research communications\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Crystal structure of tris­­(piperidinium) hydrogen sulfate sulfate

aInstitute of Low Temperature and Structure Research, Polish Academy of Sciences, Okolna str. 2, PO Box 1410, 50-950 Wroclaw, Poland
*Correspondence e-mail: t.lukianova@int.pan.wroc.pl

Edited by G. Smith, Queensland University of Technology, Australia (Received 26 September 2015; accepted 29 October 2015; online 4 November 2015)

In the title molecular salt, 3C5H12N+·HSO4·SO42−, each cation adopts a chair conformation. In the crystal, the hydrogen sulfate ion is connected to the sulfate ion by a strong O—H⋯O hydrogen bond. The packing also features a number of N—H⋯O hydrogen bonds, which lead to a three-dimensional network structure. The hydrogen sulfate anion accepts four hydrogen bonds from two cations, whereas the sulfate ion, as an acceptor, binds to five separate piperidinium cations, forming seven hydrogen bonds.

1. Chemical context

Hydrogen bonding is a powerful and versatile tool commonly used in crystal engineering to design, combine and organize individual organic mol­ecules in solids, thus creating new materials with tunable physical properties. Simple organic–inorganic salts seem to be good candidates for this purpose because of the flexibility of their special structural features such as polarity and their promising potential applications in chemistry. Not of less importance would be the use of inorganic oxyanions, which are very attractive as inorganic building blocks due to their shapes and diverse reactivity in aqueous solutions. In recent years, sulfates and hydrogen sulfates of organic bases have found applications as ionic liquids (George et al., 2015[George, A., Brandt, A., Tran, K., Zahari, S. M. S. N. S., Klein-Marcuschamer, D., Sun, N., Sathitsuksanoh, N., Shi, J., Stavila, V., Parthasarathi, R., Singh, S., Holmes, B. M., Welton, T., Simmons, B. A. & Hallett, J. P. (2015). Green Chem. 17, 1728-1734.]). Therefore, the results of a structural study on a new molecular salt obtained from piperidine and sulfuric acid are reported here.

[Scheme 1]

2. Structural commentary

In the title compound, 3C5H12N+·HSO4·SO42−, (I)[link], the asymmetric unit comprises three independent protonated piperidinium cations, one hydrogen sulfate anion and one sulfate anion (Fig. 1[link]). The geometries of the three cations are similar, possessing chair conformations. The N—C and C—C bond lengths are in the ranges 1.489 (2)–1.4978 (19) Å and 1.518 (2)–1.530 (2) Å, respectively. The C—C—C, C—C—N and C—N—C angles are in the ranges 109.69 (13)–111.42 (13), 109.20 (12)–110.29 (12) and 112.01 (11)–112.30 (12)°, respectively. These values are in good agreement with those reported in the literature (Lee & Harrison, 2003[Lee, C. & Harrison, W. T. A. (2003). Acta Cryst. E59, m959-m960.]). Within the cation–anion unit, the N atoms of the three piperidinium cations are connected to the O atom acceptors of the HSO4 (O11–O14) and SO42− (O21–O24) anions by five N—H⋯O hydrogen bonds (Table 1[link]). The two anions are linked via a short O14—H14⋯O21 hydrogen bond [2.5603 (16) Å], Figs. 1[link] and 2[link].

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
O14—H14⋯O21 0.84 1.72 2.5603 (16) 173
N21—H21A⋯O11i 0.91 1.93 2.8226 (18) 166
N21—H21B⋯O12 0.91 2.32 2.9096 (19) 122
N21—H21B⋯O24ii 0.91 2.47 3.0964 (18) 127
N11—H11A⋯O21 0.91 2.59 3.201 (2) 126
N11—H11A⋯O24 0.91 1.89 2.7904 (17) 171
N11—H11B⋯O22iii 0.91 2.47 3.0474 (18) 122
N11—H11B⋯O23iii 0.91 1.92 2.8039 (18) 164
N31—H31A⋯O12 0.91 2.41 3.0245 (18) 125
N31—H31A⋯O13 0.91 1.93 2.8240 (18) 167
N31—H31B⋯O24ii 0.91 1.89 2.7978 (19) 172
Symmetry codes: (i) -x+1, -y+1, -z+1; (ii) [x, -y+{\script{3\over 2}}, z+{\script{1\over 2}}]; (iii) [x, -y+{\script{3\over 2}}, z-{\script{1\over 2}}].
[Figure 1]
Figure 1
The asymmetric unit of (I)[link], showing the atom-numbering scheme. Displacement ellipsoids are drawn at the 50% probability level. Hydrogen bonds are denoted by cyan dashed lines.
[Figure 2]
Figure 2
The fragments of HS2O83− anion pairs, formed from HSO4 and SO42− anions via strong O—H⋯O hydrogen bonds (cyan dashed lines).

3. Supra­molecular features

The crystal structure of (I)[link] features N—H⋯O and O—H⋯O hydrogen bonds (Table 1[link], Fig. 1[link]). The N atoms of the piperidinium cations are involved in hydrogen-bond formation, as donors with oxygen atoms of the sulfate and hydrogen sulfate anions. The sulfate-bound O atoms, which act as acceptors, link the organic mol­ecules through rather strong hydrogen bonds, forming a two-dimensional network of hydrogen bonds giving rise to layers parallel to (100). The hydrogen sulfate ion accepts four hydrogen bonds from three cations, whereas the sulfate ion, as an acceptor, binds to five piperidinium ions, forming seven hydrogen bonds in the overall three-dimensional structure (Fig. 3[link]).

[Figure 3]
Figure 3
Projection of the crystal structure of (I)[link] on the (100) plane. Hydrogen bonds are denoted by cyan dashed lines.

4. Database survey

Crystal structures of piperidinium cations with counter-anions such as hydrogen sulfide, arsenate and violurate (Smail & Sheldrick, 1973[Smail, E. J. & Sheldrick, G. M. (1973). Acta Cryst. B29, 2027-2028.]; Lee & Harrison, 2003[Lee, C. & Harrison, W. T. A. (2003). Acta Cryst. E59, m959-m960.]; Kolev et al., 2009[Kolev, T., Koleva, B. B., Seidel, R. W., Spiteller, M. & Sheldrick, W. S. (2009). Cryst. Growth Des. 9, 3348-3352.]) and other mixed compounds (Banerjee & Murugavel, 2004[Banerjee, S. & Murugavel, R. (2004). Cryst. Growth Des. 4, 545-552.]; Mohammadnezhad et al., 2008[Mohammadnezhad, G. S., Amini, M. M., Khavasi, H. R. & Ng, S. W. (2008). Acta Cryst. E64, o1564.]; Xu et al., 2009[Xu, Y.-M., Gao, S. & Ng, S. W. (2009). Acta Cryst. E65, o3147.]; Anderson et al., 2011[Anderson, K. M., Goeta, A. E., Martin, J. E., Mason, S. A., McIntyre, G. J., Sansam, B. C. R., Wilkinson, C. & Steed, J. W. (2011). Cryst. Growth Des. 11, 4904-4919.]; Hoque & Das, 2014[Hoque, M. N. & Das, G. (2014). Cryst. Growth Des. 14, 2962-2971.]) have been reported.

5. Synthesis and crystallization

The title compound was prepared by the reaction between 3 ml (0.03 mol) of piperidine (Aldrich, ReagentPlus, 99%) and 3.1 ml (0.012 mol) of 30% aqueous sulfuric acid solution. The reaction mixture was continuously stirred for 15 minutes at 323 K and then allowed to cool down to room temperature. The final pH value was 2. The mixture was kept at room temperature over a period of several months, after which it was cooled in a refrigerator (T ≃ 278 K), giving colourless crystals of the title compound after a few weeks.

6. Refinement

Crystal data, data collection and structure refinement details are summarized in Table 2[link]. The positions of hydrogen atoms of the amines and the hydrogen sulfate anion were initially located in difference Fourier maps but were subsequently allowed to ride in the refinement with O—H = 0.84 and N—H = 0.91 Å and with Uiso(H) = 1.2Ueq(N) or 1.5Ueq(O). The H atom of the hydrogen sulfate anion was refined with the SHELX AFIX 147 instruction. Piperidinium C-bound H atoms were placed in geometrically idealized positions and also allowed to ride, with C—H = 0.99 Å and Uiso(H) = 1.2Ueq(C).

Table 2
Experimental details

Crystal data
Chemical formula 3C5H12N+·HSO4·SO42−
Mr 451.60
Crystal system, space group Monoclinic, P21/c
Temperature (K) 100
a, b, c (Å) 10.592 (4), 17.922 (5), 11.161 (4)
β (°) 99.25 (2)
V3) 2091.1 (12)
Z 4
Radiation type Mo Kα
μ (mm−1) 0.30
Crystal size (mm) 0.20 × 0.18 × 0.16
 
Data collection
Diffractometer Rigaku Oxford Xcalibur Atlas
Absorption correction Analytical [CrysAlis PRO (Rigaku Oxford, 2015[Rigaku Oxford (2015). CrysAlis PRO. Rigaku Corporation, Yarnton, England.]), based on expressions of Clark & Reid (1995[Clark, R. C. & Reid, J. S. (1995). Acta Cryst. A51, 887-897.])]
Tmin, Tmax 0.994, 0.996
No. of measured, independent and observed [I > 2σ(I)] reflections 35669, 5411, 4291
Rint 0.039
(sin θ/λ)max−1) 0.691
 
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.035, 0.083, 1.03
No. of reflections 5411
No. of parameters 254
H-atom treatment H-atom parameters constrained
Δρmax, Δρmin (e Å−3) 0.33, −0.42
Computer programs: CrysAlis PRO (Rigaku Oxford, 2015[Rigaku Oxford (2015). CrysAlis PRO. Rigaku Corporation, Yarnton, England.]), SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]), SHELXL2014 (Sheldrick, 2015[Sheldrick, G. M. (2015). Acta Cryst. C71, 3-8.]), DIAMOND (Brandenburg, 1997[Brandenburg, K. (1997). DIAMOND. Crystal Impact GbR, Bonn, Germany.]) and OLEX2 (Dolomanov et al., 2009[Dolomanov, O. V., Bourhis, L. J., Gildea, R. J., Howard, J. A. K. & Puschmann, H. (2009). J. Appl. Cryst. 42, 339-341.]).

Supporting information


Computing details top

Data collection: CrysAlis PRO (Rigaku Oxford, 2015); cell refinement: CrysAlis PRO (Rigaku Oxford, 2015); data reduction: CrysAlis PRO (Rigaku Oxford, 2015); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL2014 (Sheldrick, 2015); molecular graphics: DIAMOND (Brandenburg, 1997); software used to prepare material for publication: OLEX2 (Dolomanov et al., 2009).

Tris(piperidinium) hydrogen sulfate sulfate top
Crystal data top
3C5H12N+·HSO4·SO42F(000) = 976
Mr = 451.60Dx = 1.434 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
a = 10.592 (4) ÅCell parameters from 12552 reflections
b = 17.922 (5) Åθ = 2.2–29.4°
c = 11.161 (4) ŵ = 0.30 mm1
β = 99.25 (2)°T = 100 K
V = 2091.1 (12) Å3Block, colourless
Z = 40.20 × 0.18 × 0.16 mm
Data collection top
Rigaku Oxford Xcalibur Atlas
diffractometer
5411 independent reflections
Radiation source: fine-focus sealed X-ray tube, Enhance (Mo) X-ray source4291 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.039
Detector resolution: 10.6249 pixels mm-1θmax = 29.4°, θmin = 2.7°
ω scansh = 1414
Absorption correction: analytical
[CrysAlis PRO (Rigaku Oxford, 2015), based on expressions of Clark & Reid (1995)]
k = 2324
Tmin = 0.994, Tmax = 0.996l = 1515
35669 measured reflections
Refinement top
Refinement on F20 restraints
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.035H-atom parameters constrained
wR(F2) = 0.083 w = 1/[σ2(Fo2) + (0.0343P)2 + 1.1863P]
where P = (Fo2 + 2Fc2)/3
S = 1.03(Δ/σ)max = 0.001
5411 reflectionsΔρmax = 0.33 e Å3
254 parametersΔρmin = 0.42 e Å3
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
S10.66217 (3)0.57717 (2)0.56541 (3)0.01118 (9)
S20.39851 (3)0.75550 (2)0.40181 (3)0.01134 (9)
O120.57890 (10)0.58513 (6)0.65614 (9)0.0155 (2)
O210.39138 (10)0.67389 (6)0.42549 (10)0.0183 (2)
O140.57685 (10)0.58114 (6)0.43754 (10)0.0175 (2)
H140.51940.61340.43850.026*
O110.72505 (10)0.50505 (6)0.56684 (10)0.0174 (2)
O130.75266 (10)0.63911 (6)0.57133 (10)0.0180 (2)
O220.50129 (11)0.79014 (7)0.48587 (10)0.0222 (3)
C250.19519 (15)0.50258 (8)0.72404 (14)0.0154 (3)
H25A0.20000.47350.80010.018*
H25B0.19550.46690.65630.018*
N210.30210 (12)0.60129 (7)0.62212 (11)0.0127 (3)
H21A0.30290.57180.55590.015*
H21B0.37160.63180.62930.015*
O230.27443 (10)0.78993 (6)0.41375 (9)0.0142 (2)
O240.42147 (10)0.76415 (6)0.27366 (9)0.0135 (2)
N110.32098 (12)0.63977 (7)0.14102 (11)0.0131 (3)
H11A0.35700.67680.19090.016*
H11B0.31560.65600.06310.016*
N310.67984 (12)0.73600 (7)0.74774 (12)0.0159 (3)
H31A0.69010.70230.68900.019*
H31B0.59470.73940.75100.019*
C140.21075 (15)0.49250 (8)0.09492 (14)0.0164 (3)
H14A0.21250.47100.17680.020*
H14B0.17250.45510.03450.020*
C260.31146 (14)0.55327 (8)0.73257 (13)0.0138 (3)
H26A0.31690.58510.80570.017*
H26B0.39010.52260.74030.017*
C230.06623 (15)0.59747 (9)0.59190 (15)0.0176 (3)
H23A0.06220.56620.51830.021*
H23B0.01210.62850.58280.021*
C160.40461 (14)0.57238 (8)0.15854 (14)0.0152 (3)
H16A0.41390.55570.24410.018*
H16B0.49070.58500.14060.018*
C220.18310 (14)0.64782 (8)0.60349 (14)0.0155 (3)
H22A0.17990.67820.52900.019*
H22B0.18370.68210.67310.019*
C240.07120 (15)0.54724 (9)0.70327 (15)0.0189 (3)
H24A0.06550.57820.77570.023*
H24B0.00270.51270.69120.023*
C120.18991 (14)0.62418 (9)0.16711 (14)0.0160 (3)
H12A0.13740.67010.15520.019*
H12B0.19460.60800.25250.019*
C330.86970 (15)0.80450 (9)0.70869 (15)0.0180 (3)
H33A0.88280.76980.64280.022*
H33B0.90230.85410.68950.022*
C350.89016 (16)0.70228 (10)0.86207 (16)0.0217 (4)
H35A0.90400.66410.80140.026*
H35B0.93570.68600.94220.026*
C150.34720 (15)0.50991 (8)0.07536 (14)0.0161 (3)
H15A0.40070.46460.09150.019*
H15B0.34660.52470.01020.019*
C130.12870 (15)0.56320 (9)0.08232 (15)0.0169 (3)
H13A0.11820.58120.00260.020*
H13B0.04280.55150.10150.020*
C320.72742 (14)0.81012 (8)0.71454 (15)0.0167 (3)
H32A0.71290.84770.77580.020*
H32B0.68040.82600.63480.020*
C360.74807 (16)0.70877 (9)0.86681 (16)0.0205 (3)
H36A0.71380.65950.88540.025*
H36B0.73430.74400.93180.025*
C340.94462 (15)0.77687 (10)0.82831 (15)0.0207 (3)
H34A0.93900.81390.89300.025*
H34B1.03580.77080.82050.025*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
S10.01134 (17)0.01084 (17)0.01124 (17)0.00075 (13)0.00142 (13)0.00154 (13)
S20.01054 (17)0.01264 (17)0.01101 (17)0.00085 (13)0.00228 (13)0.00016 (13)
O120.0153 (5)0.0173 (5)0.0147 (5)0.0002 (4)0.0049 (4)0.0014 (4)
O210.0207 (6)0.0144 (5)0.0214 (6)0.0051 (4)0.0077 (5)0.0061 (4)
O140.0175 (6)0.0209 (6)0.0127 (5)0.0071 (4)0.0014 (4)0.0035 (4)
O110.0208 (6)0.0132 (5)0.0174 (6)0.0054 (4)0.0013 (5)0.0018 (4)
O130.0147 (5)0.0157 (5)0.0246 (6)0.0029 (4)0.0063 (5)0.0038 (4)
O220.0144 (5)0.0339 (7)0.0180 (6)0.0035 (5)0.0013 (5)0.0088 (5)
C250.0189 (8)0.0125 (7)0.0154 (7)0.0006 (6)0.0046 (6)0.0019 (6)
N210.0109 (6)0.0133 (6)0.0140 (6)0.0009 (5)0.0023 (5)0.0015 (5)
O230.0130 (5)0.0152 (5)0.0152 (5)0.0029 (4)0.0043 (4)0.0004 (4)
O240.0147 (5)0.0141 (5)0.0124 (5)0.0001 (4)0.0041 (4)0.0008 (4)
N110.0151 (6)0.0129 (6)0.0114 (6)0.0017 (5)0.0023 (5)0.0004 (5)
N310.0110 (6)0.0143 (6)0.0231 (7)0.0014 (5)0.0046 (5)0.0073 (5)
C140.0169 (7)0.0141 (7)0.0168 (8)0.0024 (6)0.0017 (6)0.0003 (6)
C260.0139 (7)0.0143 (7)0.0127 (7)0.0006 (6)0.0008 (6)0.0028 (6)
C230.0122 (7)0.0232 (8)0.0177 (8)0.0023 (6)0.0027 (6)0.0040 (6)
C160.0128 (7)0.0157 (7)0.0163 (7)0.0006 (6)0.0000 (6)0.0016 (6)
C220.0159 (7)0.0140 (7)0.0168 (7)0.0040 (6)0.0034 (6)0.0034 (6)
C240.0151 (7)0.0226 (8)0.0200 (8)0.0014 (6)0.0058 (6)0.0039 (6)
C120.0138 (7)0.0170 (7)0.0177 (8)0.0006 (6)0.0042 (6)0.0001 (6)
C330.0148 (7)0.0159 (7)0.0236 (8)0.0010 (6)0.0044 (7)0.0003 (6)
C350.0195 (8)0.0271 (9)0.0196 (8)0.0088 (7)0.0061 (7)0.0044 (7)
C150.0168 (8)0.0148 (7)0.0162 (7)0.0008 (6)0.0010 (6)0.0002 (6)
C130.0132 (7)0.0173 (7)0.0194 (8)0.0015 (6)0.0001 (6)0.0006 (6)
C320.0140 (7)0.0147 (7)0.0208 (8)0.0008 (6)0.0012 (6)0.0004 (6)
C360.0210 (8)0.0185 (8)0.0242 (9)0.0035 (6)0.0106 (7)0.0043 (6)
C340.0124 (7)0.0273 (9)0.0217 (8)0.0013 (6)0.0009 (6)0.0050 (7)
Geometric parameters (Å, º) top
S1—O121.4529 (12)C23—H23B0.9900
S1—O141.5633 (12)C23—C221.520 (2)
S1—O111.4530 (11)C23—C241.529 (2)
S1—O131.4612 (11)C16—H16A0.9900
S2—O211.4904 (12)C16—H16B0.9900
S2—O221.4569 (12)C16—C151.518 (2)
S2—O231.4773 (11)C22—H22A0.9900
S2—O241.4969 (12)C22—H22B0.9900
O14—H140.8400C24—H24A0.9900
C25—H25A0.9900C24—H24B0.9900
C25—H25B0.9900C12—H12A0.9900
C25—C261.521 (2)C12—H12B0.9900
C25—C241.523 (2)C12—C131.521 (2)
N21—H21A0.9100C33—H33A0.9900
N21—H21B0.9100C33—H33B0.9900
N21—C261.4936 (19)C33—C321.522 (2)
N21—C221.4978 (19)C33—C341.522 (2)
N11—H11A0.9100C35—H35A0.9900
N11—H11B0.9100C35—H35B0.9900
N11—C161.4920 (19)C35—C361.519 (2)
N11—C121.4900 (19)C35—C341.527 (2)
N31—H31A0.9100C15—H15A0.9900
N31—H31B0.9100C15—H15B0.9900
N31—C321.489 (2)C13—H13A0.9900
N31—C361.489 (2)C13—H13B0.9900
C14—H14A0.9900C32—H32A0.9900
C14—H14B0.9900C32—H32B0.9900
C14—C151.528 (2)C36—H36A0.9900
C14—C131.530 (2)C36—H36B0.9900
C26—H26A0.9900C34—H34A0.9900
C26—H26B0.9900C34—H34B0.9900
C23—H23A0.9900
O12—S1—O14107.77 (7)N21—C22—C23109.68 (12)
O12—S1—O11114.10 (7)N21—C22—H22A109.7
O12—S1—O13111.17 (7)N21—C22—H22B109.7
O11—S1—O14104.31 (6)C23—C22—H22A109.7
O11—S1—O13112.28 (7)C23—C22—H22B109.7
O13—S1—O14106.58 (7)H22A—C22—H22B108.2
O21—S2—O24106.96 (6)C25—C24—C23110.44 (13)
O22—S2—O21110.98 (7)C25—C24—H24A109.6
O22—S2—O23110.32 (7)C25—C24—H24B109.6
O22—S2—O24110.60 (7)C23—C24—H24A109.6
O23—S2—O21108.83 (6)C23—C24—H24B109.6
O23—S2—O24109.05 (6)H24A—C24—H24B108.1
S1—O14—H14109.5N11—C12—H12A109.8
H25A—C25—H25B108.0N11—C12—H12B109.8
C26—C25—H25A109.3N11—C12—C13109.30 (12)
C26—C25—H25B109.3H12A—C12—H12B108.3
C26—C25—C24111.42 (13)C13—C12—H12A109.8
C24—C25—H25A109.3C13—C12—H12B109.8
C24—C25—H25B109.3H33A—C33—H33B108.0
H21A—N21—H21B107.9C32—C33—H33A109.4
C26—N21—H21A109.2C32—C33—H33B109.4
C26—N21—H21B109.2C34—C33—H33A109.4
C26—N21—C22112.22 (11)C34—C33—H33B109.4
C22—N21—H21A109.2C34—C33—C32111.35 (14)
C22—N21—H21B109.2H35A—C35—H35B108.0
H11A—N11—H11B107.9C36—C35—H35A109.5
C16—N11—H11A109.2C36—C35—H35B109.5
C16—N11—H11B109.2C36—C35—C34110.94 (13)
C12—N11—H11A109.2C34—C35—H35A109.5
C12—N11—H11B109.2C34—C35—H35B109.5
C12—N11—C16112.01 (11)C14—C15—H15A109.4
H31A—N31—H31B107.9C14—C15—H15B109.4
C32—N31—H31A109.1C16—C15—C14111.00 (13)
C32—N31—H31B109.1C16—C15—H15A109.4
C32—N31—C36112.30 (12)C16—C15—H15B109.4
C36—N31—H31A109.1H15A—C15—H15B108.0
C36—N31—H31B109.1C14—C13—H13A109.4
H14A—C14—H14B108.1C14—C13—H13B109.4
C15—C14—H14A109.5C12—C13—C14111.03 (13)
C15—C14—H14B109.5C12—C13—H13A109.4
C15—C14—C13110.74 (12)C12—C13—H13B109.4
C13—C14—H14A109.5H13A—C13—H13B108.0
C13—C14—H14B109.5N31—C32—C33109.20 (12)
C25—C26—H26A109.6N31—C32—H32A109.8
C25—C26—H26B109.6N31—C32—H32B109.8
N21—C26—C25110.29 (12)C33—C32—H32A109.8
N21—C26—H26A109.6C33—C32—H32B109.8
N21—C26—H26B109.6H32A—C32—H32B108.3
H26A—C26—H26B108.1N31—C36—C35109.60 (13)
H23A—C23—H23B108.0N31—C36—H36A109.8
C22—C23—H23A109.4N31—C36—H36B109.8
C22—C23—H23B109.4C35—C36—H36A109.8
C22—C23—C24111.05 (13)C35—C36—H36B109.8
C24—C23—H23A109.4H36A—C36—H36B108.2
C24—C23—H23B109.4C33—C34—C35109.69 (13)
N11—C16—H16A109.6C33—C34—H34A109.7
N11—C16—H16B109.6C33—C34—H34B109.7
N11—C16—C15110.24 (12)C35—C34—H34A109.7
H16A—C16—H16B108.1C35—C34—H34B109.7
C15—C16—H16A109.6H34A—C34—H34B108.2
C15—C16—H16B109.6
N11—C16—C15—C1455.57 (16)C12—N11—C16—C1559.41 (16)
N11—C12—C13—C1457.09 (17)C15—C14—C13—C1254.79 (17)
C26—C25—C24—C2354.49 (17)C13—C14—C15—C1653.79 (17)
C26—N21—C22—C2358.61 (16)C32—N31—C36—C3559.33 (17)
C16—N11—C12—C1359.86 (16)C32—C33—C34—C3555.93 (17)
C22—N21—C26—C2557.84 (16)C36—N31—C32—C3359.01 (17)
C22—C23—C24—C2555.39 (18)C36—C35—C34—C3355.78 (18)
C24—C25—C26—N2155.37 (16)C34—C33—C32—N3157.02 (17)
C24—C23—C22—N2156.89 (17)C34—C35—C36—N3157.05 (18)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O14—H14···O210.841.722.5603 (16)173
N21—H21A···O11i0.911.932.8226 (18)166
N21—H21B···O120.912.322.9096 (19)122
N21—H21B···O24ii0.912.473.0964 (18)127
N11—H11A···O210.912.593.201 (2)126
N11—H11A···O240.911.892.7904 (17)171
N11—H11B···O22iii0.912.473.0474 (18)122
N11—H11B···O23iii0.911.922.8039 (18)164
N31—H31A···O120.912.413.0245 (18)125
N31—H31A···O130.911.932.8240 (18)167
N31—H31B···O24ii0.911.892.7978 (19)172
Symmetry codes: (i) x+1, y+1, z+1; (ii) x, y+3/2, z+1/2; (iii) x, y+3/2, z1/2.
 

Acknowledgements

The authors thank Dr M. Marchewka for providing chemicals for this synthesis. This research was supported by an ILT&SR PAS grant for young scientists and PhD students, funded by the Ministry of Science and Higher Education of Poland.

References

First citationAnderson, K. M., Goeta, A. E., Martin, J. E., Mason, S. A., McIntyre, G. J., Sansam, B. C. R., Wilkinson, C. & Steed, J. W. (2011). Cryst. Growth Des. 11, 4904–4919.  Web of Science CSD CrossRef CAS Google Scholar
First citationBanerjee, S. & Murugavel, R. (2004). Cryst. Growth Des. 4, 545–552.  Web of Science CSD CrossRef CAS Google Scholar
First citationBrandenburg, K. (1997). DIAMOND. Crystal Impact GbR, Bonn, Germany.  Google Scholar
First citationClark, R. C. & Reid, J. S. (1995). Acta Cryst. A51, 887–897.  CrossRef CAS Web of Science IUCr Journals Google Scholar
First citationDolomanov, O. V., Bourhis, L. J., Gildea, R. J., Howard, J. A. K. & Puschmann, H. (2009). J. Appl. Cryst. 42, 339–341.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationGeorge, A., Brandt, A., Tran, K., Zahari, S. M. S. N. S., Klein-Marcuschamer, D., Sun, N., Sathitsuksanoh, N., Shi, J., Stavila, V., Parthasarathi, R., Singh, S., Holmes, B. M., Welton, T., Simmons, B. A. & Hallett, J. P. (2015). Green Chem. 17, 1728–1734.  Web of Science CrossRef CAS Google Scholar
First citationHoque, M. N. & Das, G. (2014). Cryst. Growth Des. 14, 2962–2971.  Web of Science CSD CrossRef CAS Google Scholar
First citationKolev, T., Koleva, B. B., Seidel, R. W., Spiteller, M. & Sheldrick, W. S. (2009). Cryst. Growth Des. 9, 3348–3352.  Web of Science CSD CrossRef CAS Google Scholar
First citationLee, C. & Harrison, W. T. A. (2003). Acta Cryst. E59, m959–m960.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationMohammadnezhad, G. S., Amini, M. M., Khavasi, H. R. & Ng, S. W. (2008). Acta Cryst. E64, o1564.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationRigaku Oxford (2015). CrysAlis PRO. Rigaku Corporation, Yarnton, England.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSheldrick, G. M. (2015). Acta Cryst. C71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar
First citationSmail, E. J. & Sheldrick, G. M. (1973). Acta Cryst. B29, 2027–2028.  CSD CrossRef IUCr Journals Web of Science Google Scholar
First citationXu, Y.-M., Gao, S. & Ng, S. W. (2009). Acta Cryst. E65, o3147.  Web of Science CSD CrossRef IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds