research communications\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Crystal structure of 2,2′′-bis­­(2,7-di­chloro-9-hy­dr­oxy-9H-fluoren-9-yl)-1,1′:4′,1′′-terphenyl tri­ethyl­amine tris­olvate

aInstitut für Organische Chemie, TU Bergakademie Freiberg, Leipziger Strasse 29, D-09596 Freiberg/Sachsen, Germany
*Correspondence e-mail: edwin.weber@chemie-tu.freiberg.de

Edited by G. Smith, Queensland University of Technology, Australia (Received 1 September 2015; accepted 7 October 2015; online 4 November 2015)

In the title solvate, C44H26Cl4O2·3C6H15N, the asymmetric part of the unit cell comprises two halves of the diol mol­ecules, 2,2′′-bis­(2,7-di­chloro-9-hy­droxy-9H-fluoren-9-yl)-1,1′:4′,1′′-terphenyl, and three mol­ecules of tri­ethyl­amine, i. e. the diol mol­ecules are located on crystallographic symmetry centres. Two of the solvent mol­ecules are disordered over two positions [occupancy ratios of 0.567 (3):0.433 (3) and 0.503 (3):0.497 (3)]. In the diol mol­ecules, the outer rings of the 1,1′:4′,1′′-terphenyl elements are twisted with reference to their central arene ring and the mean planes of the fluorenyl moieties are inclined with respect to the terphenyl ring to which they are connected, the latter making dihedral angles of 82.05 (8) and 82.28 (8)°. The presence of two 9-fluoren-9-ol units attached at positions 2 and 2′′ of the terphenyl moiety induces a `folded' geometry which is stabilized by intra­molecular C—H⋯O hydrogen bonds and ππ stacking inter­actions, the latter formed between the fluorenyl units and the central ring of the terphenyl unit [centroid–centroid distances = 3.559 (1) and 3.562 (1) Å]. The crystal is composed of 1:2 complex units, in which the solvent mol­ecules are associated with the diol mol­ecules via O—H⋯N hydrogen bonds, while the remaining solvent mol­ecule is linked to the host by a C—H⋯N hydrogen bond. The given pattern of inter­molecular inter­actions results in formation of chain structures extending along [010].

1. Chemical context

Compounds featuring two bulky 9-hy­droxy-9-fluorenyl moieties laterally attached to a linear central unit such as a biphenyl group (Weber et al., 1993[Weber, E., Skobridis, K., Wierig, A., Stathi, S., Nassimbeni, L. R. & Niven, M. L. (1993). Angew. Chem. Int. Ed. Engl. 32, 606-608.]; Barbour et al., 1993[Barbour, L. J., Bourne, S. A., Caira, M. R., Nassimbeni, L. R., Weber, E., Skobridis, K. & Wierig, A. (1993). Supramol. Chem. 1, 331-336.]; Ibragimov et al., 2001[Ibragimov, B. T., Beketov, K. M., Weber, E., Seidel, J., Sumarna, O., Makhkamov, K. K. & Köhnke, K. (2001). J. Phys. Org. Chem. 14, 697-703.]; Skobridis et al., 2007[Skobridis, K., Theodorou, V., Alivertis, D., Seichter, W., Weber, E. & Csöregh, I. (2007). Supramol. Chem. 19, 373-382.]) or other linear combinations of phenyl­ene and ethyl­ene components (Weber et al., 2002[Weber, E., Nitsche, S. K., Wierig, A. & Csöregh, I. (2002). Eur. J. Org. Chem., pp. 856-872.]) are well known for their high ability to form crystalline host–guest inclusions (Weber, 1996[Weber, E. (1996). In Comprehensive Supramolecular Chemistry, Vol. 6, edited by D. D. MacNicol, F. Toda & R. Bishop, pp. 535-592. Oxford: Elsevier.]). Both exchange of the central biphenyl axis for a 1,1′:4′,1′′-terphenyl moiety [cf. (I)] (Klien et al., 2013[Klien, H., Seichter, W. & Weber, E. (2013). CrystEngComm, 15, 586-596.], 2014[Klien, H., Seichter, W. & Weber, E. (2014). Cryst. Growth Des. 14, 4371-4382.]) as well as the addition of substituents to the lateral fluorenyl groups in a representative mol­ecule (Bourne et al., 1994[Bourne, S. A., Nassimbeni, L. R., Niven, M. L., Weber, E. & Wierig, A. (1994). J. Chem. Soc. Perkin Trans. 2, pp. 1215-1222.]; Caira et al., 1997[Caira, M. R., Coetzee, A., Nassimbeni, L. R., Weber, E. & Wierig, A. (1997). J. Chem. Soc. Perkin Trans. 2, pp. 237-242.]; Weber et al., 2002[Weber, E., Nitsche, S. K., Wierig, A. & Csöregh, I. (2002). Eur. J. Org. Chem., pp. 856-872.]) have been performed in order to exercise potential control of the mol­ecular packing in the crystal and thus on the inclusion behavior towards selected guests. Along these lines, aside from conventional hydrogen bonding (Braga & Grepioni, 2004[Braga, D. & Grepioni, F. (2004). In Encyclopedia of Supramolecular Chemistry edited by J. L. Atwood & J. W. Steed, pp. 357-363. Boca Raton: CRC Press.]), Cl⋯Cl supra­molecular inter­actions (Awwadi et al., 2006[Awwadi, F. F., Willett, R. D., Peterson, K. A. & Twamley, B. (2006). Chem. Eur. J. 12, 8952-8960.]) have recently been found to support crystal engineering of an intended lattice structure (Metrangolo et al., 2008[Metrangolo, P., Resnati, G., Pilati, T. & Biella, S. (2008). In Halogen Bonding, Structure and Bonding, Vol. 126, edited by P. Metrangolo & G. Resnati, pp. 105-136. Berlin-Heidelberg: Springer.]; Mukherjee et al., 2014[Mukherjee, A., Tothadi, S. & Desiraju, G. R. (2014). Acc. Chem. Res. 47, 2514-2524.]). Being associated with this, a corresponding structural modification of the parent mol­ecule (I)[link] by chloro substitution, giving rise to compound (II), presented a promising study. Hence, the synthesis of (II) was undertaken and is reported on here in detail. We were also successful in preparing a crystalline inclusion solvate of (II) with tri­ethyl­amine, the title compound (IIa), the crystal structure of which is described and discussed and compared to the structures of related compounds.

[Scheme 1]

2. Structural commentary

The title solvate (IIa) crystallizes in the space group P[\overline{1}] with two halves of the diol mol­ecules (centred at x + [{1\over 2}], y, z and x + 1, y + [{1\over 2}], z + [{1\over 2}]) and three mol­ecules of tri­ethyl­amine in the asymmetric unit, i.e. the diol mol­ecules occupy crystallographic inversion centres (Fig. 1[link]). Two of the solvent mol­ecules are disordered over two positions with occupancy ratios of 0.567 (3):0.433 (3) and 0.503 (3):0.497 (3). A perspective view of the mol­ecular structure including ring specification is depicted in Fig. 1[link]. The fluorenyl moieties of the diol mol­ecules show a slight distortion from strict planarity with the largest distances from the best plane being 0.027 (1) and −0.030 (1) Å for C7 and C10, respectively, and 0.059 (1) and −0.068 (1) Å for C8A and C11A. respectively The mol­ecules adopt a `folded' geometry which is stabilized by two types of inter­molecular inter­actions. The OH oxygen atoms form relatively strong C—H⋯O hydrogen bonds [d(H⋯O) 2.22, 2.23 Å] (Desiraju & Steiner, 1999[Desiraju, G. R. & Steiner, T. (1999). The Weak Hydrogen Bond in Structural Chemistry and Biology, IUCR Monographs on Crystallography, Vol. 9. New York: Oxford University Press.]) which enforce a nearly orthogonal orientation of the fluorenyl moieties with respect to the terphenyl ring, to which they are attached: the dihedral angles between the five-membered ring of the fluorenyl unit defined by C1–C13 (or C1A–C13A) and the six-membered rings of the terphenyl unit defined by C14–C19 (or C14A–C19A) are 82.05 (8) or 82.28 (8)°, respectively. Moreover, the location of the central ring of the terphenyl unit between the fluorenyl units [ring centroid distances = 3.559 (1) and 3.562 (1) Å] indicate the presence of ππ stacking inter­actions (James, 2004[James, S. L. (2004). In Encyclopedia of Supramolecular Chemistry edited by J. L. Atwood & J. W. Steed, pp. 1093-1099. Boca Raton: CRC Press.]; Martinez & Iverson, 2012[Martinez, C. R. & Iverson, B. L. (2012). Chem. Sci. 3, 2191-2201.]) between these mol­ecular parts. These cooperative intra­molecular inter­actions enforce a nearly orthogonal arrangement of the outer ring (B or B′) with respect to the inner ring (A or A′) (Fig. 2[link]) of the terphenyl unit [inter-ring dihedral angles = 76.3 (1) and 79.3 (1)°, respectively].

[Figure 1]
Figure 1
A perspective view of the title solvate (IIa) including the atom numbering and ring specification. Anisotropic displacement parameters for non-hydrogen atoms are drawn at the 50% probability level. Dashed lines represent hydrogen-bonding inter­actions. The mol­ecules occupy the symmetry centers x + [{1\over 2}], y, z and x + 1, y + [{1\over 2}], z + [{1\over 2}])
[Figure 2]
Figure 2
The packing of the title compound (IIa) in the unit cell. Hydrogen bonds are shown as dashed lines.

3. Supra­molecular features

According to the distinct acceptor character of the solvent species, the crystal structure is constructed of 1:2 complex units with the nitro­gen atom of the solvent hydrogen-bonded to the OH hydrogen atom of the diol host [d(H⋯N) 1.91–1.95 Å] (Table 1[link]). The remaining solvent mol­ecule is connected to the host via C—H⋯O hydrogen bonding [d(H⋯N) 2.54; 2.60 Å], giving an overall chain structure extending along [010] (Fig. 2[link]). Inter­actions involving the chlorine atoms are not perceptible. A comparative consideration regarding the geometric features of the diol mol­ecule in the present structure and the solvent-free structure of the corresponding unsubstituted compound (I)[link] and its derivatives bearing alkyl groups in the 2- and 7-positions of the fluorenyl moieties as well as a variety of their inclusion structures (Klien et al. 2013[Klien, H., Seichter, W. & Weber, E. (2013). CrystEngComm, 15, 586-596.], 2014[Klien, H., Seichter, W. & Weber, E. (2014). Cryst. Growth Des. 14, 4371-4382.]), reveals restricted conformational flexibility. This means that neither the presence of substituents nor the nature of the included solvent species markedly affect the conformation of the diol mol­ecule. Obviously, the mol­ecular geometries in the solid-state structures follow close-packing requirements and, to a lesser extent, association effects.

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
O1—H1⋯N1Di 0.84 1.95 2.781 (2) 171
O1—H1⋯N1DAi 0.84 1.91 2.731 (2) 164
O1A—H1A⋯N1Bii 0.84 1.94 2.766 (2) 167
C4—H4⋯O1Aiii 0.95 2.54 3.489 (2) 175
C4A—H4A⋯O1iv 0.95 2.47 3.403 (2) 168
C9—H9⋯N1Cv 0.95 2.54 3.459 (2) 163
C9—H9⋯N1CAv 0.95 2.60 3.519 (2) 162
Symmetry codes: (i) x, y, z-1; (ii) -x+1, -y+2, -z+1; (iii) -x+1, -y+1, -z+1; (iv) -x+2, -y+1, -z; (v) -x+1, -y+1, -z.

4. Database survey

A search of the Cambridge Structural Database (Groom & Allen, 2014[Groom, C. R. & Allen, F. H. (2014). Angew. Chem. Int. Ed. 53, 662-671.]) for the 2,2′′-disubstituted p-terphenyls yielded eleven hits, namely 4,4′′′'-bis­(4-meth­oxy­benzo­yl)-1,1′:2′,1′′:4′′,1′′′:2′′′,1′′′'-quinquephenyl (Debroy et al., 2009[Debroy, P., Lindeman, S. V. & Rathore, R. (2009). J. Org. Chem. 74, 2080-2087.]), 2,2′′-bis­(bromo­meth­yl)-p-terphenyl (Jones & Kuś, 2005[Jones, P. G. & Kuś, P. (2005). Acta Cryst. E61, o2947-o2948.]), 2,2′′-dimethyl-p-terphenyl (Lunazzi et al., 2005[Lunazzi, L., Mazzanti, A., Minzoni, M. & Anderson, J. E. (2005). Org. Lett. 7, 1291-1294.]), 2′,4′′,2′′′-quinquephenyl (Toussaint, 1966[Toussaint, C. J. (1966). Acta Cryst. 21, 1002-1003.]), 9,9′-(1,1′:4′,1′′-terphenyl-2,2′′-di­yl)bis­(9H-fluorene-9-ol) bis­(di­ethyl­amine) clathrate (Klien et al., 2013[Klien, H., Seichter, W. & Weber, E. (2013). CrystEngComm, 15, 586-596.]), 9,9′-(1,1′:4′,1′′-terphenyl-2,2′′-di­yl)bis­(9H-fluor­ene-9-ol) bis­(propan-1-ol) clathrate (Klien et al., 2013[Klien, H., Seichter, W. & Weber, E. (2013). CrystEngComm, 15, 586-596.]), 9,9′-(1,1′:4′,1′′-terphenyl-2,2′′-di­yl)bis­(9H-fluorene-9-ol) bis­(but­an-1-ol) clathrate (Klien et al., 2013[Klien, H., Seichter, W. & Weber, E. (2013). CrystEngComm, 15, 586-596.]), 9,9′-(1,1′:4′,1′′-terphenyl-2,2′′-di­yl)bis­(9H-fluorene-9-ol) bis­(ethanol) clathrate (Klien et al., 2013[Klien, H., Seichter, W. & Weber, E. (2013). CrystEngComm, 15, 586-596.]), 9,9′-(1,1′:4′,1′′-terphenyl-2,2′′-di­yl)bis­(2,7-di-t-butyl-9H-fluorene-9-ol) bis­(propan-1-ol) clathrate (Klien et al., 2013[Klien, H., Seichter, W. & Weber, E. (2013). CrystEngComm, 15, 586-596.]), 9,9′-(1,1′:4′,1′′-terphenyl-2,2′′-di­yl)bis­(2,7-di-t-butyl-9H-fluorene-9-ol) bis­(di­ethyl­amine) clathrate (Klien et al., 2013[Klien, H., Seichter, W. & Weber, E. (2013). CrystEngComm, 15, 586-596.]), 9,9′-(1,1′:4′,1′′-terphenyl-2,2′′-di­yl)bis­(2,7-di-t-butyl-9H-fluorene-9-ol) bis­(butan-1-ol) clathrate (Klien et al., 2013[Klien, H., Seichter, W. & Weber, E. (2013). CrystEngComm, 15, 586-596.]). In all cases, the terphenyl framework adopts a twisted conformation, which in the case of the bis­fluorenyl-substituted derivatives is stabilized by intra­molecular ππ arene stacking and C—H⋯O hydrogen bonds. The crystal structures of the clathrates, which involve protic guest species in general, are constructed of 1:2 host–guest complexes with the complex components associated with other via O—H⋯O and O—H⋯N hydrogen bonds. Both of these features, regarding mol­ecular conformation and supra­molecular inter­actions, reappear in the title compound.

5. Synthesis and crystallization

The unsolvated compound (II) was prepared by addition of a solution of n-butyl­lithium (1.6 M in hexane, 1.5 ml, 2.3 mmol) to a cold solution (195 K) of 2,2′′-di­iodo-1,1′:4′,1′′-terphenyl (0.5 g, 1.0 mmol) in 20 ml of dry THF. After 45 min of stirring, 4,4′-di­chloro­benzo­phenone (0.52 g, 2.1 mmol), dissolved in 4 ml benzene and 15 ml THF, was added. The colourless reaction mixture was warmed to room temperature and stirred for 4 h. The solution was extracted twice with diethyl ether. The combined organic extracts were washed with water, dried over anhydrous sodium sulfate and concentrated under reduced pressure. Colourless crystals were isolated by recrystallization from hexane (yield: 7.0%). M.p. 543–546 K; ESI–MS [M + H]m/z 731.3. IR (KBr) ν (cm−1) 3547, 3056, 3025, 1913, 1641, 1591, 1575, 1489, 1331, 1182, 1157, 1097, 1014, 919, 903, 840, 761. 1H NMR (500.1 MHz; CDCl3): δ = 2.84 (2H, s, OH, 6.67 (4H, s, ArH), 6.75 (2H, d, 3JHH = 7.80 Hz, ArH), 7.09 (8H, d, 3JHH = 8.50 Hz, ArH), 7.11 (2H, d, 3JHH = 8.00 Hz, ArH), 7.22 (2H, t, 3JHH = 7.50 Hz, ArH), 7.26 (8H, d, 3JHH = 9.00 Hz, ArH), 7.32 (2H, t, 3JHH = 7.25 Hz, ArH). 13C NMR (125.7 MHz, CDCl3): δ = 82.68 (C-OH), 126.89, 127.43, 128.10, 129.11, 129.33, 129.83, 133.40, 140.24, 141.01, 144.06, 145.58 (Ar-C). EA calculated for C44H30O2Cl4: C 72.1, H 4.1%; found: C 72.2, H 4.4%. Crystals of (IIa) suitable for X-ray diffraction were obtained from a solution of (II) in tri­ethyl­amine upon slow evaporation of the solvent at room temperature.

6. Refinement details

Crystal data, data collection and structure refinement details are summarized in Table 2[link]. All H atoms were placed geometrically in idealized positions and allowed to ride on their parent atoms, with C—H = 0.95 and 0.98 Å and Uiso(H) = 1.2Ueq(C) for aromatic and methyl­ene, with C—H = 0.98 and O—H = 0.84 Å and Uiso(H) = 1.5Ueq(C) for methyl and hy­droxy groups, respectively. Two mol­ecules of tri­ethyl­amine are each disordered over two positions with occupancy ratios of 0.567 (3):0.433 (3) and 0.503 (3):0.497 (3). They were modelled with restrained bond lengths based on average values of 1.47 (1) Å for N—C and 1.53 (1) Å for C—C bonds.

Table 2
Experimental details

Crystal data
Chemical formula C44H26Cl4O2·3C6H15N
Mr 1032.01
Crystal system, space group Triclinic, P[\overline{1}]
Temperature (K) 100
a, b, c (Å) 14.5995 (2), 14.8094 (2), 15.7705 (3)
α, β, γ (°) 68.373 (1), 66.837 (1), 67.558 (1)
V3) 2800.13 (8)
Z 2
Radiation type Mo Kα
μ (mm−1) 0.26
Crystal size (mm) 0.42 × 0.40 × 0.23
 
Data collection
Diffractometer Bruker CCD area detector
Absorption correction Multi-scan (SADABS; Bruker, 2008[Bruker (2008). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.])
Tmin, Tmax 0.900, 0.943
No. of measured, independent and observed [I > 2σ(I)] reflections 53831, 14031, 11477
Rint 0.025
(sin θ/λ)max−1) 0.669
 
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.040, 0.113, 1.01
No. of reflections 14031
No. of parameters 773
No. of restraints 24
H-atom treatment H-atom parameters constrained
Δρmax, Δρmin (e Å−3) 0.59, −0.59
Computer programs: APEX2 and SAINT (Bruker, 2008[Bruker (2008). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]), SHELXS97 and SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]), SHELXL2013 (Sheldrick, 2015[Sheldrick, G. M. (2015). Acta Cryst. C71, 3-8.]) and ORTEP-3 for Windows (Farrugia, 2012[Farrugia, L. J. (2012). J. Appl. Cryst. 45, 849-854.]).

Supporting information


Computing details top

Data collection: APEX2 (Bruker, 2008); cell refinement: SAINT (Sheldrick, 2008); data reduction: SAINT (Bruker, 2008); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL2013 (Sheldrick, 2015); molecular graphics: ORTEP-3 for Windows (Farrugia, 2012); software used to prepare material for publication: SHELXTL (Sheldrick, 2008).

2,2''-Bis(2,7-dichloro-9-hydroxy-9H-fluoren-9-yl)-1,1':4',1''-terphenyl triethylamine trisolvate top
Crystal data top
C44H26Cl4O2·3C6H15NZ = 2
Mr = 1032.01F(000) = 1096
Triclinic, P1Dx = 1.224 Mg m3
a = 14.5995 (2) ÅMo Kα radiation, λ = 0.71073 Å
b = 14.8094 (2) ÅCell parameters from 9853 reflections
c = 15.7705 (3) Åθ = 2.4–31.3°
α = 68.373 (1)°µ = 0.26 mm1
β = 66.837 (1)°T = 100 K
γ = 67.558 (1)°Plate, colourless
V = 2800.13 (8) Å30.42 × 0.40 × 0.23 mm
Data collection top
Bruker CCD area detector
diffractometer
11477 reflections with I > 2σ(I)
φ and ω scansRint = 0.025
Absorption correction: multi-scan
(SADABS; Bruker, 2008)
θmax = 28.4°, θmin = 1.5°
Tmin = 0.900, Tmax = 0.943h = 1919
53831 measured reflectionsk = 1919
14031 independent reflectionsl = 2121
Refinement top
Refinement on F224 restraints
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.040H-atom parameters constrained
wR(F2) = 0.113 w = 1/[σ2(Fo2) + (0.0538P)2 + 1.6165P]
where P = (Fo2 + 2Fc2)/3
S = 1.01(Δ/σ)max = 0.001
14031 reflectionsΔρmax = 0.59 e Å3
773 parametersΔρmin = 0.59 e Å3
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/UeqOcc. (<1)
Cl10.60638 (3)0.02641 (3)0.36155 (3)0.02782 (9)
Cl20.59812 (3)0.31311 (3)0.33671 (3)0.02962 (9)
O10.78230 (7)0.18376 (8)0.03539 (7)0.0199 (2)
H10.75140.23980.02200.030*
C10.63440 (10)0.12716 (10)0.08381 (9)0.0163 (2)
C20.65868 (10)0.07862 (10)0.16874 (10)0.0188 (3)
H20.72790.04190.16970.023*
C30.57796 (11)0.08549 (11)0.25318 (10)0.0199 (3)
C40.47565 (10)0.13766 (11)0.25341 (10)0.0207 (3)
H40.42200.13980.31200.025*
C50.45285 (10)0.18656 (11)0.16705 (10)0.0198 (3)
H50.38350.22260.16610.024*
C60.53259 (10)0.18211 (10)0.08225 (10)0.0171 (3)
C70.53127 (10)0.22501 (10)0.01767 (10)0.0177 (3)
C80.45058 (11)0.28265 (11)0.05765 (11)0.0225 (3)
H80.38180.30260.01800.027*
C90.47169 (12)0.31085 (11)0.15657 (11)0.0250 (3)
H90.41750.35000.18510.030*
C100.57288 (12)0.28102 (11)0.21279 (10)0.0221 (3)
C110.65509 (11)0.22404 (10)0.17454 (10)0.0196 (3)
H110.72400.20510.21440.024*
C120.63267 (10)0.19620 (10)0.07658 (10)0.0172 (3)
C130.70829 (10)0.13336 (10)0.01747 (9)0.0163 (2)
C140.76933 (10)0.03037 (10)0.04016 (9)0.0180 (3)
C150.87711 (11)0.00223 (11)0.06259 (10)0.0220 (3)
H150.90980.04510.05960.026*
C160.93772 (12)0.08693 (12)0.08910 (11)0.0288 (3)
H161.01110.10430.10460.035*
C170.89114 (13)0.15025 (13)0.09285 (13)0.0339 (4)
H170.93210.21130.11110.041*
C180.78417 (13)0.12403 (12)0.06975 (12)0.0297 (3)
H180.75260.16800.07240.036*
C190.72127 (11)0.03479 (11)0.04260 (10)0.0211 (3)
C200.60696 (11)0.01430 (10)0.02017 (10)0.0201 (3)
C210.54278 (11)0.03021 (11)0.07381 (10)0.0212 (3)
H210.57160.05140.12490.025*
C220.43748 (11)0.01550 (11)0.09362 (10)0.0216 (3)
H220.39500.02580.15800.026*
Cl1A0.92106 (3)0.86051 (4)0.13781 (3)0.03593 (11)
Cl2A0.87208 (4)0.64484 (3)0.84734 (3)0.04199 (12)
O1A0.71671 (7)0.87036 (7)0.52729 (7)0.01877 (19)
H1A0.74740.91190.51950.028*
C1A0.87109 (10)0.78873 (10)0.41745 (10)0.0163 (2)
C2A0.85448 (10)0.81792 (10)0.32984 (10)0.0186 (3)
H2A0.78700.83430.32460.022*
C3A0.94014 (11)0.82247 (11)0.24930 (10)0.0219 (3)
C4A1.04014 (11)0.79780 (11)0.25515 (11)0.0237 (3)
H4A1.09740.79980.19890.028*
C5A1.05506 (10)0.77022 (11)0.34418 (11)0.0213 (3)
H5A1.12250.75410.34940.026*
C6A0.97026 (10)0.76652 (10)0.42527 (10)0.0178 (3)
C7A0.96262 (11)0.73781 (10)0.52698 (10)0.0192 (3)
C8A1.03705 (12)0.71089 (11)0.57298 (12)0.0265 (3)
H8A1.10680.71060.53730.032*
C9A1.00714 (13)0.68452 (12)0.67219 (12)0.0308 (4)
H9A1.05650.66690.70490.037*
C10A0.90563 (13)0.68397 (12)0.72328 (11)0.0284 (3)
C11A0.82964 (12)0.71172 (11)0.67874 (11)0.0239 (3)
H11A0.76000.71160.71470.029*
C12A0.85985 (11)0.73933 (10)0.58041 (10)0.0184 (3)
C13A0.79079 (10)0.77627 (10)0.51543 (9)0.0162 (2)
C14A0.73042 (10)0.70199 (10)0.53606 (9)0.0166 (2)
C15A0.62299 (10)0.73819 (11)0.55279 (10)0.0199 (3)
H15A0.59050.80850.54610.024*
C16A0.56284 (11)0.67338 (12)0.57902 (11)0.0245 (3)
H16A0.48990.69950.59020.029*
C17A0.60905 (11)0.57107 (12)0.58886 (11)0.0269 (3)
H17A0.56810.52620.60820.032*
C18A0.71616 (11)0.53410 (11)0.57025 (11)0.0238 (3)
H18A0.74780.46370.57650.029*
C19A0.77833 (10)0.59803 (10)0.54256 (9)0.0175 (3)
C20A0.89299 (10)0.55012 (10)0.52056 (10)0.0167 (2)
C21A0.95553 (10)0.55419 (10)0.42644 (10)0.0186 (3)
H21A0.92560.59090.37560.022*
C22A1.06098 (10)0.50521 (10)0.40625 (10)0.0186 (3)
H22A1.10230.50940.34170.022*
N1B0.21028 (9)0.98034 (9)0.47727 (9)0.0206 (2)
C1B0.11268 (11)0.96584 (13)0.55043 (11)0.0272 (3)
H1B10.09680.90980.54400.033*
H1B20.05591.02790.53850.033*
C2B0.11490 (14)0.94238 (14)0.65192 (12)0.0339 (4)
H2B10.15880.87350.66970.051*
H2B20.04430.94790.69550.051*
H2B30.14300.99050.65610.051*
C3B0.19718 (12)1.02007 (11)0.38051 (11)0.0238 (3)
H3B10.25841.04380.33570.029*
H3B20.13581.07980.38100.029*
C4B0.18392 (13)0.94741 (13)0.34101 (12)0.0294 (3)
H4B10.24650.89030.33470.044*
H4B20.17260.98290.27830.044*
H4B30.12410.92240.38470.044*
C5B0.29651 (11)0.88733 (11)0.48674 (11)0.0239 (3)
H5B10.28040.83290.47770.029*
H5B20.30210.86600.55230.029*
C6B0.40009 (12)0.89960 (13)0.41604 (12)0.0298 (3)
H6B10.39800.91250.35120.045*
H6B20.45490.83760.43000.045*
H6B30.41440.95660.42120.045*
N1C0.7405 (9)0.5936 (6)0.2422 (6)0.0241 (7)0.433 (3)
C1C0.7208 (4)0.5371 (4)0.3433 (3)0.0351 (10)0.433 (3)
H1C10.66970.58350.38300.042*0.433 (3)
H1C20.78600.51220.36070.042*0.433 (3)
C2C0.6805 (5)0.4481 (6)0.3656 (7)0.0465 (19)0.433 (3)
H2C10.62520.46930.33620.070*0.433 (3)
H2C20.65310.42360.43490.070*0.433 (3)
H2C30.73720.39370.34030.070*0.433 (3)
C3C0.7547 (3)0.6915 (3)0.2294 (3)0.0287 (9)0.433 (3)
H3C10.77550.72480.16030.034*0.433 (3)
H3C20.81180.67940.25470.034*0.433 (3)
C4C0.6581 (11)0.7621 (9)0.2788 (9)0.032 (2)0.433 (3)
H4C10.59810.76350.26440.048*0.433 (3)
H4C20.66670.83040.25600.048*0.433 (3)
H4C30.64720.73820.34790.048*0.433 (3)
C5C0.8334 (3)0.5338 (3)0.1848 (3)0.0249 (9)0.433 (3)
H5C10.82770.46430.20230.030*0.433 (3)
H5C20.89500.52940.19990.030*0.433 (3)
C6C0.8489 (12)0.5789 (8)0.0782 (6)0.0329 (16)0.433 (3)
H6C10.78520.59050.06380.049*0.433 (3)
H6C20.90610.53190.04330.049*0.433 (3)
H6C30.86530.64320.05870.049*0.433 (3)
N1CA0.7332 (7)0.5984 (5)0.2574 (5)0.0241 (7)0.567 (3)
C1CA0.7446 (3)0.4958 (3)0.3206 (3)0.0325 (8)0.567 (3)
H1C30.78130.48790.36520.039*0.567 (3)
H1C40.78830.44670.28160.039*0.567 (3)
C2CA0.6425 (4)0.4705 (4)0.3782 (5)0.0396 (11)0.567 (3)
H2C40.59990.51680.41920.059*0.567 (3)
H2C50.65580.40080.41780.059*0.567 (3)
H2C60.60590.47750.33470.059*0.567 (3)
C3CA0.6975 (2)0.6728 (2)0.3129 (2)0.0286 (7)0.567 (3)
H3C30.75600.66950.33190.034*0.567 (3)
H3C40.64240.65430.37190.034*0.567 (3)
C4CA0.6558 (9)0.7806 (7)0.2589 (7)0.0307 (17)0.567 (3)
H4C40.71030.80000.20090.046*0.567 (3)
H4C50.63380.82620.29950.046*0.567 (3)
H4C60.59650.78500.24150.046*0.567 (3)
C5CA0.8318 (2)0.6070 (3)0.1833 (2)0.0359 (8)0.567 (3)
H5C30.88910.57240.21280.043*0.567 (3)
H5C40.83030.67930.15630.043*0.567 (3)
C6CA0.8528 (10)0.5612 (7)0.1033 (5)0.0468 (19)0.567 (3)
H6C40.85990.48850.12890.070*0.567 (3)
H6C50.91710.57200.05390.070*0.567 (3)
H6C60.79510.59350.07550.070*0.567 (3)
N1D0.7016 (5)0.3706 (6)1.0068 (3)0.0238 (9)0.497 (3)
C1D0.6422 (3)0.4484 (3)0.9448 (3)0.0369 (9)0.497 (3)
H1D10.62340.51370.95970.044*0.497 (3)
H1D20.57700.43220.95920.044*0.497 (3)
C2D0.6979 (5)0.4605 (4)0.8397 (4)0.0554 (14)0.497 (3)
H2D10.75870.48380.82320.083*0.497 (3)
H2D20.65100.51010.80290.083*0.497 (3)
H2D30.72030.39530.82480.083*0.497 (3)
C3D0.6371 (4)0.3527 (3)1.1070 (3)0.0395 (10)0.497 (3)
H3D10.67610.29071.14430.047*0.497 (3)
H3D20.57430.33911.11020.047*0.497 (3)
C4D0.6026 (4)0.4366 (3)1.1557 (3)0.0509 (12)0.497 (3)
H4D10.66300.44371.16280.076*0.497 (3)
H4D20.55320.42001.21880.076*0.497 (3)
H4D30.56920.50041.11690.076*0.497 (3)
C5D0.7959 (5)0.3981 (8)0.9893 (7)0.056 (4)0.497 (3)
H5D10.81620.36691.04900.067*0.497 (3)
H5D20.77560.47220.97970.067*0.497 (3)
C6D0.8967 (2)0.3713 (3)0.9051 (3)0.0386 (9)0.497 (3)
H6D10.91360.30010.90670.058*0.497 (3)
H6D20.95460.38310.91230.058*0.497 (3)
H6D30.88450.41410.84400.058*0.497 (3)
N1DA0.7094 (5)0.3795 (6)0.9764 (3)0.0238 (9)0.503 (3)
C1DA0.6889 (3)0.4252 (3)0.8834 (3)0.0280 (8)0.503 (3)
H1D30.62610.41010.88880.034*0.503 (3)
H1D40.74750.39120.83650.034*0.503 (3)
C2DA0.6733 (3)0.5392 (2)0.8428 (3)0.0366 (9)0.503 (3)
H2D40.61760.57440.88920.055*0.503 (3)
H2D50.65480.56110.78350.055*0.503 (3)
H2D60.73770.55510.82960.055*0.503 (3)
C3DA0.6148 (3)0.4082 (3)1.0529 (3)0.0336 (8)0.503 (3)
H3D30.55690.39551.04550.040*0.503 (3)
H3D40.59730.48171.04560.040*0.503 (3)
C4DA0.6240 (4)0.3518 (4)1.1529 (3)0.0454 (11)0.503 (3)
H4D40.65190.27911.15770.068*0.503 (3)
H4D50.55540.36511.19960.068*0.503 (3)
H4D60.67070.37481.16580.068*0.503 (3)
C5DA0.7983 (5)0.3993 (5)0.9831 (4)0.025 (2)0.503 (3)
H5D30.77150.46191.00480.030*0.503 (3)
H5D40.84630.41350.91790.030*0.503 (3)
C6DA0.8645 (4)0.3148 (4)1.0504 (5)0.085 (2)0.503 (3)
H6D40.82560.31451.11720.127*0.503 (3)
H6D50.93030.32931.03450.127*0.503 (3)
H6D60.87840.24851.04080.127*0.503 (3)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Cl10.02612 (17)0.0363 (2)0.01956 (17)0.00544 (15)0.00797 (13)0.00754 (14)
Cl20.0435 (2)0.02378 (18)0.02120 (17)0.00960 (16)0.01303 (15)0.00132 (14)
O10.0167 (4)0.0196 (5)0.0260 (5)0.0077 (4)0.0024 (4)0.0100 (4)
C10.0167 (6)0.0149 (6)0.0184 (6)0.0050 (5)0.0030 (5)0.0072 (5)
C20.0169 (6)0.0189 (7)0.0210 (7)0.0038 (5)0.0049 (5)0.0077 (5)
C30.0224 (6)0.0214 (7)0.0175 (6)0.0059 (5)0.0064 (5)0.0061 (5)
C40.0188 (6)0.0226 (7)0.0197 (7)0.0045 (5)0.0018 (5)0.0098 (5)
C50.0164 (6)0.0193 (7)0.0231 (7)0.0027 (5)0.0042 (5)0.0088 (5)
C60.0179 (6)0.0138 (6)0.0209 (6)0.0041 (5)0.0058 (5)0.0061 (5)
C70.0192 (6)0.0141 (6)0.0215 (7)0.0053 (5)0.0060 (5)0.0056 (5)
C80.0214 (6)0.0199 (7)0.0259 (7)0.0036 (5)0.0085 (5)0.0061 (6)
C90.0285 (7)0.0195 (7)0.0281 (8)0.0039 (6)0.0144 (6)0.0036 (6)
C100.0331 (7)0.0169 (7)0.0187 (7)0.0096 (6)0.0100 (6)0.0017 (5)
C110.0239 (6)0.0164 (6)0.0195 (6)0.0085 (5)0.0045 (5)0.0047 (5)
C120.0201 (6)0.0131 (6)0.0209 (6)0.0064 (5)0.0064 (5)0.0048 (5)
C130.0160 (6)0.0164 (6)0.0175 (6)0.0058 (5)0.0034 (5)0.0057 (5)
C140.0200 (6)0.0165 (6)0.0152 (6)0.0047 (5)0.0028 (5)0.0047 (5)
C150.0210 (6)0.0214 (7)0.0208 (7)0.0051 (5)0.0039 (5)0.0056 (5)
C160.0228 (7)0.0272 (8)0.0287 (8)0.0016 (6)0.0022 (6)0.0102 (6)
C170.0333 (8)0.0233 (8)0.0383 (9)0.0001 (6)0.0033 (7)0.0168 (7)
C180.0343 (8)0.0215 (8)0.0348 (9)0.0079 (6)0.0062 (7)0.0131 (6)
C190.0239 (7)0.0176 (7)0.0207 (7)0.0060 (5)0.0043 (5)0.0061 (5)
C200.0251 (7)0.0140 (6)0.0236 (7)0.0086 (5)0.0049 (5)0.0064 (5)
C210.0290 (7)0.0180 (7)0.0205 (7)0.0113 (6)0.0078 (5)0.0036 (5)
C220.0279 (7)0.0198 (7)0.0191 (7)0.0127 (6)0.0020 (5)0.0059 (5)
Cl1A0.03125 (19)0.0573 (3)0.01955 (18)0.02149 (19)0.00780 (14)0.00025 (17)
Cl2A0.0673 (3)0.0322 (2)0.0268 (2)0.0014 (2)0.0264 (2)0.01023 (17)
O1A0.0177 (4)0.0138 (5)0.0242 (5)0.0014 (4)0.0060 (4)0.0075 (4)
C1A0.0158 (6)0.0128 (6)0.0202 (6)0.0029 (5)0.0052 (5)0.0055 (5)
C2A0.0175 (6)0.0183 (6)0.0211 (7)0.0053 (5)0.0067 (5)0.0048 (5)
C3A0.0238 (7)0.0246 (7)0.0182 (7)0.0100 (6)0.0067 (5)0.0026 (5)
C4A0.0197 (6)0.0255 (7)0.0236 (7)0.0098 (6)0.0026 (5)0.0042 (6)
C5A0.0167 (6)0.0193 (7)0.0291 (7)0.0060 (5)0.0076 (5)0.0055 (6)
C6A0.0189 (6)0.0130 (6)0.0244 (7)0.0033 (5)0.0091 (5)0.0061 (5)
C7A0.0224 (6)0.0124 (6)0.0262 (7)0.0022 (5)0.0123 (5)0.0058 (5)
C8A0.0278 (7)0.0204 (7)0.0374 (9)0.0027 (6)0.0198 (6)0.0073 (6)
C9A0.0416 (9)0.0212 (7)0.0394 (9)0.0005 (6)0.0295 (8)0.0088 (7)
C10A0.0446 (9)0.0183 (7)0.0250 (7)0.0008 (6)0.0199 (7)0.0079 (6)
C11A0.0312 (7)0.0175 (7)0.0231 (7)0.0004 (6)0.0118 (6)0.0086 (6)
C12A0.0232 (6)0.0125 (6)0.0221 (7)0.0007 (5)0.0106 (5)0.0073 (5)
C13A0.0164 (6)0.0142 (6)0.0176 (6)0.0014 (5)0.0056 (5)0.0058 (5)
C14A0.0180 (6)0.0169 (6)0.0138 (6)0.0047 (5)0.0038 (5)0.0040 (5)
C15A0.0189 (6)0.0185 (7)0.0206 (7)0.0027 (5)0.0053 (5)0.0064 (5)
C16A0.0176 (6)0.0275 (8)0.0260 (7)0.0066 (6)0.0041 (5)0.0064 (6)
C17A0.0237 (7)0.0242 (8)0.0319 (8)0.0122 (6)0.0046 (6)0.0044 (6)
C18A0.0238 (7)0.0172 (7)0.0281 (7)0.0067 (5)0.0059 (6)0.0041 (6)
C19A0.0184 (6)0.0175 (6)0.0159 (6)0.0044 (5)0.0043 (5)0.0046 (5)
C20A0.0180 (6)0.0119 (6)0.0201 (6)0.0032 (5)0.0047 (5)0.0061 (5)
C21A0.0219 (6)0.0147 (6)0.0185 (6)0.0031 (5)0.0074 (5)0.0042 (5)
C22A0.0214 (6)0.0162 (6)0.0161 (6)0.0045 (5)0.0033 (5)0.0049 (5)
N1B0.0200 (5)0.0185 (6)0.0241 (6)0.0034 (4)0.0066 (5)0.0084 (5)
C1B0.0227 (7)0.0299 (8)0.0300 (8)0.0084 (6)0.0037 (6)0.0122 (6)
C2B0.0356 (8)0.0369 (9)0.0271 (8)0.0120 (7)0.0035 (7)0.0101 (7)
C3B0.0253 (7)0.0212 (7)0.0257 (7)0.0033 (6)0.0096 (6)0.0079 (6)
C4B0.0301 (8)0.0315 (8)0.0323 (8)0.0045 (6)0.0114 (6)0.0161 (7)
C5B0.0242 (7)0.0189 (7)0.0280 (7)0.0022 (5)0.0090 (6)0.0078 (6)
C6B0.0223 (7)0.0279 (8)0.0356 (9)0.0011 (6)0.0078 (6)0.0110 (7)
N1C0.0219 (12)0.0267 (8)0.0237 (19)0.0050 (8)0.0074 (13)0.0075 (9)
C1C0.035 (2)0.038 (3)0.026 (2)0.009 (2)0.0104 (18)0.0003 (19)
C2C0.034 (4)0.055 (5)0.038 (3)0.019 (3)0.008 (3)0.005 (3)
C3C0.0278 (17)0.031 (2)0.032 (2)0.0087 (15)0.0125 (15)0.0090 (15)
C4C0.032 (3)0.035 (5)0.036 (4)0.007 (3)0.014 (3)0.015 (4)
C5C0.0206 (15)0.029 (2)0.0225 (19)0.0028 (13)0.0084 (13)0.0057 (14)
C6C0.034 (3)0.035 (3)0.023 (4)0.004 (3)0.008 (3)0.007 (3)
N1CA0.0219 (12)0.0267 (8)0.0237 (19)0.0050 (8)0.0074 (13)0.0075 (9)
C1CA0.0298 (17)0.0235 (18)0.046 (2)0.0022 (13)0.0211 (15)0.0059 (14)
C2CA0.041 (3)0.034 (2)0.041 (3)0.017 (2)0.011 (3)0.0003 (17)
C3CA0.0290 (13)0.0302 (16)0.0298 (15)0.0045 (11)0.0131 (11)0.0103 (12)
C4CA0.029 (2)0.025 (3)0.039 (4)0.0059 (17)0.015 (2)0.005 (2)
C5CA0.0266 (14)0.046 (2)0.0378 (17)0.0115 (13)0.0037 (12)0.0185 (14)
C6CA0.039 (3)0.060 (5)0.041 (5)0.013 (3)0.005 (4)0.021 (4)
N1D0.0213 (10)0.0215 (14)0.030 (3)0.0069 (8)0.0059 (19)0.009 (2)
C1D0.0354 (18)0.0319 (19)0.041 (2)0.0001 (15)0.0150 (16)0.0126 (16)
C2D0.083 (4)0.046 (3)0.040 (3)0.020 (3)0.021 (3)0.008 (2)
C3D0.061 (3)0.036 (2)0.029 (2)0.028 (2)0.001 (2)0.014 (2)
C4D0.075 (3)0.048 (3)0.038 (2)0.033 (2)0.001 (2)0.0221 (18)
C5D0.018 (4)0.058 (6)0.112 (7)0.004 (4)0.012 (4)0.060 (5)
C6D0.0235 (15)0.0343 (19)0.060 (2)0.0085 (14)0.0069 (15)0.0190 (17)
N1DA0.0213 (10)0.0215 (14)0.030 (3)0.0069 (8)0.0059 (19)0.009 (2)
C1DA0.0350 (18)0.0208 (18)0.033 (2)0.0121 (14)0.0138 (18)0.0029 (16)
C2DA0.049 (2)0.0192 (17)0.048 (2)0.0123 (14)0.0269 (17)0.0003 (14)
C3DA0.0309 (16)0.0271 (18)0.039 (2)0.0080 (14)0.0002 (14)0.0149 (17)
C4DA0.061 (3)0.045 (3)0.028 (2)0.024 (2)0.004 (2)0.016 (2)
C5DA0.034 (5)0.019 (3)0.026 (2)0.013 (3)0.012 (2)0.000 (2)
C6DA0.072 (3)0.054 (3)0.165 (7)0.014 (3)0.083 (4)0.047 (4)
Geometric parameters (Å, º) top
Cl1—C31.7427 (14)C3B—H3B10.9900
Cl2—C101.7502 (15)C3B—H3B20.9900
O1—C131.4229 (15)C4B—H4B10.9800
O1—H10.8400C4B—H4B20.9800
C1—C21.3804 (19)C4B—H4B30.9800
C1—C61.4009 (18)C5B—C6B1.516 (2)
C1—C131.5282 (18)C5B—H5B10.9900
C2—C31.3951 (19)C5B—H5B20.9900
C2—H20.9500C6B—H6B10.9800
C3—C41.3945 (19)C6B—H6B20.9800
C4—C51.391 (2)C6B—H6B30.9800
C4—H40.9500N1C—C5C1.466 (8)
C5—C61.3893 (18)N1C—C1C1.471 (8)
C5—H50.9500N1C—C3C1.473 (8)
C6—C71.4709 (19)C1C—C2C1.515 (8)
C7—C81.3906 (19)C1C—H1C10.9900
C7—C121.4017 (18)C1C—H1C20.9900
C8—C91.394 (2)C2C—H2C10.9800
C8—H80.9500C2C—H2C20.9800
C9—C101.387 (2)C2C—H2C30.9800
C9—H90.9500C3C—C4C1.516 (9)
C10—C111.392 (2)C3C—H3C10.9900
C11—C121.3782 (19)C3C—H3C20.9900
C11—H110.9500C4C—H4C10.9800
C12—C131.5296 (18)C4C—H4C20.9800
C13—C141.5369 (19)C4C—H4C30.9800
C14—C151.3945 (19)C5C—C6C1.521 (7)
C14—C191.4109 (19)C5C—H5C10.9900
C15—C161.388 (2)C5C—H5C20.9900
C15—H150.9500C6C—H6C10.9800
C16—C171.380 (2)C6C—H6C20.9800
C16—H160.9500C6C—H6C30.9800
C17—C181.384 (2)N1CA—C1CA1.467 (6)
C17—H170.9500N1CA—C5CA1.470 (7)
C18—C191.398 (2)N1CA—C3CA1.470 (6)
C18—H180.9500C1CA—C2CA1.516 (5)
C19—C201.4935 (19)C1CA—H1C30.9900
C20—C211.396 (2)C1CA—H1C40.9900
C20—C22i1.398 (2)C2CA—H2C40.9800
C21—C221.387 (2)C2CA—H2C50.9800
C21—H210.9500C2CA—H2C60.9800
C22—C20i1.398 (2)C3CA—C4CA1.519 (7)
C22—H220.9500C3CA—H3C30.9900
Cl1A—C3A1.7383 (15)C3CA—H3C40.9900
Cl2A—C10A1.7408 (16)C4CA—H4C40.9800
O1A—C13A1.4243 (15)C4CA—H4C50.9800
O1A—H1A0.8400C4CA—H4C60.9800
C1A—C2A1.3777 (19)C5CA—C6CA1.522 (7)
C1A—C6A1.4022 (17)C5CA—H5C30.9900
C1A—C13A1.5252 (18)C5CA—H5C40.9900
C2A—C3A1.3905 (19)C6CA—H6C40.9800
C2A—H2A0.9500C6CA—H6C50.9800
C3A—C4A1.395 (2)C6CA—H6C60.9800
C4A—C5A1.391 (2)N1D—C1D1.452 (6)
C4A—H4A0.9500N1D—C3D1.472 (6)
C5A—C6A1.3877 (19)N1D—C5D1.478 (7)
C5A—H5A0.9500C1D—C2D1.508 (5)
C6A—C7A1.4693 (19)C1D—H1D10.9900
C7A—C8A1.3937 (19)C1D—H1D20.9900
C7A—C12A1.3983 (19)C2D—H2D10.9800
C8A—C9A1.390 (2)C2D—H2D20.9800
C8A—H8A0.9500C2D—H2D30.9800
C9A—C10A1.382 (2)C3D—C4D1.520 (5)
C9A—H9A0.9500C3D—H3D10.9900
C10A—C11A1.395 (2)C3D—H3D20.9900
C11A—C12A1.378 (2)C4D—H4D10.9800
C11A—H11A0.9500C4D—H4D20.9800
C12A—C13A1.5311 (18)C4D—H4D30.9800
C13A—C14A1.5308 (18)C5D—C6D1.579 (7)
C14A—C15A1.3978 (18)C5D—H5D10.9900
C14A—C19A1.4100 (19)C5D—H5D20.9900
C15A—C16A1.389 (2)C6D—H6D10.9800
C15A—H15A0.9500C6D—H6D20.9800
C16A—C17A1.380 (2)C6D—H6D30.9800
C16A—H16A0.9500N1DA—C1DA1.469 (6)
C17A—C18A1.391 (2)N1DA—C3DA1.471 (6)
C17A—H17A0.9500N1DA—C5DA1.484 (7)
C18A—C19A1.3964 (19)C1DA—C2DA1.529 (4)
C18A—H18A0.9500C1DA—H1D30.9900
C19A—C20A1.4979 (18)C1DA—H1D40.9900
C20A—C22Aii1.3956 (19)C2DA—H2D40.9800
C20A—C21A1.3966 (19)C2DA—H2D50.9800
C21A—C22A1.3891 (19)C2DA—H2D60.9800
C21A—H21A0.9500C3DA—C4DA1.521 (5)
C22A—C20Aii1.3956 (19)C3DA—H3D30.9900
C22A—H22A0.9500C3DA—H3D40.9900
N1B—C1B1.4714 (18)C4DA—H4D40.9800
N1B—C5B1.4754 (18)C4DA—H4D50.9800
N1B—C3B1.4809 (19)C4DA—H4D60.9800
C1B—C2B1.519 (2)C5DA—C6DA1.589 (7)
C1B—H1B10.9900C5DA—H5D30.9900
C1B—H1B20.9900C5DA—H5D40.9900
C2B—H2B10.9800C6DA—H6D40.9800
C2B—H2B20.9800C6DA—H6D50.9800
C2B—H2B30.9800C6DA—H6D60.9800
C3B—C4B1.527 (2)
C13—O1—H1109.5N1B—C5B—H5B1108.9
C2—C1—C6121.32 (12)C6B—C5B—H5B1108.9
C2—C1—C13127.78 (12)N1B—C5B—H5B2108.9
C6—C1—C13110.87 (11)C6B—C5B—H5B2108.9
C1—C2—C3117.59 (12)H5B1—C5B—H5B2107.7
C1—C2—H2121.2C5B—C6B—H6B1109.5
C3—C2—H2121.2C5B—C6B—H6B2109.5
C4—C3—C2122.09 (13)H6B1—C6B—H6B2109.5
C4—C3—Cl1119.22 (11)C5B—C6B—H6B3109.5
C2—C3—Cl1118.69 (11)H6B1—C6B—H6B3109.5
C5—C4—C3119.43 (12)H6B2—C6B—H6B3109.5
C5—C4—H4120.3C5C—N1C—C1C109.4 (7)
C3—C4—H4120.3C5C—N1C—C3C110.0 (7)
C6—C5—C4119.23 (12)C1C—N1C—C3C110.4 (7)
C6—C5—H5120.4N1C—C1C—C2C113.1 (7)
C4—C5—H5120.4N1C—C1C—H1C1109.0
C5—C6—C1120.30 (13)C2C—C1C—H1C1109.0
C5—C6—C7130.96 (12)N1C—C1C—H1C2109.0
C1—C6—C7108.71 (11)C2C—C1C—H1C2109.0
C8—C7—C12120.11 (13)H1C1—C1C—H1C2107.8
C8—C7—C6131.60 (13)C1C—C2C—H2C1109.5
C12—C7—C6108.27 (12)C1C—C2C—H2C2109.5
C7—C8—C9119.29 (13)H2C1—C2C—H2C2109.5
C7—C8—H8120.4C1C—C2C—H2C3109.5
C9—C8—H8120.4H2C1—C2C—H2C3109.5
C10—C9—C8119.12 (13)H2C2—C2C—H2C3109.5
C10—C9—H9120.4N1C—C3C—C4C113.3 (8)
C8—C9—H9120.4N1C—C3C—H3C1108.9
C9—C10—C11122.68 (13)C4C—C3C—H3C1108.9
C9—C10—Cl2118.86 (11)N1C—C3C—H3C2108.9
C11—C10—Cl2118.44 (11)C4C—C3C—H3C2108.9
C12—C11—C10117.41 (13)H3C1—C3C—H3C2107.7
C12—C11—H11121.3C3C—C4C—H4C1109.5
C10—C11—H11121.3C3C—C4C—H4C2109.5
C11—C12—C7121.39 (13)H4C1—C4C—H4C2109.5
C11—C12—C13127.54 (12)C3C—C4C—H4C3109.5
C7—C12—C13111.07 (12)H4C1—C4C—H4C3109.5
O1—C13—C1111.11 (10)H4C2—C4C—H4C3109.5
O1—C13—C12111.35 (11)N1C—C5C—C6C112.6 (7)
C1—C13—C12101.02 (10)N1C—C5C—H5C1109.1
O1—C13—C14107.02 (10)C6C—C5C—H5C1109.1
C1—C13—C14114.40 (11)N1C—C5C—H5C2109.1
C12—C13—C14111.99 (11)C6C—C5C—H5C2109.1
C15—C14—C19118.90 (13)H5C1—C5C—H5C2107.8
C15—C14—C13118.26 (12)C5C—C6C—H6C1109.5
C19—C14—C13122.80 (12)C5C—C6C—H6C2109.5
C16—C15—C14121.50 (14)H6C1—C6C—H6C2109.5
C16—C15—H15119.2C5C—C6C—H6C3109.5
C14—C15—H15119.2H6C1—C6C—H6C3109.5
C17—C16—C15119.80 (14)H6C2—C6C—H6C3109.5
C17—C16—H16120.1C1CA—N1CA—C5CA110.5 (6)
C15—C16—H16120.1C1CA—N1CA—C3CA110.3 (5)
C16—C17—C18119.45 (15)C5CA—N1CA—C3CA110.3 (5)
C16—C17—H17120.3N1CA—C1CA—C2CA113.7 (5)
C18—C17—H17120.3N1CA—C1CA—H1C3108.8
C17—C18—C19121.92 (15)C2CA—C1CA—H1C3108.8
C17—C18—H18119.0N1CA—C1CA—H1C4108.8
C19—C18—H18119.0C2CA—C1CA—H1C4108.8
C18—C19—C14118.42 (13)H1C3—C1CA—H1C4107.7
C18—C19—C20117.00 (13)C1CA—C2CA—H2C4109.5
C14—C19—C20124.57 (12)C1CA—C2CA—H2C5109.5
C21—C20—C22i118.20 (13)H2C4—C2CA—H2C5109.5
C21—C20—C19121.51 (13)C1CA—C2CA—H2C6109.5
C22i—C20—C19120.16 (13)H2C4—C2CA—H2C6109.5
C22—C21—C20120.84 (13)H2C5—C2CA—H2C6109.5
C22—C21—H21119.6N1CA—C3CA—C4CA113.5 (6)
C20—C21—H21119.6N1CA—C3CA—H3C3108.9
C21—C22—C20i120.95 (13)C4CA—C3CA—H3C3108.9
C21—C22—H22119.5N1CA—C3CA—H3C4108.9
C20i—C22—H22119.5C4CA—C3CA—H3C4108.9
C13A—O1A—H1A109.5H3C3—C3CA—H3C4107.7
C2A—C1A—C6A121.37 (12)C3CA—C4CA—H4C4109.5
C2A—C1A—C13A127.42 (11)C3CA—C4CA—H4C5109.5
C6A—C1A—C13A111.20 (12)H4C4—C4CA—H4C5109.5
C1A—C2A—C3A117.54 (12)C3CA—C4CA—H4C6109.5
C1A—C2A—H2A121.2H4C4—C4CA—H4C6109.5
C3A—C2A—H2A121.2H4C5—C4CA—H4C6109.5
C2A—C3A—C4A122.28 (13)N1CA—C5CA—C6CA112.3 (6)
C2A—C3A—Cl1A118.45 (11)N1CA—C5CA—H5C3109.1
C4A—C3A—Cl1A119.26 (11)C6CA—C5CA—H5C3109.1
C5A—C4A—C3A119.30 (13)N1CA—C5CA—H5C4109.1
C5A—C4A—H4A120.4C6CA—C5CA—H5C4109.1
C3A—C4A—H4A120.4H5C3—C5CA—H5C4107.9
C6A—C5A—C4A119.19 (12)C5CA—C6CA—H6C4109.5
C6A—C5A—H5A120.4C5CA—C6CA—H6C5109.5
C4A—C5A—H5A120.4H6C4—C6CA—H6C5109.5
C5A—C6A—C1A120.27 (13)C5CA—C6CA—H6C6109.5
C5A—C6A—C7A131.30 (12)H6C4—C6CA—H6C6109.5
C1A—C6A—C7A108.37 (12)H6C5—C6CA—H6C6109.5
C8A—C7A—C12A120.06 (14)C1D—N1D—C3D111.1 (5)
C8A—C7A—C6A131.51 (14)C1D—N1D—C5D108.6 (6)
C12A—C7A—C6A108.43 (11)C3D—N1D—C5D114.6 (5)
C9A—C8A—C7A118.70 (15)N1D—C1D—C2D114.4 (4)
C9A—C8A—H8A120.7N1D—C1D—H1D1108.7
C7A—C8A—H8A120.7C2D—C1D—H1D1108.7
C10A—C9A—C8A120.05 (14)N1D—C1D—H1D2108.7
C10A—C9A—H9A120.0C2D—C1D—H1D2108.7
C8A—C9A—H9A120.0H1D1—C1D—H1D2107.6
C9A—C10A—C11A122.21 (15)C1D—C2D—H2D1109.5
C9A—C10A—Cl2A118.90 (12)C1D—C2D—H2D2109.5
C11A—C10A—Cl2A118.87 (13)H2D1—C2D—H2D2109.5
C12A—C11A—C10A117.19 (15)C1D—C2D—H2D3109.5
C12A—C11A—H11A121.4H2D1—C2D—H2D3109.5
C10A—C11A—H11A121.4H2D2—C2D—H2D3109.5
C11A—C12A—C7A121.76 (13)N1D—C3D—C4D117.0 (5)
C11A—C12A—C13A127.11 (13)N1D—C3D—H3D1108.1
C7A—C12A—C13A111.13 (12)C4D—C3D—H3D1108.1
O1A—C13A—C1A111.32 (10)N1D—C3D—H3D2108.1
O1A—C13A—C14A107.22 (10)C4D—C3D—H3D2108.1
C1A—C13A—C14A114.25 (11)H3D1—C3D—H3D2107.3
O1A—C13A—C12A110.73 (10)C3D—C4D—H4D1109.5
C1A—C13A—C12A100.74 (10)C3D—C4D—H4D2109.5
C14A—C13A—C12A112.58 (11)H4D1—C4D—H4D2109.5
C15A—C14A—C19A118.83 (12)C3D—C4D—H4D3109.5
C15A—C14A—C13A118.53 (12)H4D1—C4D—H4D3109.5
C19A—C14A—C13A122.59 (11)H4D2—C4D—H4D3109.5
C16A—C15A—C14A121.32 (13)N1D—C5D—C6D121.3 (7)
C16A—C15A—H15A119.3N1D—C5D—H5D1107.0
C14A—C15A—H15A119.3C6D—C5D—H5D1107.0
C17A—C16A—C15A119.96 (13)N1D—C5D—H5D2107.0
C17A—C16A—H16A120.0C6D—C5D—H5D2107.0
C15A—C16A—H16A120.0H5D1—C5D—H5D2106.7
C16A—C17A—C18A119.45 (13)C5D—C6D—H6D1109.5
C16A—C17A—H17A120.3C5D—C6D—H6D2109.5
C18A—C17A—H17A120.3H6D1—C6D—H6D2109.5
C17A—C18A—C19A121.57 (14)C5D—C6D—H6D3109.5
C17A—C18A—H18A119.2H6D1—C6D—H6D3109.5
C19A—C18A—H18A119.2H6D2—C6D—H6D3109.5
C18A—C19A—C14A118.79 (12)C1DA—N1DA—C3DA110.3 (5)
C18A—C19A—C20A116.71 (12)C1DA—N1DA—C5DA115.5 (5)
C14A—C19A—C20A124.50 (12)C3DA—N1DA—C5DA110.9 (5)
C22Aii—C20A—C21A118.27 (12)N1DA—C1DA—C2DA117.3 (4)
C22Aii—C20A—C19A120.83 (12)N1DA—C1DA—H1D3108.0
C21A—C20A—C19A120.78 (12)C2DA—C1DA—H1D3108.0
C22A—C21A—C20A120.81 (13)N1DA—C1DA—H1D4108.0
C22A—C21A—H21A119.6C2DA—C1DA—H1D4108.0
C20A—C21A—H21A119.6H1D3—C1DA—H1D4107.2
C21A—C22A—C20Aii120.92 (12)C1DA—C2DA—H2D4109.5
C21A—C22A—H22A119.5C1DA—C2DA—H2D5109.5
C20Aii—C22A—H22A119.5H2D4—C2DA—H2D5109.5
C1B—N1B—C5B111.33 (12)C1DA—C2DA—H2D6109.5
C1B—N1B—C3B110.96 (11)H2D4—C2DA—H2D6109.5
C5B—N1B—C3B113.05 (11)H2D5—C2DA—H2D6109.5
N1B—C1B—C2B113.88 (13)N1DA—C3DA—C4DA113.9 (4)
N1B—C1B—H1B1108.8N1DA—C3DA—H3D3108.8
C2B—C1B—H1B1108.8C4DA—C3DA—H3D3108.8
N1B—C1B—H1B2108.8N1DA—C3DA—H3D4108.8
C2B—C1B—H1B2108.8C4DA—C3DA—H3D4108.8
H1B1—C1B—H1B2107.7H3D3—C3DA—H3D4107.7
C1B—C2B—H2B1109.5C3DA—C4DA—H4D4109.5
C1B—C2B—H2B2109.5C3DA—C4DA—H4D5109.5
H2B1—C2B—H2B2109.5H4D4—C4DA—H4D5109.5
C1B—C2B—H2B3109.5C3DA—C4DA—H4D6109.5
H2B1—C2B—H2B3109.5H4D4—C4DA—H4D6109.5
H2B2—C2B—H2B3109.5H4D5—C4DA—H4D6109.5
N1B—C3B—C4B116.88 (13)N1DA—C5DA—C6DA118.7 (5)
N1B—C3B—H3B1108.1N1DA—C5DA—H5D3107.6
C4B—C3B—H3B1108.1C6DA—C5DA—H5D3107.6
N1B—C3B—H3B2108.1N1DA—C5DA—H5D4107.6
C4B—C3B—H3B2108.1C6DA—C5DA—H5D4107.6
H3B1—C3B—H3B2107.3H5D3—C5DA—H5D4107.1
C3B—C4B—H4B1109.5C5DA—C6DA—H6D4109.5
C3B—C4B—H4B2109.5C5DA—C6DA—H6D5109.5
H4B1—C4B—H4B2109.5H6D4—C6DA—H6D5109.5
C3B—C4B—H4B3109.5C5DA—C6DA—H6D6109.5
H4B1—C4B—H4B3109.5H6D4—C6DA—H6D6109.5
H4B2—C4B—H4B3109.5H6D5—C6DA—H6D6109.5
N1B—C5B—C6B113.51 (12)
C6—C1—C2—C30.5 (2)C5A—C6A—C7A—C12A175.28 (14)
C13—C1—C2—C3178.35 (13)C1A—C6A—C7A—C12A2.01 (15)
C1—C2—C3—C41.1 (2)C12A—C7A—C8A—C9A0.9 (2)
C1—C2—C3—Cl1179.17 (10)C6A—C7A—C8A—C9A178.38 (14)
C2—C3—C4—C51.4 (2)C7A—C8A—C9A—C10A0.9 (2)
Cl1—C3—C4—C5178.80 (11)C8A—C9A—C10A—C11A1.7 (2)
C3—C4—C5—C60.2 (2)C8A—C9A—C10A—Cl2A176.99 (12)
C4—C5—C6—C11.4 (2)C9A—C10A—C11A—C12A0.6 (2)
C4—C5—C6—C7179.40 (13)Cl2A—C10A—C11A—C12A178.09 (11)
C2—C1—C6—C51.8 (2)C10A—C11A—C12A—C7A1.3 (2)
C13—C1—C6—C5179.92 (12)C10A—C11A—C12A—C13A177.59 (13)
C2—C1—C6—C7179.81 (12)C8A—C7A—C12A—C11A2.0 (2)
C13—C1—C6—C71.66 (15)C6A—C7A—C12A—C11A177.39 (12)
C5—C6—C7—C80.0 (3)C8A—C7A—C12A—C13A177.00 (12)
C1—C6—C7—C8178.18 (14)C6A—C7A—C12A—C13A3.57 (15)
C5—C6—C7—C12178.43 (14)C2A—C1A—C13A—O1A64.61 (17)
C1—C6—C7—C120.24 (15)C6A—C1A—C13A—O1A115.17 (12)
C12—C7—C8—C90.3 (2)C2A—C1A—C13A—C14A57.01 (18)
C6—C7—C8—C9177.96 (14)C6A—C1A—C13A—C14A123.21 (12)
C7—C8—C9—C100.3 (2)C2A—C1A—C13A—C12A177.95 (13)
C8—C9—C10—C110.3 (2)C6A—C1A—C13A—C12A2.27 (14)
C8—C9—C10—Cl2177.89 (11)C11A—C12A—C13A—O1A64.65 (17)
C9—C10—C11—C120.7 (2)C7A—C12A—C13A—O1A114.32 (12)
Cl2—C10—C11—C12177.43 (10)C11A—C12A—C13A—C1A177.48 (13)
C10—C11—C12—C70.7 (2)C7A—C12A—C13A—C1A3.54 (14)
C10—C11—C12—C13179.42 (12)C11A—C12A—C13A—C14A55.37 (18)
C8—C7—C12—C110.2 (2)C7A—C12A—C13A—C14A125.66 (12)
C6—C7—C12—C11178.82 (12)O1A—C13A—C14A—C15A5.45 (16)
C8—C7—C12—C13179.90 (12)C1A—C13A—C14A—C15A118.40 (13)
C6—C7—C12—C131.27 (15)C12A—C13A—C14A—C15A127.48 (13)
C2—C1—C13—O162.04 (17)O1A—C13A—C14A—C19A171.97 (12)
C6—C1—C13—O1115.96 (12)C1A—C13A—C14A—C19A64.18 (16)
C2—C1—C13—C12179.74 (13)C12A—C13A—C14A—C19A49.94 (17)
C6—C1—C13—C122.26 (14)C19A—C14A—C15A—C16A2.5 (2)
C2—C1—C13—C1459.26 (18)C13A—C14A—C15A—C16A175.04 (13)
C6—C1—C13—C14122.74 (12)C14A—C15A—C16A—C17A0.1 (2)
C11—C12—C13—O163.97 (17)C15A—C16A—C17A—C18A1.4 (2)
C7—C12—C13—O1115.93 (12)C16A—C17A—C18A—C19A0.6 (2)
C11—C12—C13—C1177.99 (13)C17A—C18A—C19A—C14A1.8 (2)
C7—C12—C13—C12.11 (14)C17A—C18A—C19A—C20A177.53 (14)
C11—C12—C13—C1455.82 (17)C15A—C14A—C19A—C18A3.2 (2)
C7—C12—C13—C14124.28 (12)C13A—C14A—C19A—C18A174.17 (13)
O1—C13—C14—C156.18 (16)C15A—C14A—C19A—C20A176.00 (13)
C1—C13—C14—C15117.35 (13)C13A—C14A—C19A—C20A6.6 (2)
C12—C13—C14—C15128.47 (13)C18A—C19A—C20A—C22Aii77.30 (17)
O1—C13—C14—C19171.45 (12)C14A—C19A—C20A—C22Aii103.44 (16)
C1—C13—C14—C1965.02 (17)C18A—C19A—C20A—C21A98.52 (16)
C12—C13—C14—C1949.16 (17)C14A—C19A—C20A—C21A80.73 (18)
C19—C14—C15—C161.4 (2)C22Aii—C20A—C21A—C22A0.6 (2)
C13—C14—C15—C16176.30 (13)C19A—C20A—C21A—C22A176.54 (13)
C14—C15—C16—C170.6 (2)C20A—C21A—C22A—C20Aii0.6 (2)
C15—C16—C17—C180.2 (3)C5B—N1B—C1B—C2B62.98 (17)
C16—C17—C18—C190.1 (3)C3B—N1B—C1B—C2B170.17 (13)
C17—C18—C19—C140.8 (2)C1B—N1B—C3B—C4B71.11 (16)
C17—C18—C19—C20179.49 (15)C5B—N1B—C3B—C4B54.78 (17)
C15—C14—C19—C181.5 (2)C1B—N1B—C5B—C6B177.19 (13)
C13—C14—C19—C18176.09 (13)C3B—N1B—C5B—C6B57.12 (16)
C15—C14—C19—C20179.91 (13)C5C—N1C—C1C—C2C72.5 (10)
C13—C14—C19—C202.5 (2)C3C—N1C—C1C—C2C166.3 (7)
C18—C19—C20—C21102.54 (17)C5C—N1C—C3C—C4C174.3 (9)
C14—C19—C20—C2178.87 (19)C1C—N1C—C3C—C4C64.8 (11)
C18—C19—C20—C22i73.40 (18)C1C—N1C—C5C—C6C170.4 (8)
C14—C19—C20—C22i105.19 (17)C3C—N1C—C5C—C6C68.2 (11)
C22i—C20—C21—C220.8 (2)C5CA—N1CA—C1CA—C2CA161.8 (5)
C19—C20—C21—C22176.85 (13)C3CA—N1CA—C1CA—C2CA75.9 (8)
C20—C21—C22—C20i0.9 (2)C1CA—N1CA—C3CA—C4CA164.3 (7)
C6A—C1A—C2A—C3A1.4 (2)C5CA—N1CA—C3CA—C4CA73.4 (9)
C13A—C1A—C2A—C3A178.87 (13)C1CA—N1CA—C5CA—C6CA78.2 (8)
C1A—C2A—C3A—C4A0.6 (2)C3CA—N1CA—C5CA—C6CA159.6 (6)
C1A—C2A—C3A—Cl1A179.27 (11)C3D—N1D—C1D—C2D171.4 (5)
C2A—C3A—C4A—C5A1.8 (2)C5D—N1D—C1D—C2D61.8 (7)
Cl1A—C3A—C4A—C5A178.12 (11)C1D—N1D—C3D—C4D69.0 (7)
C3A—C4A—C5A—C6A0.9 (2)C5D—N1D—C3D—C4D54.4 (8)
C4A—C5A—C6A—C1A1.0 (2)C1D—N1D—C5D—C6D84.2 (9)
C4A—C5A—C6A—C7A178.05 (14)C3D—N1D—C5D—C6D151.0 (7)
C2A—C1A—C6A—C5A2.2 (2)C3DA—N1DA—C1DA—C2DA72.0 (6)
C13A—C1A—C6A—C5A177.97 (12)C5DA—N1DA—C1DA—C2DA54.7 (7)
C2A—C1A—C6A—C7A179.86 (12)C1DA—N1DA—C3DA—C4DA171.1 (4)
C13A—C1A—C6A—C7A0.34 (15)C5DA—N1DA—C3DA—C4DA59.7 (6)
C5A—C6A—C7A—C8A4.1 (3)C1DA—N1DA—C5DA—C6DA147.3 (6)
C1A—C6A—C7A—C8A178.65 (15)C3DA—N1DA—C5DA—C6DA86.3 (8)
Symmetry codes: (i) x+1, y, z; (ii) x+2, y+1, z+1.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O1—H1···N1Diii0.841.952.781 (2)171
O1—H1···N1DAiii0.841.912.731 (2)164
O1A—H1A···N1Biv0.841.942.766 (2)167
C4—H4···O1Av0.952.543.489 (2)175
C4A—H4A···O1vi0.952.473.403 (2)168
C9—H9···N1Cvii0.952.543.459 (2)163
C9—H9···N1CAvii0.952.603.519 (2)162
C2DA—H2D6···Cl2A0.982.903.819 (4)157
C15—H15···O10.952.222.621 (2)104
C15A—H15A···O1A0.952.232.626 (2)104
Symmetry codes: (iii) x, y, z1; (iv) x+1, y+2, z+1; (v) x+1, y+1, z+1; (vi) x+2, y+1, z; (vii) x+1, y+1, z.
 

References

First citationAwwadi, F. F., Willett, R. D., Peterson, K. A. & Twamley, B. (2006). Chem. Eur. J. 12, 8952–8960.  Web of Science CrossRef PubMed CAS Google Scholar
First citationBarbour, L. J., Bourne, S. A., Caira, M. R., Nassimbeni, L. R., Weber, E., Skobridis, K. & Wierig, A. (1993). Supramol. Chem. 1, 331–336.  CAS Google Scholar
First citationBourne, S. A., Nassimbeni, L. R., Niven, M. L., Weber, E. & Wierig, A. (1994). J. Chem. Soc. Perkin Trans. 2, pp. 1215–1222.  CSD CrossRef Web of Science Google Scholar
First citationBraga, D. & Grepioni, F. (2004). In Encyclopedia of Supramolecular Chemistry edited by J. L. Atwood & J. W. Steed, pp. 357–363. Boca Raton: CRC Press.  Google Scholar
First citationBruker (2008). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationCaira, M. R., Coetzee, A., Nassimbeni, L. R., Weber, E. & Wierig, A. (1997). J. Chem. Soc. Perkin Trans. 2, pp. 237–242.  CSD CrossRef Web of Science Google Scholar
First citationDebroy, P., Lindeman, S. V. & Rathore, R. (2009). J. Org. Chem. 74, 2080–2087.  Web of Science CSD CrossRef PubMed CAS Google Scholar
First citationDesiraju, G. R. & Steiner, T. (1999). The Weak Hydrogen Bond in Structural Chemistry and Biology, IUCR Monographs on Crystallography, Vol. 9. New York: Oxford University Press.  Google Scholar
First citationFarrugia, L. J. (2012). J. Appl. Cryst. 45, 849–854.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationGroom, C. R. & Allen, F. H. (2014). Angew. Chem. Int. Ed. 53, 662–671.  Web of Science CSD CrossRef CAS Google Scholar
First citationIbragimov, B. T., Beketov, K. M., Weber, E., Seidel, J., Sumarna, O., Makhkamov, K. K. & Köhnke, K. (2001). J. Phys. Org. Chem. 14, 697–703.  Web of Science CSD CrossRef CAS Google Scholar
First citationJames, S. L. (2004). In Encyclopedia of Supramolecular Chemistry edited by J. L. Atwood & J. W. Steed, pp. 1093–1099. Boca Raton: CRC Press.  Google Scholar
First citationJones, P. G. & Kuś, P. (2005). Acta Cryst. E61, o2947–o2948.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationKlien, H., Seichter, W. & Weber, E. (2013). CrystEngComm, 15, 586–596.  Web of Science CSD CrossRef CAS Google Scholar
First citationKlien, H., Seichter, W. & Weber, E. (2014). Cryst. Growth Des. 14, 4371–4382.  Web of Science CSD CrossRef CAS Google Scholar
First citationLunazzi, L., Mazzanti, A., Minzoni, M. & Anderson, J. E. (2005). Org. Lett. 7, 1291–1294.  Web of Science CSD CrossRef PubMed CAS Google Scholar
First citationMartinez, C. R. & Iverson, B. L. (2012). Chem. Sci. 3, 2191–2201.  Web of Science CrossRef CAS Google Scholar
First citationMetrangolo, P., Resnati, G., Pilati, T. & Biella, S. (2008). In Halogen Bonding, Structure and Bonding, Vol. 126, edited by P. Metrangolo & G. Resnati, pp. 105–136. Berlin-Heidelberg: Springer.  Google Scholar
First citationMukherjee, A., Tothadi, S. & Desiraju, G. R. (2014). Acc. Chem. Res. 47, 2514–2524.  Web of Science CrossRef CAS PubMed Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSheldrick, G. M. (2015). Acta Cryst. C71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar
First citationSkobridis, K., Theodorou, V., Alivertis, D., Seichter, W., Weber, E. & Csöregh, I. (2007). Supramol. Chem. 19, 373–382.  Web of Science CSD CrossRef CAS Google Scholar
First citationToussaint, C. J. (1966). Acta Cryst. 21, 1002–1003.  CSD CrossRef IUCr Journals Web of Science Google Scholar
First citationWeber, E. (1996). In Comprehensive Supramolecular Chemistry, Vol. 6, edited by D. D. MacNicol, F. Toda & R. Bishop, pp. 535–592. Oxford: Elsevier.  Google Scholar
First citationWeber, E., Nitsche, S. K., Wierig, A. & Csöregh, I. (2002). Eur. J. Org. Chem., pp. 856–872.  Google Scholar
First citationWeber, E., Skobridis, K., Wierig, A., Stathi, S., Nassimbeni, L. R. & Niven, M. L. (1993). Angew. Chem. Int. Ed. Engl. 32, 606–608.  CSD CrossRef Web of Science Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds