)
C180.0160 (6)0.0162 (6)0.0182 (6)0.0009 (5)0.0014 (5)0.0010 (5)
C190.0147 (6)0.0162 (6)0.0141 (6)0.0033 (5)0.0017 (5)0.0002 (5)
C200.0175 (6)0.0201 (7)0.0148 (6)0.0048 (6)0.0009 (5)0.0004 (5)
C210.0255 (8)0.0247 (7)0.0158 (6)0.0098 (6)0.0014 (6)0.0045 (5)
C220.0323 (9)0.0201 (7)0.0248 (7)0.0053 (7)0.0060 (7)0.0075 (6)
C230.0287 (8)0.0189 (7)0.0310 (9)0.0037 (6)0.0012 (7)0.0045 (6)
C240.0200 (7)0.0187 (7)0.0225 (7)0.0004 (6)0.0026 (6)0.0038 (5)
C250.0136 (6)0.0121 (6)0.0164 (6)0.0001 (5)0.0010 (5)0.0013 (5)
C260.0165 (6)0.0193 (7)0.0164 (6)0.0009 (5)0.0001 (5)0.0032 (5)
C270.0202 (7)0.0238 (7)0.0201 (7)0.0013 (6)0.0057 (6)0.0057 (5)
C280.0141 (6)0.0192 (7)0.0296 (8)0.0021 (5)0.0042 (6)0.0035 (6)
C290.0151 (6)0.0170 (6)0.0253 (7)0.0029 (5)0.0039 (6)0.0019 (5)
C300.0162 (6)0.0171 (6)0.0156 (6)0.0012 (5)0.0002 (5)0.0010 (5)
Geometric parameters (Å, º) top
O1—C11.3086 (18)C12—H120.9500
O1—C31.4712 (17)C13—C141.400 (2)
C1—N11.2965 (19)C13—C181.4045 (19)
C1—C21.482 (2)C14—C151.392 (2)
N1—C61.464 (2)C14—H140.9500
N1—C51.4683 (19)C15—C161.384 (2)
C2—H2A0.9800C15—H150.9500
C2—H2B0.9800C16—C171.385 (2)
C2—H2C0.9800C16—H160.9500
C3—C41.492 (2)C17—C181.389 (2)
C3—H3A0.9900C17—H170.9500
C3—H3B0.9900C18—H180.9500
C4—H4A0.9800C19—C241.402 (2)
C4—H4B0.9800C19—C201.4028 (19)
C4—H4C0.9800C20—C211.396 (2)
C5—H5A0.9800C20—H200.9500
C5—H5B0.9800C21—C221.383 (3)
C5—H5C0.9800C21—H210.9500
C6—H6A0.9800C22—C231.385 (2)
C6—H6B0.9800C22—H220.9500
C6—H6C0.9800C23—C241.390 (2)
B1—C251.641 (2)C23—H230.9500
B1—C71.643 (2)C24—H240.9500
B1—C191.647 (2)C25—C261.3963 (19)
B1—C131.650 (2)C25—C301.4019 (19)
C7—C81.397 (2)C26—C271.392 (2)
C7—C121.408 (2)C26—H260.9500
C8—C91.394 (2)C27—C281.380 (2)
C8—H80.9500C27—H270.9500
C9—C101.381 (3)C28—C291.388 (2)
C9—H90.9500C28—H280.9500
C10—C111.383 (2)C29—C301.386 (2)
C10—H100.9500C29—H290.9500
C11—C121.388 (2)C30—H300.9500
C11—H110.9500
C1—O1—C3120.57 (12)C11—C12—C7122.80 (14)
N1—C1—O1115.87 (13)C11—C12—H12118.6
N1—C1—C2122.33 (14)C7—C12—H12118.6
O1—C1—C2121.80 (13)C14—C13—C18115.19 (13)
C1—N1—C6122.65 (13)C14—C13—B1122.17 (12)
C1—N1—C5122.11 (13)C18—C13—B1122.63 (12)
C6—N1—C5115.24 (12)C15—C14—C13122.79 (14)
C1—C2—H2A109.5C15—C14—H14118.6
C1—C2—H2B109.5C13—C14—H14118.6
H2A—C2—H2B109.5C16—C15—C14120.26 (15)
C1—C2—H2C109.5C16—C15—H15119.9
H2A—C2—H2C109.5C14—C15—H15119.9
H2B—C2—H2C109.5C15—C16—C17118.58 (14)
O1—C3—C4106.22 (13)C15—C16—H16120.7
O1—C3—H3A110.5C17—C16—H16120.7
C4—C3—H3A110.5C16—C17—C18120.59 (14)
O1—C3—H3B110.5C16—C17—H17119.7
C4—C3—H3B110.5C18—C17—H17119.7
H3A—C3—H3B108.7C17—C18—C13122.48 (14)
C3—C4—H4A109.5C17—C18—H18118.8
C3—C4—H4B109.5C13—C18—H18118.8
H4A—C4—H4B109.5C24—C19—C20114.88 (13)
C3—C4—H4C109.5C24—C19—B1119.72 (12)
H4A—C4—H4C109.5C20—C19—B1125.38 (13)
H4B—C4—H4C109.5C21—C20—C19122.59 (14)
N1—C5—H5A109.5C21—C20—H20118.7
N1—C5—H5B109.5C19—C20—H20118.7
H5A—C5—H5B109.5C22—C21—C20120.45 (14)
N1—C5—H5C109.5C22—C21—H21119.8
H5A—C5—H5C109.5C20—C21—H21119.8
H5B—C5—H5C109.5C21—C22—C23118.77 (15)
N1—C6—H6A109.5C21—C22—H22120.6
N1—C6—H6B109.5C23—C22—H22120.6
H6A—C6—H6B109.5C22—C23—C24120.03 (15)
N1—C6—H6C109.5C22—C23—H23120.0
H6A—C6—H6C109.5C24—C23—H23120.0
H6B—C6—H6C109.5C23—C24—C19123.28 (14)
C25—B1—C7110.73 (11)C23—C24—H24118.4
C25—B1—C19107.60 (11)C19—C24—H24118.4
C7—B1—C19111.72 (11)C26—C25—C30115.32 (12)
C25—B1—C13109.61 (11)C26—C25—B1123.41 (12)
C7—B1—C13108.36 (11)C30—C25—B1121.28 (12)
C19—B1—C13108.78 (11)C27—C26—C25122.69 (14)
C8—C7—C12114.83 (13)C27—C26—H26118.7
C8—C7—B1124.21 (13)C25—C26—H26118.7
C12—C7—B1120.85 (12)C28—C27—C26120.27 (14)
C9—C8—C7122.82 (14)C28—C27—H27119.9
C9—C8—H8118.6C26—C27—H27119.9
C7—C8—H8118.6C27—C28—C29118.79 (14)
C10—C9—C8120.52 (15)C27—C28—H28120.6
C10—C9—H9119.7C29—C28—H28120.6
C8—C9—H9119.7C30—C29—C28120.19 (14)
C9—C10—C11118.46 (14)C30—C29—H29119.9
C9—C10—H10120.8C28—C29—H29119.9
C11—C10—H10120.8C29—C30—C25122.72 (13)
C10—C11—C12120.53 (15)C29—C30—H30118.6
C10—C11—H11119.7C25—C30—H30118.6
C12—C11—H11119.7
C3—O1—C1—N1176.76 (12)C16—C17—C18—C130.4 (2)
C3—O1—C1—C24.0 (2)C14—C13—C18—C172.6 (2)
O1—C1—N1—C61.3 (2)B1—C13—C18—C17178.54 (13)
C2—C1—N1—C6178.02 (14)C25—B1—C19—C2437.11 (17)
O1—C1—N1—C5177.86 (13)C7—B1—C19—C24158.86 (13)
C2—C1—N1—C52.9 (2)C13—B1—C19—C2481.56 (16)
C1—O1—C3—C4171.52 (13)C25—B1—C19—C20144.72 (13)
C25—B1—C7—C82.65 (18)C7—B1—C19—C2022.97 (19)
C19—B1—C7—C8117.28 (14)C13—B1—C19—C2096.61 (15)
C13—B1—C7—C8122.89 (14)C24—C19—C20—C210.5 (2)
C25—B1—C7—C12173.30 (12)B1—C19—C20—C21177.71 (13)
C19—B1—C7—C1266.78 (16)C19—C20—C21—C220.0 (2)
C13—B1—C7—C1253.05 (16)C20—C21—C22—C230.5 (2)
C12—C7—C8—C91.0 (2)C21—C22—C23—C240.5 (3)
B1—C7—C8—C9177.16 (13)C22—C23—C24—C190.0 (3)
C7—C8—C9—C100.4 (2)C20—C19—C24—C230.5 (2)
C8—C9—C10—C111.5 (2)B1—C19—C24—C23177.81 (14)
C9—C10—C11—C121.1 (2)C7—B1—C25—C26113.31 (15)
C10—C11—C12—C70.4 (2)C19—B1—C25—C26124.32 (14)
C8—C7—C12—C111.4 (2)C13—B1—C25—C266.19 (19)
B1—C7—C12—C11177.70 (13)C7—B1—C25—C3066.74 (16)
C25—B1—C13—C14101.29 (15)C19—B1—C25—C3055.62 (16)
C7—B1—C13—C1419.65 (17)C13—B1—C25—C30173.76 (12)
C19—B1—C13—C14141.31 (13)C30—C25—C26—C270.8 (2)
C25—B1—C13—C1877.45 (16)B1—C25—C26—C27179.30 (14)
C7—B1—C13—C18161.60 (12)C25—C26—C27—C280.2 (2)
C19—B1—C13—C1839.95 (17)C26—C27—C28—C290.7 (2)
C18—C13—C14—C153.5 (2)C27—C28—C29—C300.2 (2)
B1—C13—C14—C15177.70 (13)C28—C29—C30—C250.8 (2)
C13—C14—C15—C161.3 (2)C26—C25—C30—C291.3 (2)
C14—C15—C16—C172.0 (2)B1—C25—C30—C29178.78 (13)
C15—C16—C17—C182.8 (2)
Hydrogen-bond geometry (Å, º) top
Cg1, Cg2 and Cg3 are the centroids of the C7–C12, C13–C18 and C25–C30 rings, respectively.
D—H···AD—HH···AD···AD—H···A
C3—H3A···Cg10.992.673.572 (2)151
C5—H5B···Cg20.982.703.450 (2)134
C6—H6B···Cg30.982.723.692 (2)175
Hydrogen-bond geometry (Å, º) top
Cg1, Cg2 and Cg3 are the centroids of the C7–C12, C13–C18 and C25–C30 rings, respectively.
D—H···AD—HH···AD···AD—H···A
C3—H3A···Cg10.992.673.572 (2)151
C5—H5B···Cg20.982.703.450 (2)134
C6—H6B···Cg30.982.723.692 (2)175
 

Acknowledgements

The authors thank Dr W. Frey (Institut für Organische Chemie, Universität Stuttgart) for measuring the diffraction data.

References

First citationBehrens, U., Hoffmann, F. & Olbrich, F. (2012). Organometallics, 31, 905–913.  Web of Science CSD CrossRef CAS Google Scholar
First citationBlessing, R. H. (1995). Acta Cryst. A51, 33–38.  CrossRef CAS Web of Science IUCr Journals Google Scholar
First citationBrandenburg, K. & Putz, H. (2005). DIAMOND. Crystal Impact GbR, Bonn, Germany.  Google Scholar
First citationBruker (2008). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationKantlehner, W., Gutbrod, H.-D. & Funke, B. (1980). Liebigs Ann. Chem. pp. 246–252.  CrossRef Google Scholar
First citationParsons, S., Flack, H. D. & Wagner, T. (2013). Acta Cryst. B69, 249–259.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSheldrick, G. M. (2015). Acta Cryst. C71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar
First citationTiritiris, I., Saur, S. & Kantlehner, W. (2014a). Acta Cryst. E70, o333.  CSD CrossRef IUCr Journals Google Scholar
First citationTiritiris, I., Saur, S. & Kantlehner, W. (2014b). Acta Cryst. E70, o459.  CSD CrossRef IUCr Journals Google Scholar
First citationTiritiris, I., Saur, S. & Kantlehner, W. (2015). Acta Cryst. E71, o916.  CSD CrossRef IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds