research communications
of tris(piperidinium) hydrogen sulfate sulfate
aInstitute of Low Temperature and Structure Research, Polish Academy of Sciences, Okolna str. 2, PO Box 1410, 50-950 Wroclaw, Poland
*Correspondence e-mail: t.lukianova@int.pan.wroc.pl
In the title molecular salt, 3C5H12N+·HSO4−·SO42−, each cation adopts a chair conformation. In the crystal, the hydrogen sulfate ion is connected to the sulfate ion by a strong O—H⋯O hydrogen bond. The packing also features a number of N—H⋯O hydrogen bonds, which lead to a three-dimensional network structure. The hydrogen sulfate anion accepts four hydrogen bonds from two cations, whereas the sulfate ion, as an acceptor, binds to five separate piperidinium cations, forming seven hydrogen bonds.
CCDC reference: 1434209
1. Chemical context
Hydrogen bonding is a powerful and versatile tool commonly used in crystal engineering to design, combine and organize individual organic molecules in solids, thus creating new materials with tunable physical properties. Simple organic–inorganic salts seem to be good candidates for this purpose because of the flexibility of their special structural features such as polarity and their promising potential applications in chemistry. Not of less importance would be the use of inorganic oxyanions, which are very attractive as inorganic building blocks due to their shapes and diverse reactivity in aqueous solutions. In recent years, sulfates and hydrogen sulfates of organic bases have found applications as ionic liquids (George et al., 2015). Therefore, the results of a structural study on a new molecular salt obtained from piperidine and sulfuric acid are reported here.
2. Structural commentary
In the title compound, 3C5H12N+·HSO4−·SO42−, (I), the comprises three independent protonated piperidinium cations, one hydrogen sulfate anion and one sulfate anion (Fig. 1). The geometries of the three cations are similar, possessing chair conformations. The N—C and C—C bond lengths are in the ranges 1.489 (2)–1.4978 (19) Å and 1.518 (2)–1.530 (2) Å, respectively. The C—C—C, C—C—N and C—N—C angles are in the ranges 109.69 (13)–111.42 (13), 109.20 (12)–110.29 (12) and 112.01 (11)–112.30 (12)°, respectively. These values are in good agreement with those reported in the literature (Lee & Harrison, 2003). Within the cation–anion unit, the N atoms of the three piperidinium cations are connected to the O atom acceptors of the HSO4− (O11–O14) and SO42− (O21–O24) anions by five N—H⋯O hydrogen bonds (Table 1). The two anions are linked via a short O14—H14⋯O21 hydrogen bond [2.5603 (16) Å], Figs. 1 and 2.
3. Supramolecular features
The features N—H⋯O and O—H⋯O hydrogen bonds (Table 1, Fig. 1). The N atoms of the piperidinium cations are involved in hydrogen-bond formation, as donors with oxygen atoms of the sulfate and hydrogen sulfate anions. The sulfate-bound O atoms, which act as acceptors, link the organic molecules through rather strong hydrogen bonds, forming a two-dimensional network of hydrogen bonds giving rise to layers parallel to (100). The hydrogen sulfate ion accepts four hydrogen bonds from three cations, whereas the sulfate ion, as an acceptor, binds to five piperidinium ions, forming seven hydrogen bonds in the overall three-dimensional structure (Fig. 3).
of (I)4. Database survey
Crystal structures of piperidinium cations with counter-anions such as hydrogen sulfide, arsenate and violurate (Smail & Sheldrick, 1973; Lee & Harrison, 2003; Kolev et al., 2009) and other mixed compounds (Banerjee & Murugavel, 2004; Mohammadnezhad et al., 2008; Xu et al., 2009; Anderson et al., 2011; Hoque & Das, 2014) have been reported.
5. Synthesis and crystallization
The title compound was prepared by the reaction between 3 ml (0.03 mol) of piperidine (Aldrich, ReagentPlus, 99%) and 3.1 ml (0.012 mol) of 30% aqueous sulfuric acid solution. The reaction mixture was continuously stirred for 15 minutes at 323 K and then allowed to cool down to room temperature. The final pH value was 2. The mixture was kept at room temperature over a period of several months, after which it was cooled in a refrigerator (T ≃ 278 K), giving colourless crystals of the title compound after a few weeks.
6. Refinement
Crystal data, data collection and structure . The positions of hydrogen atoms of the and the hydrogen sulfate anion were initially located in difference Fourier maps but were subsequently allowed to ride in the with O—H = 0.84 and N—H = 0.91 Å and with Uiso(H) = 1.2Ueq(N) or 1.5Ueq(O). The H atom of the hydrogen sulfate anion was refined with the SHELX AFIX 147 instruction. Piperidinium C-bound H atoms were placed in geometrically idealized positions and also allowed to ride, with C—H = 0.99 Å and Uiso(H) = 1.2Ueq(C).
details are summarized in Table 2
|
Supporting information
CCDC reference: 1434209
https://doi.org/10.1107/S2056989015020538/zs2349sup1.cif
contains datablock I. DOI:Structure factors: contains datablock I. DOI: https://doi.org/10.1107/S2056989015020538/zs2349Isup2.hkl
Supporting information file. DOI: https://doi.org/10.1107/S2056989015020538/zs2349Isup3.cml
Data collection: CrysAlis PRO (Rigaku Oxford, 2015); cell
CrysAlis PRO (Rigaku Oxford, 2015); data reduction: CrysAlis PRO (Rigaku Oxford, 2015); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL2014 (Sheldrick, 2015); molecular graphics: DIAMOND (Brandenburg, 1997); software used to prepare material for publication: OLEX2 (Dolomanov et al., 2009).3C5H12N+·HSO4−·SO42− | F(000) = 976 |
Mr = 451.60 | Dx = 1.434 Mg m−3 |
Monoclinic, P21/c | Mo Kα radiation, λ = 0.71073 Å |
a = 10.592 (4) Å | Cell parameters from 12552 reflections |
b = 17.922 (5) Å | θ = 2.2–29.4° |
c = 11.161 (4) Å | µ = 0.30 mm−1 |
β = 99.25 (2)° | T = 100 K |
V = 2091.1 (12) Å3 | Block, colourless |
Z = 4 | 0.20 × 0.18 × 0.16 mm |
Rigaku Oxford Xcalibur Atlas diffractometer | 5411 independent reflections |
Radiation source: fine-focus sealed X-ray tube, Enhance (Mo) X-ray source | 4291 reflections with I > 2σ(I) |
Graphite monochromator | Rint = 0.039 |
Detector resolution: 10.6249 pixels mm-1 | θmax = 29.4°, θmin = 2.7° |
ω scans | h = −14→14 |
Absorption correction: analytical [CrysAlis PRO (Rigaku Oxford, 2015), based on expressions of Clark & Reid (1995)] | k = −23→24 |
Tmin = 0.994, Tmax = 0.996 | l = −15→15 |
35669 measured reflections |
Refinement on F2 | 0 restraints |
Least-squares matrix: full | Hydrogen site location: inferred from neighbouring sites |
R[F2 > 2σ(F2)] = 0.035 | H-atom parameters constrained |
wR(F2) = 0.083 | w = 1/[σ2(Fo2) + (0.0343P)2 + 1.1863P] where P = (Fo2 + 2Fc2)/3 |
S = 1.03 | (Δ/σ)max = 0.001 |
5411 reflections | Δρmax = 0.33 e Å−3 |
254 parameters | Δρmin = −0.42 e Å−3 |
Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes. |
x | y | z | Uiso*/Ueq | ||
S1 | 0.66217 (3) | 0.57717 (2) | 0.56541 (3) | 0.01118 (9) | |
S2 | 0.39851 (3) | 0.75550 (2) | 0.40181 (3) | 0.01134 (9) | |
O12 | 0.57890 (10) | 0.58513 (6) | 0.65614 (9) | 0.0155 (2) | |
O21 | 0.39138 (10) | 0.67389 (6) | 0.42549 (10) | 0.0183 (2) | |
O14 | 0.57685 (10) | 0.58114 (6) | 0.43754 (10) | 0.0175 (2) | |
H14 | 0.5194 | 0.6134 | 0.4385 | 0.026* | |
O11 | 0.72505 (10) | 0.50505 (6) | 0.56684 (10) | 0.0174 (2) | |
O13 | 0.75266 (10) | 0.63911 (6) | 0.57133 (10) | 0.0180 (2) | |
O22 | 0.50129 (11) | 0.79014 (7) | 0.48587 (10) | 0.0222 (3) | |
C25 | 0.19519 (15) | 0.50258 (8) | 0.72404 (14) | 0.0154 (3) | |
H25A | 0.2000 | 0.4735 | 0.8001 | 0.018* | |
H25B | 0.1955 | 0.4669 | 0.6563 | 0.018* | |
N21 | 0.30210 (12) | 0.60129 (7) | 0.62212 (11) | 0.0127 (3) | |
H21A | 0.3029 | 0.5718 | 0.5559 | 0.015* | |
H21B | 0.3716 | 0.6318 | 0.6293 | 0.015* | |
O23 | 0.27443 (10) | 0.78993 (6) | 0.41375 (9) | 0.0142 (2) | |
O24 | 0.42147 (10) | 0.76415 (6) | 0.27366 (9) | 0.0135 (2) | |
N11 | 0.32098 (12) | 0.63977 (7) | 0.14102 (11) | 0.0131 (3) | |
H11A | 0.3570 | 0.6768 | 0.1909 | 0.016* | |
H11B | 0.3156 | 0.6560 | 0.0631 | 0.016* | |
N31 | 0.67984 (12) | 0.73600 (7) | 0.74774 (12) | 0.0159 (3) | |
H31A | 0.6901 | 0.7023 | 0.6890 | 0.019* | |
H31B | 0.5947 | 0.7394 | 0.7510 | 0.019* | |
C14 | 0.21075 (15) | 0.49250 (8) | 0.09492 (14) | 0.0164 (3) | |
H14A | 0.2125 | 0.4710 | 0.1768 | 0.020* | |
H14B | 0.1725 | 0.4551 | 0.0345 | 0.020* | |
C26 | 0.31146 (14) | 0.55327 (8) | 0.73257 (13) | 0.0138 (3) | |
H26A | 0.3169 | 0.5851 | 0.8057 | 0.017* | |
H26B | 0.3901 | 0.5226 | 0.7403 | 0.017* | |
C23 | 0.06623 (15) | 0.59747 (9) | 0.59190 (15) | 0.0176 (3) | |
H23A | 0.0622 | 0.5662 | 0.5183 | 0.021* | |
H23B | −0.0121 | 0.6285 | 0.5828 | 0.021* | |
C16 | 0.40461 (14) | 0.57238 (8) | 0.15854 (14) | 0.0152 (3) | |
H16A | 0.4139 | 0.5557 | 0.2441 | 0.018* | |
H16B | 0.4907 | 0.5850 | 0.1406 | 0.018* | |
C22 | 0.18310 (14) | 0.64782 (8) | 0.60349 (14) | 0.0155 (3) | |
H22A | 0.1799 | 0.6782 | 0.5290 | 0.019* | |
H22B | 0.1837 | 0.6821 | 0.6731 | 0.019* | |
C24 | 0.07120 (15) | 0.54724 (9) | 0.70327 (15) | 0.0189 (3) | |
H24A | 0.0655 | 0.5782 | 0.7757 | 0.023* | |
H24B | −0.0027 | 0.5127 | 0.6912 | 0.023* | |
C12 | 0.18991 (14) | 0.62418 (9) | 0.16711 (14) | 0.0160 (3) | |
H12A | 0.1374 | 0.6701 | 0.1552 | 0.019* | |
H12B | 0.1946 | 0.6080 | 0.2525 | 0.019* | |
C33 | 0.86970 (15) | 0.80450 (9) | 0.70869 (15) | 0.0180 (3) | |
H33A | 0.8828 | 0.7698 | 0.6428 | 0.022* | |
H33B | 0.9023 | 0.8541 | 0.6895 | 0.022* | |
C35 | 0.89016 (16) | 0.70228 (10) | 0.86207 (16) | 0.0217 (4) | |
H35A | 0.9040 | 0.6641 | 0.8014 | 0.026* | |
H35B | 0.9357 | 0.6860 | 0.9422 | 0.026* | |
C15 | 0.34720 (15) | 0.50991 (8) | 0.07536 (14) | 0.0161 (3) | |
H15A | 0.4007 | 0.4646 | 0.0915 | 0.019* | |
H15B | 0.3466 | 0.5247 | −0.0102 | 0.019* | |
C13 | 0.12870 (15) | 0.56320 (9) | 0.08232 (15) | 0.0169 (3) | |
H13A | 0.1182 | 0.5812 | −0.0026 | 0.020* | |
H13B | 0.0428 | 0.5515 | 0.1015 | 0.020* | |
C32 | 0.72742 (14) | 0.81012 (8) | 0.71454 (15) | 0.0167 (3) | |
H32A | 0.7129 | 0.8477 | 0.7758 | 0.020* | |
H32B | 0.6804 | 0.8260 | 0.6348 | 0.020* | |
C36 | 0.74807 (16) | 0.70877 (9) | 0.86681 (16) | 0.0205 (3) | |
H36A | 0.7138 | 0.6595 | 0.8854 | 0.025* | |
H36B | 0.7343 | 0.7440 | 0.9318 | 0.025* | |
C34 | 0.94462 (15) | 0.77687 (10) | 0.82831 (15) | 0.0207 (3) | |
H34A | 0.9390 | 0.8139 | 0.8930 | 0.025* | |
H34B | 1.0358 | 0.7708 | 0.8205 | 0.025* |
U11 | U22 | U33 | U12 | U13 | U23 | |
S1 | 0.01134 (17) | 0.01084 (17) | 0.01124 (17) | 0.00075 (13) | 0.00142 (13) | −0.00154 (13) |
S2 | 0.01054 (17) | 0.01264 (17) | 0.01101 (17) | 0.00085 (13) | 0.00228 (13) | −0.00016 (13) |
O12 | 0.0153 (5) | 0.0173 (5) | 0.0147 (5) | 0.0002 (4) | 0.0049 (4) | −0.0014 (4) |
O21 | 0.0207 (6) | 0.0144 (5) | 0.0214 (6) | 0.0051 (4) | 0.0077 (5) | 0.0061 (4) |
O14 | 0.0175 (6) | 0.0209 (6) | 0.0127 (5) | 0.0071 (4) | −0.0014 (4) | −0.0035 (4) |
O11 | 0.0208 (6) | 0.0132 (5) | 0.0174 (6) | 0.0054 (4) | 0.0013 (5) | −0.0018 (4) |
O13 | 0.0147 (5) | 0.0157 (5) | 0.0246 (6) | −0.0029 (4) | 0.0063 (5) | −0.0038 (4) |
O22 | 0.0144 (5) | 0.0339 (7) | 0.0180 (6) | −0.0035 (5) | 0.0013 (5) | −0.0088 (5) |
C25 | 0.0189 (8) | 0.0125 (7) | 0.0154 (7) | −0.0006 (6) | 0.0046 (6) | 0.0019 (6) |
N21 | 0.0109 (6) | 0.0133 (6) | 0.0140 (6) | −0.0009 (5) | 0.0023 (5) | 0.0015 (5) |
O23 | 0.0130 (5) | 0.0152 (5) | 0.0152 (5) | 0.0029 (4) | 0.0043 (4) | 0.0004 (4) |
O24 | 0.0147 (5) | 0.0141 (5) | 0.0124 (5) | 0.0001 (4) | 0.0041 (4) | 0.0008 (4) |
N11 | 0.0151 (6) | 0.0129 (6) | 0.0114 (6) | −0.0017 (5) | 0.0023 (5) | 0.0004 (5) |
N31 | 0.0110 (6) | 0.0143 (6) | 0.0231 (7) | −0.0014 (5) | 0.0046 (5) | −0.0073 (5) |
C14 | 0.0169 (7) | 0.0141 (7) | 0.0168 (8) | −0.0024 (6) | −0.0017 (6) | −0.0003 (6) |
C26 | 0.0139 (7) | 0.0143 (7) | 0.0127 (7) | 0.0006 (6) | 0.0008 (6) | 0.0028 (6) |
C23 | 0.0122 (7) | 0.0232 (8) | 0.0177 (8) | 0.0023 (6) | 0.0027 (6) | 0.0040 (6) |
C16 | 0.0128 (7) | 0.0157 (7) | 0.0163 (7) | 0.0006 (6) | 0.0000 (6) | 0.0016 (6) |
C22 | 0.0159 (7) | 0.0140 (7) | 0.0168 (7) | 0.0040 (6) | 0.0034 (6) | 0.0034 (6) |
C24 | 0.0151 (7) | 0.0226 (8) | 0.0200 (8) | −0.0014 (6) | 0.0058 (6) | 0.0039 (6) |
C12 | 0.0138 (7) | 0.0170 (7) | 0.0177 (8) | −0.0006 (6) | 0.0042 (6) | −0.0001 (6) |
C33 | 0.0148 (7) | 0.0159 (7) | 0.0236 (8) | −0.0010 (6) | 0.0044 (7) | 0.0003 (6) |
C35 | 0.0195 (8) | 0.0271 (9) | 0.0196 (8) | 0.0088 (7) | 0.0061 (7) | 0.0044 (7) |
C15 | 0.0168 (8) | 0.0148 (7) | 0.0162 (7) | 0.0008 (6) | 0.0010 (6) | −0.0002 (6) |
C13 | 0.0132 (7) | 0.0173 (7) | 0.0194 (8) | −0.0015 (6) | 0.0001 (6) | 0.0006 (6) |
C32 | 0.0140 (7) | 0.0147 (7) | 0.0208 (8) | 0.0008 (6) | 0.0012 (6) | −0.0004 (6) |
C36 | 0.0210 (8) | 0.0185 (8) | 0.0242 (9) | 0.0035 (6) | 0.0106 (7) | 0.0043 (6) |
C34 | 0.0124 (7) | 0.0273 (9) | 0.0217 (8) | −0.0013 (6) | 0.0009 (6) | −0.0050 (7) |
S1—O12 | 1.4529 (12) | C23—H23B | 0.9900 |
S1—O14 | 1.5633 (12) | C23—C22 | 1.520 (2) |
S1—O11 | 1.4530 (11) | C23—C24 | 1.529 (2) |
S1—O13 | 1.4612 (11) | C16—H16A | 0.9900 |
S2—O21 | 1.4904 (12) | C16—H16B | 0.9900 |
S2—O22 | 1.4569 (12) | C16—C15 | 1.518 (2) |
S2—O23 | 1.4773 (11) | C22—H22A | 0.9900 |
S2—O24 | 1.4969 (12) | C22—H22B | 0.9900 |
O14—H14 | 0.8400 | C24—H24A | 0.9900 |
C25—H25A | 0.9900 | C24—H24B | 0.9900 |
C25—H25B | 0.9900 | C12—H12A | 0.9900 |
C25—C26 | 1.521 (2) | C12—H12B | 0.9900 |
C25—C24 | 1.523 (2) | C12—C13 | 1.521 (2) |
N21—H21A | 0.9100 | C33—H33A | 0.9900 |
N21—H21B | 0.9100 | C33—H33B | 0.9900 |
N21—C26 | 1.4936 (19) | C33—C32 | 1.522 (2) |
N21—C22 | 1.4978 (19) | C33—C34 | 1.522 (2) |
N11—H11A | 0.9100 | C35—H35A | 0.9900 |
N11—H11B | 0.9100 | C35—H35B | 0.9900 |
N11—C16 | 1.4920 (19) | C35—C36 | 1.519 (2) |
N11—C12 | 1.4900 (19) | C35—C34 | 1.527 (2) |
N31—H31A | 0.9100 | C15—H15A | 0.9900 |
N31—H31B | 0.9100 | C15—H15B | 0.9900 |
N31—C32 | 1.489 (2) | C13—H13A | 0.9900 |
N31—C36 | 1.489 (2) | C13—H13B | 0.9900 |
C14—H14A | 0.9900 | C32—H32A | 0.9900 |
C14—H14B | 0.9900 | C32—H32B | 0.9900 |
C14—C15 | 1.528 (2) | C36—H36A | 0.9900 |
C14—C13 | 1.530 (2) | C36—H36B | 0.9900 |
C26—H26A | 0.9900 | C34—H34A | 0.9900 |
C26—H26B | 0.9900 | C34—H34B | 0.9900 |
C23—H23A | 0.9900 | ||
O12—S1—O14 | 107.77 (7) | N21—C22—C23 | 109.68 (12) |
O12—S1—O11 | 114.10 (7) | N21—C22—H22A | 109.7 |
O12—S1—O13 | 111.17 (7) | N21—C22—H22B | 109.7 |
O11—S1—O14 | 104.31 (6) | C23—C22—H22A | 109.7 |
O11—S1—O13 | 112.28 (7) | C23—C22—H22B | 109.7 |
O13—S1—O14 | 106.58 (7) | H22A—C22—H22B | 108.2 |
O21—S2—O24 | 106.96 (6) | C25—C24—C23 | 110.44 (13) |
O22—S2—O21 | 110.98 (7) | C25—C24—H24A | 109.6 |
O22—S2—O23 | 110.32 (7) | C25—C24—H24B | 109.6 |
O22—S2—O24 | 110.60 (7) | C23—C24—H24A | 109.6 |
O23—S2—O21 | 108.83 (6) | C23—C24—H24B | 109.6 |
O23—S2—O24 | 109.05 (6) | H24A—C24—H24B | 108.1 |
S1—O14—H14 | 109.5 | N11—C12—H12A | 109.8 |
H25A—C25—H25B | 108.0 | N11—C12—H12B | 109.8 |
C26—C25—H25A | 109.3 | N11—C12—C13 | 109.30 (12) |
C26—C25—H25B | 109.3 | H12A—C12—H12B | 108.3 |
C26—C25—C24 | 111.42 (13) | C13—C12—H12A | 109.8 |
C24—C25—H25A | 109.3 | C13—C12—H12B | 109.8 |
C24—C25—H25B | 109.3 | H33A—C33—H33B | 108.0 |
H21A—N21—H21B | 107.9 | C32—C33—H33A | 109.4 |
C26—N21—H21A | 109.2 | C32—C33—H33B | 109.4 |
C26—N21—H21B | 109.2 | C34—C33—H33A | 109.4 |
C26—N21—C22 | 112.22 (11) | C34—C33—H33B | 109.4 |
C22—N21—H21A | 109.2 | C34—C33—C32 | 111.35 (14) |
C22—N21—H21B | 109.2 | H35A—C35—H35B | 108.0 |
H11A—N11—H11B | 107.9 | C36—C35—H35A | 109.5 |
C16—N11—H11A | 109.2 | C36—C35—H35B | 109.5 |
C16—N11—H11B | 109.2 | C36—C35—C34 | 110.94 (13) |
C12—N11—H11A | 109.2 | C34—C35—H35A | 109.5 |
C12—N11—H11B | 109.2 | C34—C35—H35B | 109.5 |
C12—N11—C16 | 112.01 (11) | C14—C15—H15A | 109.4 |
H31A—N31—H31B | 107.9 | C14—C15—H15B | 109.4 |
C32—N31—H31A | 109.1 | C16—C15—C14 | 111.00 (13) |
C32—N31—H31B | 109.1 | C16—C15—H15A | 109.4 |
C32—N31—C36 | 112.30 (12) | C16—C15—H15B | 109.4 |
C36—N31—H31A | 109.1 | H15A—C15—H15B | 108.0 |
C36—N31—H31B | 109.1 | C14—C13—H13A | 109.4 |
H14A—C14—H14B | 108.1 | C14—C13—H13B | 109.4 |
C15—C14—H14A | 109.5 | C12—C13—C14 | 111.03 (13) |
C15—C14—H14B | 109.5 | C12—C13—H13A | 109.4 |
C15—C14—C13 | 110.74 (12) | C12—C13—H13B | 109.4 |
C13—C14—H14A | 109.5 | H13A—C13—H13B | 108.0 |
C13—C14—H14B | 109.5 | N31—C32—C33 | 109.20 (12) |
C25—C26—H26A | 109.6 | N31—C32—H32A | 109.8 |
C25—C26—H26B | 109.6 | N31—C32—H32B | 109.8 |
N21—C26—C25 | 110.29 (12) | C33—C32—H32A | 109.8 |
N21—C26—H26A | 109.6 | C33—C32—H32B | 109.8 |
N21—C26—H26B | 109.6 | H32A—C32—H32B | 108.3 |
H26A—C26—H26B | 108.1 | N31—C36—C35 | 109.60 (13) |
H23A—C23—H23B | 108.0 | N31—C36—H36A | 109.8 |
C22—C23—H23A | 109.4 | N31—C36—H36B | 109.8 |
C22—C23—H23B | 109.4 | C35—C36—H36A | 109.8 |
C22—C23—C24 | 111.05 (13) | C35—C36—H36B | 109.8 |
C24—C23—H23A | 109.4 | H36A—C36—H36B | 108.2 |
C24—C23—H23B | 109.4 | C33—C34—C35 | 109.69 (13) |
N11—C16—H16A | 109.6 | C33—C34—H34A | 109.7 |
N11—C16—H16B | 109.6 | C33—C34—H34B | 109.7 |
N11—C16—C15 | 110.24 (12) | C35—C34—H34A | 109.7 |
H16A—C16—H16B | 108.1 | C35—C34—H34B | 109.7 |
C15—C16—H16A | 109.6 | H34A—C34—H34B | 108.2 |
C15—C16—H16B | 109.6 | ||
N11—C16—C15—C14 | −55.57 (16) | C12—N11—C16—C15 | 59.41 (16) |
N11—C12—C13—C14 | 57.09 (17) | C15—C14—C13—C12 | −54.79 (17) |
C26—C25—C24—C23 | 54.49 (17) | C13—C14—C15—C16 | 53.79 (17) |
C26—N21—C22—C23 | −58.61 (16) | C32—N31—C36—C35 | −59.33 (17) |
C16—N11—C12—C13 | −59.86 (16) | C32—C33—C34—C35 | 55.93 (17) |
C22—N21—C26—C25 | 57.84 (16) | C36—N31—C32—C33 | 59.01 (17) |
C22—C23—C24—C25 | −55.39 (18) | C36—C35—C34—C33 | −55.78 (18) |
C24—C25—C26—N21 | −55.37 (16) | C34—C33—C32—N31 | −57.02 (17) |
C24—C23—C22—N21 | 56.89 (17) | C34—C35—C36—N31 | 57.05 (18) |
D—H···A | D—H | H···A | D···A | D—H···A |
O14—H14···O21 | 0.84 | 1.72 | 2.5603 (16) | 173 |
N21—H21A···O11i | 0.91 | 1.93 | 2.8226 (18) | 166 |
N21—H21B···O12 | 0.91 | 2.32 | 2.9096 (19) | 122 |
N21—H21B···O24ii | 0.91 | 2.47 | 3.0964 (18) | 127 |
N11—H11A···O21 | 0.91 | 2.59 | 3.201 (2) | 126 |
N11—H11A···O24 | 0.91 | 1.89 | 2.7904 (17) | 171 |
N11—H11B···O22iii | 0.91 | 2.47 | 3.0474 (18) | 122 |
N11—H11B···O23iii | 0.91 | 1.92 | 2.8039 (18) | 164 |
N31—H31A···O12 | 0.91 | 2.41 | 3.0245 (18) | 125 |
N31—H31A···O13 | 0.91 | 1.93 | 2.8240 (18) | 167 |
N31—H31B···O24ii | 0.91 | 1.89 | 2.7978 (19) | 172 |
Symmetry codes: (i) −x+1, −y+1, −z+1; (ii) x, −y+3/2, z+1/2; (iii) x, −y+3/2, z−1/2. |
Acknowledgements
The authors thank Dr M. Marchewka for providing chemicals for this synthesis. This research was supported by an ILT&SR PAS grant for young scientists and PhD students, funded by the Ministry of Science and Higher Education of Poland.
References
Anderson, K. M., Goeta, A. E., Martin, J. E., Mason, S. A., McIntyre, G. J., Sansam, B. C. R., Wilkinson, C. & Steed, J. W. (2011). Cryst. Growth Des. 11, 4904–4919. Web of Science CSD CrossRef CAS Google Scholar
Banerjee, S. & Murugavel, R. (2004). Cryst. Growth Des. 4, 545–552. Web of Science CSD CrossRef CAS Google Scholar
Brandenburg, K. (1997). DIAMOND. Crystal Impact GbR, Bonn, Germany. Google Scholar
Clark, R. C. & Reid, J. S. (1995). Acta Cryst. A51, 887–897. CrossRef CAS Web of Science IUCr Journals Google Scholar
Dolomanov, O. V., Bourhis, L. J., Gildea, R. J., Howard, J. A. K. & Puschmann, H. (2009). J. Appl. Cryst. 42, 339–341. Web of Science CrossRef CAS IUCr Journals Google Scholar
George, A., Brandt, A., Tran, K., Zahari, S. M. S. N. S., Klein-Marcuschamer, D., Sun, N., Sathitsuksanoh, N., Shi, J., Stavila, V., Parthasarathi, R., Singh, S., Holmes, B. M., Welton, T., Simmons, B. A. & Hallett, J. P. (2015). Green Chem. 17, 1728–1734. Web of Science CrossRef CAS Google Scholar
Hoque, M. N. & Das, G. (2014). Cryst. Growth Des. 14, 2962–2971. Web of Science CSD CrossRef CAS Google Scholar
Kolev, T., Koleva, B. B., Seidel, R. W., Spiteller, M. & Sheldrick, W. S. (2009). Cryst. Growth Des. 9, 3348–3352. Web of Science CSD CrossRef CAS Google Scholar
Lee, C. & Harrison, W. T. A. (2003). Acta Cryst. E59, m959–m960. Web of Science CSD CrossRef IUCr Journals Google Scholar
Mohammadnezhad, G. S., Amini, M. M., Khavasi, H. R. & Ng, S. W. (2008). Acta Cryst. E64, o1564. Web of Science CSD CrossRef IUCr Journals Google Scholar
Rigaku Oxford (2015). CrysAlis PRO. Rigaku Corporation, Yarnton, England. Google Scholar
Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. Web of Science CrossRef CAS IUCr Journals Google Scholar
Sheldrick, G. M. (2015). Acta Cryst. C71, 3–8. Web of Science CrossRef IUCr Journals Google Scholar
Smail, E. J. & Sheldrick, G. M. (1973). Acta Cryst. B29, 2027–2028. CSD CrossRef IUCr Journals Web of Science Google Scholar
Xu, Y.-M., Gao, S. & Ng, S. W. (2009). Acta Cryst. E65, o3147. Web of Science CSD CrossRef IUCr Journals Google Scholar
This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.