organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Crystal structure of 4,8-di-tert-butyl-6,6-di­chloro-13-ethyl-2,10-di­methyl-13,14-di­hydro-12H-dibenzo[d,i][1,3,7,2]dioxaza­silecine toluene 0.25-solvate

aN.D. Zelinsky Institute of Organic Chemistry, Leninsky prospekt 47, Moscow 119991, Russian Federation, bDepartment of Chemistry, M.V. Lomonosov Moscow State, University, Moscow, Russian Federation, and cInstitute of General and Inorganic Chemistry, Russian Academy of Sciences, Moscow, Russian Federation
*Correspondence e-mail: churakov@igic.ras.ru

Edited by P. Bombicz, Hungarian Academy of Sciences, Hungary (Received 11 November 2015; accepted 11 December 2015; online 16 December 2015)

The coordination polyhedron at the silicon atom in the title compound, C26H37Cl2NO2Si·0.25C7H8, is typical for penta­coordinated silicon derivatives and represents a slightly distorted trigonal bipyramid with an N atom and a Cl atom in the apical positions and the two O atoms and the other Cl atom occupying the equatorial sites. There are two independent mol­ecules in the asymmetric unit. The N–Si–Cl fragment in each is close to linear [178.24 (5) and 178.71 (5)°], in good agreement with 4e–3c theory, as is the elongation of the apical bond lengths [Si—Cl = 2.1663 (7) and 2.1797 (7) Å] in comparison with the equatorial bonds [Si—Cl = 2.0784 (7) and 2.0748 (7) Å]. Orthogonal least-squares fitting of the two independent mol­ecules resulted in r.m.s. deviation of 0.017 Å. The conformations of the two mol­ecules are almost the same, with corresponding torsion angles differing by less than 5.5°. The toluene solvent mol­ecule is disordered about an inversion centre.

1. Related literature

For general background to the chemistry affording the 2,2-[(alkyl­imino)­dimethanedi­yl]diphenols as ligands, see: Wichmann et al. (2012[Wichmann, O., Sillanpää, R. & Lehtonen, A. (2012). Coord. Chem. Rev. 256, 371-392.]). For hypervalent silicon compounds, see: Holmes (1996[Holmes, R. R. (1996). Chem. Rev. 96, 927-950.]); Rendler & Oestreich (2005[Rendler, S. & Oestreich, M. (2005). Synthesis, pp. 1727-1747.]); Selina et al. (2006[Selina, A. A., Karlov, S. S. & Zaitseva, G. S. (2006). Chem. Heterocycl. Compd, 42, 1518-1556.]). The title compound was obtained as part of our study of the ability of different types of tridentate ligands to stabilize `heavier carbenes', see: Huang et al. (2012[Huang, M., Kireenko, M. M., Zaitsev, K. V., Oprunenko, Y. F., Churakov, A. V., Howard, J. A. K., Lermontova, E. K., Sorokin, D., Linder, T., Sundermeyer, J., Karlov, S. S. & Zaitseva, G. S. (2012). Eur. J. Inorg. Chem. pp. 3712-3724.], 2013[Huang, M., Kireenko, M. M., Lermontova, E. K., Churakov, A. V., Oprunenko, Y. F., Zaitsev, K. V., Sorokin, D., Harms, K., Sundermeyer, J., Zaitseva, G. S. & Karlov, S. S. (2013). Z. Anorg. Allg. Chem. 639, 502-511.]); Kireenko et al. (2013[Kireenko, M. M., Zaitsev, K. V., Oprunenko, Y. F., Churakov, A. V., Tafeenko, V. A., Karlov, S. S. & Zaitseva, G. S. (2013). Dalton Trans. 42, 7901-7912.]).

[Scheme 1]

2. Experimental

2.1. Crystal data

  • 2C26H37Cl2NO2Si·0.5C7H8

  • Mr = 1035.18

  • Triclinic, [P \overline 1]

  • a = 13.9017 (9) Å

  • b = 13.9542 (9) Å

  • c = 16.9827 (11) Å

  • α = 69.649 (1)°

  • β = 65.978 (1)°

  • γ = 83.585 (1)°

  • V = 2819.6 (3) Å3

  • Z = 2

  • Mo Kα radiation

  • μ = 0.30 mm−1

  • T = 150 K

  • 0.35 × 0.35 × 0.20 mm

2.2. Data collection

  • Bruker SMART APEXII diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 2008[Bruker (2008). APEX2, SADABS and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]) Tmin = 0.903, Tmax = 0.943

  • 27366 measured reflections

  • 12314 independent reflections

  • 9442 reflections with I > 2σ(I)

  • Rint = 0.034

2.3. Refinement

  • R[F2 > 2σ(F2)] = 0.043

  • wR(F2) = 0.109

  • S = 1.04

  • 12314 reflections

  • 659 parameters

  • 15 restraints

  • H-atom parameters constrained

  • Δρmax = 0.33 e Å−3

  • Δρmin = −0.27 e Å−3

Data collection: APEX2 (Bruker, 2008[Bruker (2008). APEX2, SADABS and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2008[Bruker (2008). APEX2, SADABS and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXTL; molecular graphics: SHELXTL; software used to prepare material for publication: SHELXTL.

Supporting information


Comment top

The low valent derivatives of group 14 elements (Si, Ge, Sn) attract much attention because of interest in "heavier" carbon analogs. In general, silicon derivatives are highly reactive species, while germanium and tin analogs are more stable due to the known "inert pair" effect, but still demand for the additional stabilization. The stabilization of highly reactive "heavy carbene" centers may be accomplished using two approaches. The kinetic stabilization may be caused by the introduction of voluminous groups to the central atom; the thermodynamic stabilization may be achieved by donation of electron density from substituents to a vacant orbital of the central atom. As a part of our program to study the ability of the different types of tridentate ligands for stabilization of "heavier carbenes" (Kireenko et al., 2013, Huang et al., 2013, Huang et al., 2012) we obtained and studied the structure of title compound, EtN{CH2[(5-Me)(3-tBu)C6H2(-2-O)-}2SiCl2·0.25C7H8, which may be regarded as a promising compound for further reduction to prepare a silylene.

The structure of the title compound is shown on Fig. 1. Asymmetric unit contains two independent molecules with very close geometrical parameters. The orthogonal least-squares fitting of the two independent molecules resulted in root-mean-square deviation 0.017 Å. The conformations of these two molecules are almost the same since the corresponding torsion angles differ by less than 5.5 °. The coordination polyhedron at the silicon atom is typical for pentacoordinated silicon derivatives and represents a slightly distorted trigonal bipyramide with N(1) and Cl(11) atoms in apical positions and oxygen atoms O(11), O(12) and chlorine Cl(12) occupying equatorial sites. The N(1)-Si(1)-Cl(11) fragment is close to linearity (178.24 (5)°) that is in good agreement with 4e-3c theory as well as the elongation of apical bond length Si(1)-Cl(11) 2.1663 (7) Å in comparison with that for equatorial bond (Si(1)-Cl(12) 2.0784 (7) Å). The N(1)-Si(1) distance (2.0452 (15) Å) lies within the standard range for related silicon species with electronegative substituents attached to the silicon atom (Selina et al., 2006). The nitrogen atom has an approximately tetrahedral environment with bond angles ranging from 107.07 (10)-113.53 (11)° and is shifted towards the Si atom. In crystal, solvate toluene molecule lies on inversion centre. No classical hydrogen bonds are present between the host molecules or between host and guest molecules, while only weak intermolecular van der Waals interactions contribute to the stability of the crystal.

Related literature top

For general background to the chemistry affording the 2,2-[(alkylimino)dimethanediyl]diphenols as ligands, see: Wichmann et al. (2012). For hypervalent silicon compounds, see: Holmes (1996); Rendler & Oestreich (2005); Selina et al. (2006). The title compound was obtained as part of our study of the ability of different types of tridentate ligands to stabilize `heavier carbenes', see: Huang et al. (2012, 2013); Kireenko et al. (2013).

Experimental top

The title compound was prepared with high yield from reaction of corresponding free ligand with tetrachlorosilane in presence of triethylamine as a base (two equivalents) in toluene solution at -20° C.

NMR spectra of title compound: 1H NMR (400 MHz, CDCl3, ppm): δ = 0.98 (t, J=7.1 Hz, 3H, CH2CH3), 1.44 (s, 18H, C(CH3)3), 2.26 (s, 6H, CH3-Ar), 2.97 (br s, 2H, CH2 in Et), 3.98 (br s, 4H, NCH2Ar), 6.67 (br s, 2H, Ar), 7.10 (d, J=1.8 Hz, 2H, Ar).

13C NMR (100 MHz, CDCl3, ppm): δ = 6.02 (CH2CH3), 20.84 (CH3-Ar), 29.36(C(CH3)3), 34.55(C(CH3)3), 47.99, 53.97 (CH2CH3 and NCH2Ar), 119.38, 126.24, 128.06, 131.11, 139.82, 149.12 (Ar).

29Si NMR (80 MHz, CDCl3, ppm): δ = -123.94 (s).

Anal.Calc. for C26H37Cl2NO2Si (494.5690): C, 63.14; H, 7.54; N, 2.83. Found: C, 63.47; H, 7.86; N, 2.64 %.

The crystals suitable for X-Ray analysis were grown from toluene/hexane solution.

Refinement top

All non-hydrogen atoms were refined with anisotropic thermal parameters. Aromatic carbon atoms of solvent toluene molecule were refined with slightly restrained C-C distances (SADI). All hydrogen atoms were placed in calculated positions and refined using a riding model, with C—H = 0.95–0.99 Å, and with Uiso(H) = 1.2 Ueq(C) or 1.5 Ueq(C) for methyl H atoms. A rotating model was applied to the methyl groups. Six outliers were omitted in the last cycles of refinement.

Structure description top

The low valent derivatives of group 14 elements (Si, Ge, Sn) attract much attention because of interest in "heavier" carbon analogs. In general, silicon derivatives are highly reactive species, while germanium and tin analogs are more stable due to the known "inert pair" effect, but still demand for the additional stabilization. The stabilization of highly reactive "heavy carbene" centers may be accomplished using two approaches. The kinetic stabilization may be caused by the introduction of voluminous groups to the central atom; the thermodynamic stabilization may be achieved by donation of electron density from substituents to a vacant orbital of the central atom. As a part of our program to study the ability of the different types of tridentate ligands for stabilization of "heavier carbenes" (Kireenko et al., 2013, Huang et al., 2013, Huang et al., 2012) we obtained and studied the structure of title compound, EtN{CH2[(5-Me)(3-tBu)C6H2(-2-O)-}2SiCl2·0.25C7H8, which may be regarded as a promising compound for further reduction to prepare a silylene.

The structure of the title compound is shown on Fig. 1. Asymmetric unit contains two independent molecules with very close geometrical parameters. The orthogonal least-squares fitting of the two independent molecules resulted in root-mean-square deviation 0.017 Å. The conformations of these two molecules are almost the same since the corresponding torsion angles differ by less than 5.5 °. The coordination polyhedron at the silicon atom is typical for pentacoordinated silicon derivatives and represents a slightly distorted trigonal bipyramide with N(1) and Cl(11) atoms in apical positions and oxygen atoms O(11), O(12) and chlorine Cl(12) occupying equatorial sites. The N(1)-Si(1)-Cl(11) fragment is close to linearity (178.24 (5)°) that is in good agreement with 4e-3c theory as well as the elongation of apical bond length Si(1)-Cl(11) 2.1663 (7) Å in comparison with that for equatorial bond (Si(1)-Cl(12) 2.0784 (7) Å). The N(1)-Si(1) distance (2.0452 (15) Å) lies within the standard range for related silicon species with electronegative substituents attached to the silicon atom (Selina et al., 2006). The nitrogen atom has an approximately tetrahedral environment with bond angles ranging from 107.07 (10)-113.53 (11)° and is shifted towards the Si atom. In crystal, solvate toluene molecule lies on inversion centre. No classical hydrogen bonds are present between the host molecules or between host and guest molecules, while only weak intermolecular van der Waals interactions contribute to the stability of the crystal.

For general background to the chemistry affording the 2,2-[(alkylimino)dimethanediyl]diphenols as ligands, see: Wichmann et al. (2012). For hypervalent silicon compounds, see: Holmes (1996); Rendler & Oestreich (2005); Selina et al. (2006). The title compound was obtained as part of our study of the ability of different types of tridentate ligands to stabilize `heavier carbenes', see: Huang et al. (2012, 2013); Kireenko et al. (2013).

Computing details top

Data collection: APEX2 (Bruker, 2008); cell refinement: SAINT (Bruker, 2008); data reduction: SAINT (Bruker, 2008); program(s) used to solve structure: SHELXTL (Sheldrick, 2008); program(s) used to refine structure: SHELXTL (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. The molecular structure of one of the independent molecules of the title compound, with displacement ellipsoids shown at the 50% probability level. The toluene solvent molecule and hydrogen atoms are omitted for clarity.
4,8-Di-tert-butyl-6,6-dichloro-13-ethyl-2,10-dimethyl-13,14-dihydro-12H-dibenzo[d,i][1,3,7,2]dioxazasilecine toluene monosolvate top
Crystal data top
2C26H37Cl2NO2Si·0.5C7H8Z = 2
Mr = 1035.18F(000) = 1106
Triclinic, P1Dx = 1.219 Mg m3
Hall symbol: -P 1Mo Kα radiation, λ = 0.71073 Å
a = 13.9017 (9) ÅCell parameters from 5818 reflections
b = 13.9542 (9) Åθ = 2.2–27.9°
c = 16.9827 (11) ŵ = 0.30 mm1
α = 69.649 (1)°T = 150 K
β = 65.978 (1)°Block, colourless
γ = 83.585 (1)°0.35 × 0.35 × 0.20 mm
V = 2819.6 (3) Å3
Data collection top
Bruker SMART APEXII
diffractometer
12314 independent reflections
Radiation source: fine-focus sealed tube9442 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.034
ω scansθmax = 27.0°, θmin = 1.7°
Absorption correction: multi-scan
(SADABS; Bruker, 2008)
h = 1717
Tmin = 0.903, Tmax = 0.943k = 1717
27366 measured reflectionsl = 2121
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.043Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.109H-atom parameters constrained
S = 1.04 w = 1/[σ2(Fo2) + (0.049P)2 + 0.4643P]
where P = (Fo2 + 2Fc2)/3
12314 reflections(Δ/σ)max = 0.001
659 parametersΔρmax = 0.33 e Å3
15 restraintsΔρmin = 0.27 e Å3
Crystal data top
2C26H37Cl2NO2Si·0.5C7H8γ = 83.585 (1)°
Mr = 1035.18V = 2819.6 (3) Å3
Triclinic, P1Z = 2
a = 13.9017 (9) ÅMo Kα radiation
b = 13.9542 (9) ŵ = 0.30 mm1
c = 16.9827 (11) ÅT = 150 K
α = 69.649 (1)°0.35 × 0.35 × 0.20 mm
β = 65.978 (1)°
Data collection top
Bruker SMART APEXII
diffractometer
12314 independent reflections
Absorption correction: multi-scan
(SADABS; Bruker, 2008)
9442 reflections with I > 2σ(I)
Tmin = 0.903, Tmax = 0.943Rint = 0.034
27366 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.04315 restraints
wR(F2) = 0.109H-atom parameters constrained
S = 1.04Δρmax = 0.33 e Å3
12314 reflectionsΔρmin = 0.27 e Å3
659 parameters
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > 2sigma(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/UeqOcc. (<1)
Si10.19585 (4)0.68718 (4)0.22126 (3)0.02161 (12)
Cl110.05925 (4)0.58326 (4)0.29544 (3)0.02928 (12)
Cl120.13951 (4)0.76756 (4)0.12122 (4)0.03714 (13)
O110.16095 (10)0.72681 (9)0.30901 (8)0.0253 (3)
O120.27134 (9)0.58945 (9)0.21036 (8)0.0242 (3)
N10.32674 (11)0.78269 (11)0.15403 (10)0.0206 (3)
C10.37796 (14)0.79998 (14)0.05230 (12)0.0246 (4)
H1A0.33390.84640.02290.029*
H1B0.37830.73370.04300.029*
C20.49005 (15)0.84486 (15)0.00403 (13)0.0279 (4)
H2A0.51220.86370.06220.042*
H2B0.53740.79400.02390.042*
H2C0.49280.90580.01930.042*
C110.19693 (14)0.79602 (14)0.33347 (13)0.0231 (4)
C120.26165 (14)0.87820 (13)0.26483 (12)0.0233 (4)
C130.29633 (14)0.94926 (14)0.28856 (13)0.0274 (4)
H130.34071.00550.24190.033*
C140.26703 (15)0.93927 (15)0.37945 (14)0.0293 (4)
C150.20453 (14)0.85404 (14)0.44615 (13)0.0265 (4)
H150.18600.84600.50850.032*
C160.16763 (14)0.77981 (14)0.42635 (12)0.0227 (4)
C170.29669 (15)0.88514 (13)0.16676 (13)0.0260 (4)
H17A0.35790.93380.12840.031*
H17B0.23900.91200.14600.031*
C180.30313 (19)1.01687 (18)0.40609 (16)0.0451 (6)
H18A0.30611.08520.36180.068*
H18B0.37331.00010.40660.068*
H18C0.25341.01570.46720.068*
C190.09926 (14)0.68634 (14)0.50205 (12)0.0232 (4)
C210.37690 (14)0.56835 (13)0.18610 (12)0.0214 (4)
C220.44557 (14)0.63868 (13)0.17896 (11)0.0201 (4)
C230.55179 (14)0.61776 (14)0.15658 (12)0.0227 (4)
H230.59880.66620.15150.027*
C240.58972 (14)0.52621 (14)0.14157 (12)0.0239 (4)
C250.51845 (15)0.45813 (14)0.14912 (12)0.0255 (4)
H250.54420.39570.13880.031*
C260.41128 (14)0.47537 (13)0.17086 (12)0.0224 (4)
C270.40367 (14)0.73555 (13)0.19768 (12)0.0211 (4)
H27A0.46300.78490.17380.025*
H27B0.36820.72090.26460.025*
C280.70451 (15)0.50268 (16)0.11784 (15)0.0330 (5)
H28A0.74790.56190.06920.050*
H28B0.71990.44340.09680.050*
H28C0.72040.48740.17210.050*
C290.33642 (15)0.39742 (15)0.17690 (13)0.0279 (4)
C510.00963 (14)0.68871 (15)0.49817 (13)0.0280 (4)
H51A0.00120.68690.43850.042*
H51B0.04430.75150.50690.042*
H51C0.05280.62920.54660.042*
C520.15263 (16)0.58609 (15)0.49100 (14)0.0311 (4)
H52A0.16120.58240.43190.047*
H52B0.10870.52760.54040.047*
H52C0.22190.58450.49370.047*
C530.08142 (17)0.68508 (16)0.59760 (13)0.0334 (5)
H53A0.03940.62370.64360.050*
H53B0.04380.74610.60820.050*
H53C0.14960.68470.60200.050*
C540.28570 (18)0.44778 (18)0.10799 (15)0.0395 (5)
H54A0.34100.47570.04660.059*
H54B0.24150.50320.12480.059*
H54C0.24220.39670.10850.059*
C550.25061 (18)0.35823 (16)0.27391 (14)0.0403 (5)
H55A0.28340.32300.31720.060*
H55B0.20210.31060.27610.060*
H55C0.21160.41610.29040.060*
C560.39518 (18)0.30526 (17)0.15303 (19)0.0474 (6)
H56A0.44930.32850.09060.071*
H56B0.34530.25750.15730.071*
H56C0.42870.27080.19590.071*
Si20.66618 (4)0.86357 (4)0.23586 (4)0.02274 (12)
Cl210.60060 (4)0.96967 (4)0.14308 (3)0.03124 (12)
Cl220.51693 (4)0.80356 (4)0.32911 (3)0.03298 (12)
O210.73042 (10)0.81090 (9)0.15725 (9)0.0271 (3)
O220.71224 (10)0.96067 (9)0.24424 (9)0.0277 (3)
N20.73095 (12)0.76561 (11)0.32095 (10)0.0222 (3)
C30.67413 (15)0.75990 (15)0.41947 (12)0.0272 (4)
H3A0.60580.72260.44490.033*
H3B0.65870.83030.42110.033*
C40.73222 (17)0.70847 (17)0.48170 (14)0.0365 (5)
H4A0.68510.70000.54520.055*
H4B0.79400.75100.46390.055*
H4C0.75490.64130.47600.055*
C310.79903 (14)0.73245 (14)0.14741 (13)0.0246 (4)
C320.79811 (15)0.65335 (14)0.22523 (13)0.0242 (4)
C330.86638 (15)0.57413 (15)0.21636 (14)0.0288 (4)
H330.86570.52030.26950.035*
C340.93526 (16)0.57225 (16)0.13141 (15)0.0323 (5)
C350.93625 (15)0.65319 (16)0.05522 (15)0.0321 (5)
H350.98550.65280.00320.039*
C360.86891 (15)0.73541 (15)0.05932 (13)0.0277 (4)
C370.72758 (15)0.65970 (14)0.31734 (13)0.0258 (4)
H37A0.74980.61010.36440.031*
H37B0.65430.64090.33150.031*
C381.0096 (2)0.4855 (2)0.12239 (18)0.0517 (7)
H38A1.04190.47090.16680.078*
H38B1.06470.50480.06040.078*
H38C0.97040.42440.13410.078*
C390.87329 (16)0.82352 (16)0.02677 (14)0.0358 (5)
C410.78091 (14)0.97685 (14)0.27893 (12)0.0235 (4)
C420.85004 (14)0.90168 (14)0.29709 (12)0.0228 (4)
C430.92354 (14)0.91930 (14)0.32735 (12)0.0241 (4)
H430.97170.86800.33890.029*
C440.92693 (15)1.01084 (15)0.34079 (12)0.0250 (4)
C450.85391 (14)1.08397 (14)0.32416 (12)0.0260 (4)
H450.85501.14630.33470.031*
C460.77966 (14)1.07051 (14)0.29293 (13)0.0250 (4)
C470.84438 (14)0.80205 (14)0.28365 (13)0.0239 (4)
H47A0.88300.75010.31530.029*
H47B0.87840.81090.21770.029*
C481.00732 (17)1.03121 (16)0.37228 (15)0.0351 (5)
H48A1.05170.97190.38000.053*
H48B0.97101.04340.43080.053*
H48C1.05141.09160.32660.053*
C490.70090 (17)1.15270 (16)0.27494 (16)0.0369 (5)
C610.76516 (17)0.83455 (17)0.03338 (14)0.0369 (5)
H61A0.71350.85430.01780.055*
H61B0.74250.76910.03090.055*
H61C0.77070.88720.09120.055*
C620.9068 (2)0.92360 (18)0.02516 (18)0.0550 (7)
H62A0.85440.93990.02760.083*
H62B0.91200.97900.08150.083*
H62C0.97550.91580.02060.083*
C630.9513 (2)0.8040 (2)0.11370 (16)0.0634 (8)
H63A1.02220.79840.11380.095*
H63B0.95090.86090.16740.095*
H63C0.93070.74020.11570.095*
C640.7148 (2)1.24614 (18)0.2974 (2)0.0546 (7)
H64A0.78701.27440.26060.082*
H64B0.70131.22570.36250.082*
H64C0.66511.29810.28360.082*
C650.7177 (2)1.18947 (17)0.17336 (18)0.0509 (7)
H65A0.78861.22080.13540.076*
H65B0.66521.24000.16340.076*
H65C0.71011.13100.15670.076*
C660.58778 (18)1.1097 (2)0.3360 (2)0.0555 (7)
H66A0.57941.08300.40010.083*
H66B0.57371.05450.31860.083*
H66C0.53801.16420.32840.083*
C710.4903 (3)0.5234 (3)0.5414 (3)0.0369 (10)0.50
C720.438 (2)0.562 (2)0.4837 (16)0.040 (4)0.50
H720.38950.61420.49230.048*0.50
C730.4569 (4)0.5248 (4)0.4135 (4)0.0494 (13)0.50
H730.41980.55060.37460.059*0.50
C740.5291 (11)0.4508 (12)0.4005 (9)0.051 (3)0.50
H740.54140.42460.35270.061*0.50
C750.5841 (4)0.4137 (4)0.4556 (4)0.0457 (12)0.50
H750.63520.36330.44540.055*0.50
C760.564 (2)0.4509 (19)0.5261 (16)0.038 (3)0.50
H760.60170.42580.56450.045*0.50
C770.4664 (14)0.5609 (13)0.6206 (11)0.054 (3)0.50
H77A0.47180.63580.59840.081*0.50
H77B0.51700.53330.64890.081*0.50
H77C0.39480.53800.66590.081*0.50
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Si10.0199 (3)0.0228 (3)0.0223 (3)0.0003 (2)0.0087 (2)0.0071 (2)
Cl110.0228 (2)0.0321 (3)0.0331 (3)0.00531 (19)0.0087 (2)0.0119 (2)
Cl120.0303 (3)0.0441 (3)0.0354 (3)0.0001 (2)0.0197 (2)0.0029 (2)
O110.0252 (7)0.0234 (7)0.0240 (7)0.0061 (5)0.0042 (5)0.0085 (5)
O120.0206 (6)0.0223 (7)0.0300 (7)0.0006 (5)0.0086 (6)0.0104 (6)
N10.0214 (8)0.0189 (8)0.0196 (8)0.0023 (6)0.0073 (6)0.0055 (6)
C10.0272 (10)0.0248 (10)0.0183 (9)0.0016 (8)0.0081 (8)0.0045 (8)
C20.0277 (10)0.0251 (10)0.0238 (10)0.0012 (8)0.0065 (8)0.0044 (8)
C110.0202 (9)0.0210 (9)0.0303 (10)0.0028 (7)0.0105 (8)0.0111 (8)
C120.0196 (9)0.0207 (9)0.0265 (10)0.0037 (7)0.0070 (8)0.0077 (8)
C130.0224 (9)0.0202 (9)0.0333 (11)0.0002 (7)0.0055 (8)0.0081 (8)
C140.0241 (10)0.0262 (10)0.0370 (11)0.0004 (8)0.0081 (9)0.0144 (9)
C150.0240 (10)0.0288 (10)0.0281 (10)0.0013 (8)0.0092 (8)0.0124 (8)
C160.0184 (9)0.0222 (9)0.0260 (10)0.0028 (7)0.0073 (8)0.0086 (8)
C170.0273 (10)0.0169 (9)0.0285 (10)0.0021 (7)0.0083 (8)0.0049 (8)
C180.0478 (14)0.0434 (13)0.0445 (13)0.0174 (11)0.0081 (11)0.0216 (11)
C190.0222 (9)0.0220 (9)0.0237 (10)0.0005 (7)0.0089 (8)0.0058 (8)
C210.0207 (9)0.0227 (9)0.0195 (9)0.0008 (7)0.0083 (7)0.0053 (7)
C220.0245 (9)0.0192 (9)0.0172 (9)0.0003 (7)0.0101 (7)0.0042 (7)
C230.0255 (9)0.0222 (9)0.0219 (9)0.0014 (7)0.0127 (8)0.0045 (7)
C240.0261 (10)0.0239 (10)0.0247 (10)0.0029 (8)0.0140 (8)0.0074 (8)
C250.0303 (10)0.0223 (9)0.0278 (10)0.0053 (8)0.0156 (8)0.0093 (8)
C260.0275 (10)0.0210 (9)0.0200 (9)0.0000 (7)0.0115 (8)0.0057 (7)
C270.0229 (9)0.0200 (9)0.0211 (9)0.0001 (7)0.0106 (8)0.0050 (7)
C280.0288 (11)0.0304 (11)0.0469 (13)0.0074 (9)0.0204 (10)0.0166 (10)
C290.0290 (10)0.0263 (10)0.0336 (11)0.0012 (8)0.0123 (9)0.0155 (9)
C510.0218 (9)0.0303 (10)0.0266 (10)0.0002 (8)0.0070 (8)0.0062 (8)
C520.0290 (11)0.0256 (10)0.0352 (11)0.0019 (8)0.0118 (9)0.0075 (9)
C530.0397 (12)0.0321 (11)0.0271 (10)0.0046 (9)0.0139 (9)0.0057 (9)
C540.0392 (12)0.0493 (14)0.0411 (13)0.0034 (10)0.0201 (10)0.0213 (11)
C550.0443 (13)0.0313 (12)0.0376 (12)0.0132 (10)0.0078 (10)0.0082 (10)
C560.0367 (13)0.0394 (13)0.0801 (18)0.0025 (10)0.0223 (13)0.0374 (13)
Si20.0236 (3)0.0207 (3)0.0264 (3)0.0031 (2)0.0142 (2)0.0062 (2)
Cl210.0355 (3)0.0273 (2)0.0362 (3)0.0078 (2)0.0241 (2)0.0069 (2)
Cl220.0254 (2)0.0379 (3)0.0346 (3)0.0002 (2)0.0151 (2)0.0064 (2)
O210.0324 (7)0.0235 (7)0.0259 (7)0.0078 (6)0.0154 (6)0.0064 (6)
O220.0307 (7)0.0213 (7)0.0401 (8)0.0049 (6)0.0249 (6)0.0087 (6)
N20.0232 (8)0.0192 (8)0.0252 (8)0.0015 (6)0.0128 (7)0.0049 (6)
C30.0280 (10)0.0287 (10)0.0242 (10)0.0009 (8)0.0117 (8)0.0065 (8)
C40.0407 (12)0.0401 (12)0.0295 (11)0.0002 (10)0.0198 (10)0.0047 (9)
C310.0244 (10)0.0206 (9)0.0340 (11)0.0018 (7)0.0158 (8)0.0102 (8)
C320.0258 (10)0.0209 (9)0.0301 (10)0.0011 (7)0.0158 (8)0.0070 (8)
C330.0332 (11)0.0248 (10)0.0408 (12)0.0041 (8)0.0257 (10)0.0128 (9)
C340.0294 (11)0.0348 (11)0.0472 (13)0.0099 (9)0.0246 (10)0.0219 (10)
C350.0241 (10)0.0414 (12)0.0374 (12)0.0035 (9)0.0129 (9)0.0205 (10)
C360.0227 (10)0.0293 (10)0.0326 (11)0.0012 (8)0.0121 (8)0.0102 (9)
C370.0306 (10)0.0183 (9)0.0288 (10)0.0005 (8)0.0146 (8)0.0047 (8)
C380.0521 (15)0.0574 (16)0.0641 (17)0.0314 (13)0.0354 (13)0.0357 (14)
C390.0305 (11)0.0362 (12)0.0301 (11)0.0016 (9)0.0053 (9)0.0058 (9)
C410.0233 (9)0.0228 (9)0.0257 (10)0.0003 (7)0.0132 (8)0.0054 (8)
C420.0235 (9)0.0202 (9)0.0231 (9)0.0011 (7)0.0098 (8)0.0048 (7)
C430.0220 (9)0.0257 (10)0.0239 (10)0.0036 (8)0.0112 (8)0.0058 (8)
C440.0256 (10)0.0296 (10)0.0204 (9)0.0003 (8)0.0099 (8)0.0078 (8)
C450.0282 (10)0.0241 (10)0.0269 (10)0.0011 (8)0.0104 (8)0.0104 (8)
C460.0243 (10)0.0226 (10)0.0268 (10)0.0021 (8)0.0104 (8)0.0069 (8)
C470.0217 (9)0.0226 (9)0.0290 (10)0.0035 (7)0.0140 (8)0.0063 (8)
C480.0380 (12)0.0365 (12)0.0437 (13)0.0071 (9)0.0259 (10)0.0184 (10)
C490.0356 (12)0.0267 (11)0.0608 (15)0.0110 (9)0.0281 (11)0.0209 (10)
C610.0422 (13)0.0394 (12)0.0266 (11)0.0054 (10)0.0155 (10)0.0068 (9)
C620.0530 (15)0.0389 (14)0.0603 (17)0.0166 (12)0.0214 (13)0.0029 (12)
C630.0490 (16)0.075 (2)0.0319 (13)0.0121 (14)0.0024 (12)0.0035 (13)
C640.0608 (16)0.0366 (13)0.095 (2)0.0250 (12)0.0511 (16)0.0375 (14)
C650.0695 (17)0.0269 (12)0.0738 (18)0.0110 (11)0.0537 (15)0.0094 (12)
C660.0309 (13)0.0536 (16)0.089 (2)0.0167 (11)0.0228 (13)0.0372 (15)
C710.033 (2)0.038 (3)0.025 (2)0.009 (2)0.002 (2)0.002 (2)
C720.032 (6)0.029 (5)0.043 (8)0.003 (4)0.008 (4)0.000 (4)
C730.042 (3)0.057 (3)0.037 (3)0.016 (3)0.018 (2)0.006 (3)
C740.052 (5)0.060 (6)0.032 (7)0.024 (4)0.000 (5)0.016 (4)
C750.036 (3)0.034 (3)0.055 (3)0.001 (2)0.006 (2)0.015 (3)
C760.026 (5)0.038 (7)0.038 (6)0.004 (4)0.011 (4)0.000 (4)
C770.060 (5)0.054 (5)0.032 (6)0.007 (4)0.000 (4)0.017 (4)
Geometric parameters (Å, º) top
Si1—O111.6391 (13)N2—C31.508 (2)
Si1—O121.6412 (13)N2—C471.513 (2)
Si1—N12.0452 (15)C3—C41.524 (3)
Si1—Cl122.0784 (7)C3—H3A0.9900
Si1—Cl112.1663 (7)C3—H3B0.9900
O11—C111.383 (2)C4—H4A0.9800
O12—C211.380 (2)C4—H4B0.9800
N1—C171.508 (2)C4—H4C0.9800
N1—C271.508 (2)C31—C321.393 (3)
N1—C11.516 (2)C31—C361.402 (3)
C1—C21.521 (3)C32—C331.382 (3)
C1—H1A0.9900C32—C371.498 (3)
C1—H1B0.9900C33—C341.376 (3)
C2—H2A0.9800C33—H330.9500
C2—H2B0.9800C34—C351.387 (3)
C2—H2C0.9800C34—C381.509 (3)
C11—C121.389 (2)C35—C361.400 (3)
C11—C161.398 (3)C35—H350.9500
C12—C131.386 (3)C36—C391.532 (3)
C12—C171.503 (3)C37—H37A0.9900
C13—C141.385 (3)C37—H37B0.9900
C13—H130.9500C38—H38A0.9800
C14—C151.395 (3)C38—H38B0.9800
C14—C181.509 (3)C38—H38C0.9800
C15—C161.396 (3)C39—C631.530 (3)
C15—H150.9500C39—C621.533 (3)
C16—C191.541 (2)C39—C611.539 (3)
C17—H17A0.9900C41—C421.382 (2)
C17—H17B0.9900C41—C461.405 (3)
C18—H18A0.9800C42—C431.393 (3)
C18—H18B0.9800C42—C471.500 (2)
C18—H18C0.9800C43—C441.382 (3)
C19—C531.533 (3)C43—H430.9500
C19—C511.538 (2)C44—C451.397 (3)
C19—C521.543 (3)C44—C481.510 (3)
C21—C221.386 (2)C45—C461.393 (3)
C21—C261.405 (2)C45—H450.9500
C22—C231.391 (2)C46—C491.535 (3)
C22—C271.497 (2)C47—H47A0.9900
C23—C241.393 (3)C47—H47B0.9900
C23—H230.9500C48—H48A0.9800
C24—C251.387 (3)C48—H48B0.9800
C24—C281.506 (3)C48—H48C0.9800
C25—C261.396 (3)C49—C641.532 (3)
C25—H250.9500C49—C661.536 (3)
C26—C291.538 (3)C49—C651.542 (3)
C27—H27A0.9900C61—H61A0.9800
C27—H27B0.9900C61—H61B0.9800
C28—H28A0.9800C61—H61C0.9800
C28—H28B0.9800C62—H62A0.9800
C28—H28C0.9800C62—H62B0.9800
C29—C561.531 (3)C62—H62C0.9800
C29—C541.533 (3)C63—H63A0.9800
C29—C551.535 (3)C63—H63B0.9800
C51—H51A0.9800C63—H63C0.9800
C51—H51B0.9800C64—H64A0.9800
C51—H51C0.9800C64—H64B0.9800
C52—H52A0.9800C64—H64C0.9800
C52—H52B0.9800C65—H65A0.9800
C52—H52C0.9800C65—H65B0.9800
C53—H53A0.9800C65—H65C0.9800
C53—H53B0.9800C66—H66A0.9800
C53—H53C0.9800C66—H66B0.9800
C54—H54A0.9800C66—H66C0.9800
C54—H54B0.9800C71—C761.369 (15)
C54—H54C0.9800C71—C721.375 (15)
C55—H55A0.9800C71—C771.510 (11)
C55—H55B0.9800C72—C731.379 (14)
C55—H55C0.9800C72—H720.9500
C56—H56A0.9800C73—C741.368 (13)
C56—H56B0.9800C73—H730.9500
C56—H56C0.9800C74—C751.373 (13)
Si2—O221.6336 (13)C74—H740.9500
Si2—O211.6386 (14)C75—C761.381 (14)
Si2—N22.0440 (15)C75—H750.9500
Si2—Cl222.0748 (7)C76—H760.9500
Si2—Cl212.1797 (7)C77—H77A0.9800
O21—C311.378 (2)C77—H77B0.9800
O22—C411.381 (2)C77—H77C0.9800
N2—C371.507 (2)
O11—Si1—O12123.12 (7)Cl22—Si2—Cl2191.07 (3)
O11—Si1—N190.11 (6)C31—O21—Si2137.44 (12)
O12—Si1—N189.77 (6)C41—O22—Si2137.34 (12)
O11—Si1—Cl12116.61 (5)C37—N2—C3107.61 (14)
O12—Si1—Cl12120.27 (5)C37—N2—C47109.53 (14)
N1—Si1—Cl1290.09 (5)C3—N2—C47110.89 (14)
O11—Si1—Cl1189.23 (5)C37—N2—Si2108.63 (11)
O12—Si1—Cl1189.23 (5)C3—N2—Si2113.74 (11)
N1—Si1—Cl11178.24 (5)C47—N2—Si2106.38 (10)
Cl12—Si1—Cl1191.66 (3)N2—C3—C4115.99 (16)
C11—O11—Si1138.25 (12)N2—C3—H3A108.3
C21—O12—Si1138.15 (11)C4—C3—H3A108.3
C17—N1—C27108.95 (13)N2—C3—H3B108.3
C17—N1—C1108.05 (13)C4—C3—H3B108.3
C27—N1—C1109.98 (13)H3A—C3—H3B107.4
C17—N1—Si1109.19 (11)C3—C4—H4A109.5
C27—N1—Si1107.07 (10)C3—C4—H4B109.5
C1—N1—Si1113.53 (11)H4A—C4—H4B109.5
N1—C1—C2115.44 (15)C3—C4—H4C109.5
N1—C1—H1A108.4H4A—C4—H4C109.5
C2—C1—H1A108.4H4B—C4—H4C109.5
N1—C1—H1B108.4O21—C31—C32119.12 (17)
C2—C1—H1B108.4O21—C31—C36119.00 (16)
H1A—C1—H1B107.5C32—C31—C36121.88 (17)
C1—C2—H2A109.5C33—C32—C31119.73 (18)
C1—C2—H2B109.5C33—C32—C37121.28 (17)
H2A—C2—H2B109.5C31—C32—C37118.87 (16)
C1—C2—H2C109.5C34—C33—C32120.80 (19)
H2A—C2—H2C109.5C34—C33—H33119.6
H2B—C2—H2C109.5C32—C33—H33119.6
O11—C11—C12118.73 (16)C33—C34—C35118.25 (18)
O11—C11—C16118.62 (16)C33—C34—C38120.4 (2)
C12—C11—C16122.64 (17)C35—C34—C38121.3 (2)
C13—C12—C11119.23 (17)C34—C35—C36123.85 (19)
C13—C12—C17121.52 (16)C34—C35—H35118.1
C11—C12—C17119.19 (16)C36—C35—H35118.1
C14—C13—C12120.82 (17)C35—C36—C31115.47 (18)
C14—C13—H13119.6C35—C36—C39122.00 (18)
C12—C13—H13119.6C31—C36—C39122.53 (17)
C13—C14—C15118.05 (17)C32—C37—N2111.59 (14)
C13—C14—C18121.29 (18)C32—C37—H37A109.3
C15—C14—C18120.65 (18)N2—C37—H37A109.3
C14—C15—C16123.64 (18)C32—C37—H37B109.3
C14—C15—H15118.2N2—C37—H37B109.3
C16—C15—H15118.2H37A—C37—H37B108.0
C15—C16—C11115.56 (16)C34—C38—H38A109.5
C15—C16—C19122.07 (16)C34—C38—H38B109.5
C11—C16—C19122.37 (16)H38A—C38—H38B109.5
C12—C17—N1111.94 (14)C34—C38—H38C109.5
C12—C17—H17A109.2H38A—C38—H38C109.5
N1—C17—H17A109.2H38B—C38—H38C109.5
C12—C17—H17B109.2C63—C39—C36111.58 (18)
N1—C17—H17B109.2C63—C39—C62108.6 (2)
H17A—C17—H17B107.9C36—C39—C62110.02 (18)
C14—C18—H18A109.5C63—C39—C61106.17 (19)
C14—C18—H18B109.5C36—C39—C61110.40 (16)
H18A—C18—H18B109.5C62—C39—C61109.98 (19)
C14—C18—H18C109.5O22—C41—C42119.30 (16)
H18A—C18—H18C109.5O22—C41—C46118.72 (16)
H18B—C18—H18C109.5C42—C41—C46121.96 (17)
C53—C19—C51107.39 (15)C41—C42—C43119.83 (17)
C53—C19—C16111.91 (15)C41—C42—C47119.06 (16)
C51—C19—C16109.89 (15)C43—C42—C47121.11 (16)
C53—C19—C52107.37 (16)C44—C43—C42120.57 (17)
C51—C19—C52109.50 (15)C44—C43—H43119.7
C16—C19—C52110.68 (15)C42—C43—H43119.7
O12—C21—C22119.11 (16)C43—C44—C45118.02 (17)
O12—C21—C26118.97 (15)C43—C44—C48120.94 (17)
C22—C21—C26121.91 (16)C45—C44—C48121.03 (17)
C21—C22—C23119.94 (16)C46—C45—C44123.61 (17)
C21—C22—C27119.32 (16)C46—C45—H45118.2
C23—C22—C27120.72 (16)C44—C45—H45118.2
C22—C23—C24120.39 (17)C45—C46—C41115.97 (17)
C22—C23—H23119.8C45—C46—C49122.25 (17)
C24—C23—H23119.8C41—C46—C49121.78 (17)
C25—C24—C23117.82 (17)C42—C47—N2110.54 (14)
C25—C24—C28121.44 (17)C42—C47—H47A109.5
C23—C24—C28120.74 (17)N2—C47—H47A109.5
C24—C25—C26124.22 (17)C42—C47—H47B109.5
C24—C25—H25117.9N2—C47—H47B109.5
C26—C25—H25117.9H47A—C47—H47B108.1
C25—C26—C21115.72 (16)C44—C48—H48A109.5
C25—C26—C29121.76 (16)C44—C48—H48B109.5
C21—C26—C29122.52 (16)H48A—C48—H48B109.5
C22—C27—N1111.68 (14)C44—C48—H48C109.5
C22—C27—H27A109.3H48A—C48—H48C109.5
N1—C27—H27A109.3H48B—C48—H48C109.5
C22—C27—H27B109.3C64—C49—C46111.23 (17)
N1—C27—H27B109.3C64—C49—C66107.4 (2)
H27A—C27—H27B107.9C46—C49—C66109.82 (18)
C24—C28—H28A109.5C64—C49—C65107.58 (19)
C24—C28—H28B109.5C46—C49—C65110.38 (18)
H28A—C28—H28B109.5C66—C49—C65110.33 (19)
C24—C28—H28C109.5C39—C61—H61A109.5
H28A—C28—H28C109.5C39—C61—H61B109.5
H28B—C28—H28C109.5H61A—C61—H61B109.5
C56—C29—C54107.07 (17)C39—C61—H61C109.5
C56—C29—C55108.17 (18)H61A—C61—H61C109.5
C54—C29—C55109.91 (17)H61B—C61—H61C109.5
C56—C29—C26111.70 (16)C39—C62—H62A109.5
C54—C29—C26109.51 (16)C39—C62—H62B109.5
C55—C29—C26110.41 (16)H62A—C62—H62B109.5
C19—C51—H51A109.5C39—C62—H62C109.5
C19—C51—H51B109.5H62A—C62—H62C109.5
H51A—C51—H51B109.5H62B—C62—H62C109.5
C19—C51—H51C109.5C39—C63—H63A109.5
H51A—C51—H51C109.5C39—C63—H63B109.5
H51B—C51—H51C109.5H63A—C63—H63B109.5
C19—C52—H52A109.5C39—C63—H63C109.5
C19—C52—H52B109.5H63A—C63—H63C109.5
H52A—C52—H52B109.5H63B—C63—H63C109.5
C19—C52—H52C109.5C49—C64—H64A109.5
H52A—C52—H52C109.5C49—C64—H64B109.5
H52B—C52—H52C109.5H64A—C64—H64B109.5
C19—C53—H53A109.5C49—C64—H64C109.5
C19—C53—H53B109.5H64A—C64—H64C109.5
H53A—C53—H53B109.5H64B—C64—H64C109.5
C19—C53—H53C109.5C49—C65—H65A109.5
H53A—C53—H53C109.5C49—C65—H65B109.5
H53B—C53—H53C109.5H65A—C65—H65B109.5
C29—C54—H54A109.5C49—C65—H65C109.5
C29—C54—H54B109.5H65A—C65—H65C109.5
H54A—C54—H54B109.5H65B—C65—H65C109.5
C29—C54—H54C109.5C49—C66—H66A109.5
H54A—C54—H54C109.5C49—C66—H66B109.5
H54B—C54—H54C109.5H66A—C66—H66B109.5
C29—C55—H55A109.5C49—C66—H66C109.5
C29—C55—H55B109.5H66A—C66—H66C109.5
H55A—C55—H55B109.5H66B—C66—H66C109.5
C29—C55—H55C109.5C76—C71—C72119.1 (11)
H55A—C55—H55C109.5C76—C71—C77120.5 (9)
H55B—C55—H55C109.5C72—C71—C77120.4 (10)
C29—C56—H56A109.5C71—C72—C73120.6 (14)
C29—C56—H56B109.5C71—C72—H72119.7
H56A—C56—H56B109.5C73—C72—H72119.7
C29—C56—H56C109.5C74—C73—C72119.3 (10)
H56A—C56—H56C109.5C74—C73—H73120.4
H56B—C56—H56C109.5C72—C73—H73120.4
O22—Si2—O21123.90 (7)C73—C74—C75121.0 (8)
O22—Si2—N289.82 (6)C73—C74—H74119.5
O21—Si2—N290.50 (6)C75—C74—H74119.5
O22—Si2—Cl22118.45 (6)C74—C75—C76118.9 (10)
O21—Si2—Cl22117.65 (6)C74—C75—H75120.6
N2—Si2—Cl2290.22 (5)C76—C75—H75120.6
O22—Si2—Cl2189.46 (5)C71—C76—C75121.0 (13)
O21—Si2—Cl2189.01 (5)C71—C76—H76119.5
N2—Si2—Cl21178.71 (5)C75—C76—H76119.5
O12—Si1—O11—C1191.20 (18)O21—Si2—O22—C4180.39 (19)
N1—Si1—O11—C111.39 (18)N2—Si2—O22—C4110.09 (19)
Cl12—Si1—O11—C1188.76 (18)Cl22—Si2—O22—C41100.24 (18)
Cl11—Si1—O11—C11179.77 (17)Cl21—Si2—O22—C41168.83 (18)
O11—Si1—O12—C2177.28 (18)O22—Si2—N2—C37167.49 (12)
N1—Si1—O12—C2112.71 (17)O21—Si2—N2—C3743.59 (12)
Cl12—Si1—O12—C21102.68 (17)Cl22—Si2—N2—C3774.06 (11)
Cl11—Si1—O12—C21165.85 (17)O22—Si2—N2—C372.70 (12)
O11—Si1—N1—C1743.24 (12)O21—Si2—N2—C3163.40 (12)
O12—Si1—N1—C17166.36 (11)Cl22—Si2—N2—C345.75 (11)
Cl12—Si1—N1—C1773.36 (11)O22—Si2—N2—C4749.67 (11)
O11—Si1—N1—C2774.56 (11)O21—Si2—N2—C4774.23 (11)
O12—Si1—N1—C2748.56 (11)Cl22—Si2—N2—C47168.12 (10)
Cl12—Si1—N1—C27168.83 (10)C37—N2—C3—C473.33 (19)
O11—Si1—N1—C1163.86 (12)C47—N2—C3—C446.4 (2)
O12—Si1—N1—C173.02 (12)Si2—N2—C3—C4166.29 (14)
Cl12—Si1—N1—C147.26 (11)Si2—O21—C31—C3224.3 (3)
C17—N1—C1—C275.05 (19)Si2—O21—C31—C36154.78 (15)
C27—N1—C1—C243.8 (2)O21—C31—C32—C33179.90 (16)
Si1—N1—C1—C2163.69 (12)C36—C31—C32—C331.1 (3)
Si1—O11—C11—C1223.8 (3)O21—C31—C32—C374.0 (2)
Si1—O11—C11—C16155.50 (15)C36—C31—C32—C37174.98 (16)
O11—C11—C12—C13178.62 (16)C31—C32—C33—C340.1 (3)
C16—C11—C12—C132.1 (3)C37—C32—C33—C34176.11 (17)
O11—C11—C12—C174.4 (2)C32—C33—C34—C351.7 (3)
C16—C11—C12—C17174.91 (16)C32—C33—C34—C38179.93 (19)
C11—C12—C13—C140.2 (3)C33—C34—C35—C362.1 (3)
C17—C12—C13—C14177.11 (17)C38—C34—C35—C36179.7 (2)
C12—C13—C14—C152.0 (3)C34—C35—C36—C310.9 (3)
C12—C13—C14—C18179.20 (19)C34—C35—C36—C39179.66 (19)
C13—C14—C15—C161.8 (3)O21—C31—C36—C35179.72 (16)
C18—C14—C15—C16179.43 (19)C32—C31—C36—C350.7 (3)
C14—C15—C16—C110.3 (3)O21—C31—C36—C391.0 (3)
C14—C15—C16—C19179.62 (17)C32—C31—C36—C39178.05 (17)
O11—C11—C16—C15178.42 (15)C33—C32—C37—N2133.06 (17)
C12—C11—C16—C152.3 (3)C31—C32—C37—N242.9 (2)
O11—C11—C16—C191.6 (3)C3—N2—C37—C32169.87 (14)
C12—C11—C16—C19177.65 (16)C47—N2—C37—C3249.23 (19)
C13—C12—C17—N1135.31 (18)Si2—N2—C37—C3266.57 (16)
C11—C12—C17—N141.6 (2)C35—C36—C39—C635.0 (3)
C27—N1—C17—C1251.11 (19)C31—C36—C39—C63176.3 (2)
C1—N1—C17—C12170.57 (15)C35—C36—C39—C62115.6 (2)
Si1—N1—C17—C1265.51 (16)C31—C36—C39—C6263.1 (2)
C15—C16—C19—C531.7 (2)C35—C36—C39—C61122.8 (2)
C11—C16—C19—C53178.25 (17)C31—C36—C39—C6158.5 (2)
C15—C16—C19—C51117.50 (19)Si2—O22—C41—C4217.2 (3)
C11—C16—C19—C5162.5 (2)Si2—O22—C41—C46164.12 (15)
C15—C16—C19—C52121.43 (19)O22—C41—C42—C43176.50 (16)
C11—C16—C19—C5258.5 (2)C46—C41—C42—C432.2 (3)
Si1—O12—C21—C2211.8 (3)O22—C41—C42—C473.5 (3)
Si1—O12—C21—C26169.27 (13)C46—C41—C42—C47177.87 (17)
O12—C21—C22—C23178.57 (15)C41—C42—C43—C441.0 (3)
C26—C21—C22—C230.3 (3)C47—C42—C43—C44179.02 (17)
O12—C21—C22—C270.0 (2)C42—C43—C44—C450.7 (3)
C26—C21—C22—C27178.91 (16)C42—C43—C44—C48179.12 (18)
C21—C22—C23—C240.2 (3)C43—C44—C45—C461.5 (3)
C27—C22—C23—C24178.33 (16)C48—C44—C45—C46178.39 (18)
C22—C23—C24—C250.4 (3)C44—C45—C46—C410.4 (3)
C22—C23—C24—C28179.64 (17)C44—C45—C46—C49179.71 (18)
C23—C24—C25—C260.1 (3)O22—C41—C46—C45177.23 (16)
C28—C24—C25—C26180.00 (18)C42—C41—C46—C451.4 (3)
C24—C25—C26—C210.5 (3)O22—C41—C46—C492.9 (3)
C24—C25—C26—C29179.11 (17)C42—C41—C46—C49178.46 (18)
O12—C21—C26—C25178.25 (15)C41—C42—C47—N243.1 (2)
C22—C21—C26—C250.6 (3)C43—C42—C47—N2136.89 (17)
O12—C21—C26—C292.2 (3)C37—N2—C47—C42173.05 (14)
C22—C21—C26—C29178.92 (16)C3—N2—C47—C4254.44 (18)
C21—C22—C27—N143.6 (2)Si2—N2—C47—C4269.72 (15)
C23—C22—C27—N1137.84 (16)C45—C46—C49—C641.1 (3)
C17—N1—C27—C22173.96 (14)C41—C46—C49—C64178.8 (2)
C1—N1—C27—C2255.71 (18)C45—C46—C49—C66119.9 (2)
Si1—N1—C27—C2268.07 (15)C41—C46—C49—C6660.0 (3)
C25—C26—C29—C562.1 (3)C45—C46—C49—C65118.3 (2)
C21—C26—C29—C56177.42 (18)C41—C46—C49—C6561.8 (2)
C25—C26—C29—C54120.56 (19)C76—C71—C72—C733 (5)
C21—C26—C29—C5459.0 (2)C77—C71—C72—C73177.4 (18)
C25—C26—C29—C55118.3 (2)C71—C72—C73—C741 (3)
C21—C26—C29—C5562.2 (2)C72—C73—C74—C751 (2)
O22—Si2—O21—C3191.19 (18)C73—C74—C75—C761 (2)
N2—Si2—O21—C311.08 (18)C72—C71—C76—C752 (5)
Cl22—Si2—O21—C3189.43 (18)C77—C71—C76—C75178.0 (18)
Cl21—Si2—O21—C31179.88 (17)C74—C75—C76—C710 (3)

Experimental details

Crystal data
Chemical formula2C26H37Cl2NO2Si·0.5C7H8
Mr1035.18
Crystal system, space groupTriclinic, P1
Temperature (K)150
a, b, c (Å)13.9017 (9), 13.9542 (9), 16.9827 (11)
α, β, γ (°)69.649 (1), 65.978 (1), 83.585 (1)
V3)2819.6 (3)
Z2
Radiation typeMo Kα
µ (mm1)0.30
Crystal size (mm)0.35 × 0.35 × 0.20
Data collection
DiffractometerBruker SMART APEXII
Absorption correctionMulti-scan
(SADABS; Bruker, 2008)
Tmin, Tmax0.903, 0.943
No. of measured, independent and
observed [I > 2σ(I)] reflections
27366, 12314, 9442
Rint0.034
(sin θ/λ)max1)0.639
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.043, 0.109, 1.04
No. of reflections12314
No. of parameters659
No. of restraints15
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.33, 0.27

Computer programs: APEX2 (Bruker, 2008), SAINT (Bruker, 2008), SHELXTL (Sheldrick, 2008).

 

Acknowledgements

This work was supported by a grant from the Russian Scientific Fund (14-13-01456).

References

First citationBruker (2008). APEX2, SADABS and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationHolmes, R. R. (1996). Chem. Rev. 96, 927–950.  CrossRef PubMed CAS Web of Science Google Scholar
First citationHuang, M., Kireenko, M. M., Lermontova, E. K., Churakov, A. V., Oprunenko, Y. F., Zaitsev, K. V., Sorokin, D., Harms, K., Sundermeyer, J., Zaitseva, G. S. & Karlov, S. S. (2013). Z. Anorg. Allg. Chem. 639, 502–511.  Web of Science CSD CrossRef CAS Google Scholar
First citationHuang, M., Kireenko, M. M., Zaitsev, K. V., Oprunenko, Y. F., Churakov, A. V., Howard, J. A. K., Lermontova, E. K., Sorokin, D., Linder, T., Sundermeyer, J., Karlov, S. S. & Zaitseva, G. S. (2012). Eur. J. Inorg. Chem. pp. 3712–3724.  Web of Science CSD CrossRef Google Scholar
First citationKireenko, M. M., Zaitsev, K. V., Oprunenko, Y. F., Churakov, A. V., Tafeenko, V. A., Karlov, S. S. & Zaitseva, G. S. (2013). Dalton Trans. 42, 7901–7912.  Web of Science CSD CrossRef CAS PubMed Google Scholar
First citationRendler, S. & Oestreich, M. (2005). Synthesis, pp. 1727–1747.  Google Scholar
First citationSelina, A. A., Karlov, S. S. & Zaitseva, G. S. (2006). Chem. Heterocycl. Compd, 42, 1518–1556.  CrossRef CAS Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationWichmann, O., Sillanpää, R. & Lehtonen, A. (2012). Coord. Chem. Rev. 256, 371–392.  Web of Science CrossRef CAS Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds