research communications
E)-13-(pyrimidin-5-yl)parthenolide
of (aDept. of Pharm. Sciences, College of Pharmacy, University of Arkansas for Medical Sciences, Little Rock, AR 72205, USA, and bDept. of Chemistry, University of Kentucky, Lexington KY 40506, USA
*Correspondence e-mail: pacrooks@uams.edu
The title compound, C19H22N2O3, {systematic name (1aR,4E,7aS,8E,10aS,10bR)-1a,5-dimethyl-8-[(pyrimidin-5-yl)methylidene]-2,3,6,7,7a,8,10a,10b-octahydrooxireno[2′,3′:9,10]cyclodeca[1,2-b]furan-9(1aH)-one} was obtained from the reaction of parthenolide [systematic name (1aR,7aS,10aS,10bR,E)-1a,5-dimethyl-8-methylene-2,3,6,7,7a,8,10a,10b-octahydrooxireno[2′,3′:9,10]cyclodeca[1,2-b]furan-9(1aH)-one] with 5-bromopyrimidine under Heck reaction conditions, and was identified as an E isomer. The molecule possesses ten-, five- (lactone) and three-membered (epoxide) rings with a pyrimidine group as a substituent. The ten-membered ring displays an approximate chair–chair conformation, while the lactone ring shows a flattened envelope-type conformation. The dihedral angle between the pyrimidine moiety and the lactone ring system is 29.43 (7)°.
Keywords: crystal structure; parthenolide; pyrimidine; Heck product.
CCDC reference: 1436825
1. Chemical context
Parthenolide (PTL) is a sesquiterpene lactone known to significantly target cancer stem cells, which are the putative roots of all types of cancer (Gopal et al., 2007). PTL has been isolated from several different plant species, feverfew leaf (Tanacetum parthenium) being one of the major sources (Awang, 1989). PTL exhibits a wide range of biological activities, such as anti-inflammatory, anti-bacterial, anti-fungal, and cytotoxic properties (Picman, 1986). Consequently, PTL was discovered to be capable of inducing robust apoptosis in primary acute myelogenous leukemia (AML) cells (Guzman et al., 2007), proving to be equally effective among all subpopulations within primary AML specimens, including leukemia stem cells (LSCs). Gopal et al. (2007) reported that PTL specifically depletes HDAC1 protein without affecting other class I/II HDACs (histone deacetylases). Nasim et al. (2008) reported the anti-leukemic activity of aminoparthenolide analogues. Han et al. (2009) reported on bioactive derivatives of Heck products of PTL. Recently, Penthala et al. (2014a) reported the anti-cancer activity of PTL–Heck products. Recently we (Penthala et al., 2014b) reported the of 13-{4-[Z–2-cyano-2-(3,4,5-trimethoxyphenyl)ethenyl]phenyl} parthenolide, an analog of PTL, which was found to have the E configuration at C-13. The interesting biological properties of PTL directed our attention to design and synthesize additional bioactive derivatives. In order to obtain detailed information on the structural conformation of the current molecule, including assignment of the of the four stereocentres, and to establish the geometry of the exocyclic double bond, a single crystal X-ray has been carried out.
2. Structural commentary
The title compound is shown in Fig. 1. The PTL of the molecule contains a ten-membered carbocyclic ring (chair–chair conformation) fused to a lactone ring (flattened envelope-type conformation), and an epoxide ring, as previously reported (Castañeda-Acosta & Fisher, 1993). The title compound contains an E-exocyclic olefinic bond C11=C13. The pyrimidine ring is twisted out of the plane of the furan ring, making a dihedral angle of 29.43 (7)°. The C11=C13—C16 bond angle of 127.89 (16)° deviates from the ideal value of 120°, but other bond lengths and angles are largely unremarkable. The four chiral carbon atoms in PTL were determined using 1354 quotients (Parsons et al., 2013) as follows: C4(R),C5(R),C6(S),C7(S) for the arbitrary atom-numbering scheme used, and is consistent with previous studies (Penthala et al., 2013).
3. Supramolecular features
There are no classical hydrogen bonds and no π–π interactions. There are a few C—H⋯N and C—H⋯O short contacts, but none that have the right geometry to be considered as non-classical hydrogen bonds. Intermolecular contacts thus appear to be limited to van der Waals interactions.
4. Database survey
A search of the November 2014 release of the Cambridge Structure Database (Groom & Allen, 2014) for the PTL gave 24 hits. Two of these (PARTEN: Quick & Rogers, 1976; PARTEN01: Bartsch et al., 1983) give the structure of PTL itself, with the remaining 22 being substituted variants of PTL. Of these substituted parthenolides, only four CSD entries: HORZOF (Penthala et al., 2014b), HUKLAB, HUKLEF (Han et al., 2009) and QILGEZ (Penthala et al., 2013), are substituted at the exocyclic double bond.
5. Synthesis and crystallization
Synthetic procedures: The title compound, containing the PTL was synthesized by the previously reported literature procedure (Han et al., 2009). In brief, parthenolide (1 mmol), 5-bromopyrimidine (1.1 mmol), triethylamine (3.0 mmol) and 5 mol% of palladium acetate were charged into dimethylformamide (2 ml) at room temperature. The reactants were stirred at 333–343 K for 24 h. After completion of the reaction, the reaction mass was extracted into diethyl ether (2 × 30 ml). The combined organic layers were dried over anhydrous sodium sulfate, concentrated and purified by The title compound was recrystallized from a mixture of hexane and acetone (9:1), which gave colourless needles upon slow evaporation of the solution at room temperature over 24 h.
6. Refinement
Crystal data, data collection and structure . H atoms were found in difference Fourier maps, but subsequently included in the using riding models, with constrained distances set to 0.95 Å (Csp2H), 0.98 Å (RCH3), 0.99 Å (R2CH2) and 1.00 Å (R3CH). Uiso(H) parameters were set to values of either 1.2Ueq or 1.5Ueq (RCH3 only) of the attached atom. The parameter [−0.04 (3)] was determined directly from the diffraction data using 1354 Parsons quotients (Parsons et al., 2013), with the four chiral carbon atoms assigned to be R,R,S,S for the arbitrarily numbered atoms C4, C5, C6, C7, respectively.
details are summarized in Table 1Supporting information
CCDC reference: 1436825
https://doi.org/10.1107/S2056989015021507/zs2350sup1.cif
contains datablocks I, global. DOI:Structure factors: contains datablock I. DOI: https://doi.org/10.1107/S2056989015021507/zs2350Isup2.hkl
Data collection: APEX2 (Bruker, 2006); cell
SAINT (Bruker, 2006); data reduction: SAINT (Bruker, 2006); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL2014 (Sheldrick, 2015); molecular graphics: XP in SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008) and CIFFIX (Parkin, 2013).C19H22N2O3 | F(000) = 348 |
Mr = 326.38 | Dx = 1.273 Mg m−3 |
Monoclinic, P21 | Cu Kα radiation, λ = 1.54178 Å |
a = 10.3526 (2) Å | Cell parameters from 9908 reflections |
b = 7.2612 (1) Å | θ = 4.5–68.2° |
c = 11.9198 (2) Å | µ = 0.70 mm−1 |
β = 108.1210 (6)° | T = 90 K |
V = 851.60 (2) Å3 | Solvent-rounded block, colourless |
Z = 2 | 0.25 × 0.13 × 0.10 mm |
Bruker X8 Proteum diffractometer | 3020 independent reflections |
Radiation source: fine-focus rotating anode | 3013 reflections with I > 2σ(I) |
Detector resolution: 5.6 pixels mm-1 | Rint = 0.032 |
φ and ω scans | θmax = 68.2°, θmin = 4.5° |
Absorption correction: multi-scan (SADABS; Bruker, 2006) | h = −12→10 |
Tmin = 0.850, Tmax = 0.942 | k = −8→8 |
11370 measured reflections | l = −14→13 |
Refinement on F2 | Hydrogen site location: difference Fourier map |
Least-squares matrix: full | H-atom parameters constrained |
R[F2 > 2σ(F2)] = 0.027 | w = 1/[σ2(Fo2) + (0.0326P)2 + 0.1773P] where P = (Fo2 + 2Fc2)/3 |
wR(F2) = 0.068 | (Δ/σ)max < 0.001 |
S = 1.05 | Δρmax = 0.15 e Å−3 |
3020 reflections | Δρmin = −0.14 e Å−3 |
220 parameters | Extinction correction: SHELXL-2014, Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4 |
1 restraint | Extinction coefficient: 0.010 (2) |
Primary atom site location: structure-invariant direct methods | Absolute structure: Flack x determined using 1354 quotients [(I+)-(I-)]/[(I+)+(I-)] (Parsons et al., 2013). |
Secondary atom site location: difference Fourier map | Absolute structure parameter: −0.04 (3) |
Experimental. The crystal was mounted with polyisobutene oil on the tip of a fine glass fibre, which was fastened in a copper mounting pin with electrical solder. It was placed directly into the cold gas stream of a liquid nitrogen based cryostat, according to published methods. Diffraction data were collected with the crystal at 90 K, which is standard practice in this laboratory for the majority of flash-cooled crystals. The crystals were large, and could not be cut to size without inducing damage by crushing, leading to shattered, frayed ends. These damaged parts could easily be dissolved away, however, to give solvent-rounded undamaged pieces of optimal size for data collection. |
Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes. |
Refinement. Refinement progress was checked using PLATON (Spek, 2009) and by an R-tensor (Parkin, 2000). The final model was further checked with the IUCr utility checkCIF. |
x | y | z | Uiso*/Ueq | ||
O1 | 0.59428 (12) | 0.24072 (19) | 0.48957 (10) | 0.0228 (3) | |
O2 | 0.30633 (12) | 0.25486 (17) | 0.43887 (10) | 0.0195 (3) | |
O3 | 0.12397 (13) | 0.29255 (19) | 0.49855 (11) | 0.0266 (3) | |
C1 | 0.57679 (17) | 0.5285 (2) | 0.19945 (14) | 0.0185 (4) | |
H1A | 0.5833 | 0.6439 | 0.2384 | 0.022* | |
C2 | 0.70386 (17) | 0.4134 (3) | 0.23289 (16) | 0.0208 (4) | |
H2A | 0.7809 | 0.4881 | 0.2257 | 0.025* | |
H2B | 0.6915 | 0.3076 | 0.1781 | 0.025* | |
C3 | 0.73676 (17) | 0.3417 (3) | 0.36116 (15) | 0.0202 (4) | |
H3A | 0.8146 | 0.2554 | 0.3792 | 0.024* | |
H3B | 0.7615 | 0.4460 | 0.4173 | 0.024* | |
C4 | 0.61322 (17) | 0.2447 (2) | 0.37345 (14) | 0.0178 (4) | |
C5 | 0.51035 (16) | 0.3615 (2) | 0.40010 (13) | 0.0165 (3) | |
H5A | 0.5353 | 0.4948 | 0.4118 | 0.020* | |
C6 | 0.35977 (16) | 0.3252 (2) | 0.34753 (14) | 0.0159 (3) | |
H6A | 0.3445 | 0.2321 | 0.2829 | 0.019* | |
C7 | 0.27894 (16) | 0.5036 (2) | 0.29783 (13) | 0.0149 (3) | |
H7A | 0.3396 | 0.6113 | 0.3292 | 0.018* | |
C8 | 0.22800 (16) | 0.5184 (3) | 0.16174 (14) | 0.0176 (4) | |
H8A | 0.1434 | 0.5923 | 0.1376 | 0.021* | |
H8B | 0.2058 | 0.3936 | 0.1278 | 0.021* | |
C9 | 0.33322 (17) | 0.6078 (3) | 0.11062 (14) | 0.0185 (4) | |
H9A | 0.2884 | 0.6358 | 0.0261 | 0.022* | |
H9B | 0.3638 | 0.7258 | 0.1519 | 0.022* | |
C10 | 0.45591 (17) | 0.4887 (2) | 0.12176 (14) | 0.0179 (4) | |
C11 | 0.16862 (16) | 0.5027 (2) | 0.35605 (14) | 0.0159 (3) | |
C12 | 0.19100 (17) | 0.3425 (3) | 0.43718 (14) | 0.0184 (4) | |
C13 | 0.06867 (17) | 0.6212 (3) | 0.35248 (14) | 0.0179 (4) | |
H13A | 0.0096 | 0.5872 | 0.3961 | 0.021* | |
C14 | 0.42876 (19) | 0.3267 (3) | 0.03864 (16) | 0.0269 (4) | |
H14A | 0.5140 | 0.2609 | 0.0473 | 0.040* | |
H14B | 0.3908 | 0.3705 | −0.0428 | 0.040* | |
H14C | 0.3639 | 0.2434 | 0.0573 | 0.040* | |
C15 | 0.57578 (18) | 0.0643 (2) | 0.30934 (18) | 0.0239 (4) | |
H15A | 0.5012 | 0.0072 | 0.3311 | 0.036* | |
H15B | 0.6548 | −0.0179 | 0.3312 | 0.036* | |
H15C | 0.5470 | 0.0861 | 0.2240 | 0.036* | |
C16 | 0.03901 (16) | 0.7977 (2) | 0.28928 (14) | 0.0180 (4) | |
C17 | 0.13568 (18) | 0.9097 (3) | 0.26601 (18) | 0.0244 (4) | |
H17A | 0.2281 | 0.8719 | 0.2933 | 0.029* | |
N18 | 0.10538 (16) | 1.0688 (2) | 0.20684 (16) | 0.0293 (4) | |
C19 | −0.02533 (19) | 1.1156 (3) | 0.17269 (17) | 0.0252 (4) | |
H19A | −0.0485 | 1.2265 | 0.1287 | 0.030* | |
N20 | −0.12697 (15) | 1.0248 (2) | 0.19312 (14) | 0.0256 (4) | |
C21 | −0.09291 (18) | 0.8673 (3) | 0.25279 (15) | 0.0219 (4) | |
H21A | −0.1621 | 0.7994 | 0.2713 | 0.026* |
U11 | U22 | U33 | U12 | U13 | U23 | |
O1 | 0.0188 (6) | 0.0306 (7) | 0.0176 (6) | 0.0061 (5) | 0.0035 (5) | 0.0092 (5) |
O2 | 0.0187 (6) | 0.0200 (6) | 0.0221 (6) | 0.0038 (5) | 0.0098 (5) | 0.0064 (5) |
O3 | 0.0242 (6) | 0.0305 (8) | 0.0303 (7) | 0.0031 (6) | 0.0162 (5) | 0.0097 (6) |
C1 | 0.0218 (8) | 0.0163 (8) | 0.0197 (8) | −0.0006 (7) | 0.0100 (7) | 0.0024 (7) |
C2 | 0.0184 (8) | 0.0208 (9) | 0.0254 (9) | −0.0018 (7) | 0.0101 (7) | −0.0001 (7) |
C3 | 0.0157 (8) | 0.0216 (9) | 0.0228 (8) | 0.0016 (7) | 0.0053 (6) | −0.0004 (7) |
C4 | 0.0163 (8) | 0.0184 (8) | 0.0174 (8) | 0.0036 (7) | 0.0031 (6) | 0.0040 (7) |
C5 | 0.0175 (8) | 0.0173 (8) | 0.0141 (7) | 0.0020 (7) | 0.0043 (6) | 0.0031 (6) |
C6 | 0.0173 (8) | 0.0162 (8) | 0.0154 (7) | 0.0002 (6) | 0.0068 (6) | 0.0012 (6) |
C7 | 0.0155 (7) | 0.0147 (8) | 0.0142 (7) | −0.0011 (6) | 0.0041 (6) | −0.0008 (6) |
C8 | 0.0172 (8) | 0.0201 (8) | 0.0143 (8) | 0.0005 (7) | 0.0034 (6) | 0.0003 (7) |
C9 | 0.0209 (8) | 0.0195 (8) | 0.0147 (7) | 0.0018 (7) | 0.0051 (6) | 0.0044 (7) |
C10 | 0.0221 (8) | 0.0190 (9) | 0.0150 (7) | 0.0003 (7) | 0.0092 (7) | 0.0026 (7) |
C11 | 0.0153 (7) | 0.0170 (8) | 0.0143 (7) | −0.0021 (7) | 0.0031 (6) | −0.0010 (7) |
C12 | 0.0166 (8) | 0.0206 (9) | 0.0187 (8) | 0.0004 (7) | 0.0065 (6) | 0.0014 (7) |
C13 | 0.0144 (8) | 0.0213 (9) | 0.0175 (8) | −0.0011 (7) | 0.0044 (6) | −0.0018 (7) |
C14 | 0.0258 (9) | 0.0321 (11) | 0.0219 (8) | 0.0041 (8) | 0.0061 (7) | −0.0061 (8) |
C15 | 0.0206 (8) | 0.0177 (9) | 0.0346 (10) | 0.0023 (7) | 0.0105 (8) | 0.0005 (7) |
C16 | 0.0175 (8) | 0.0190 (9) | 0.0161 (7) | 0.0009 (7) | 0.0032 (6) | −0.0044 (7) |
C17 | 0.0156 (8) | 0.0189 (9) | 0.0350 (10) | 0.0005 (7) | 0.0024 (8) | 0.0019 (8) |
N18 | 0.0209 (8) | 0.0216 (9) | 0.0409 (10) | −0.0014 (6) | 0.0030 (7) | 0.0062 (7) |
C19 | 0.0240 (9) | 0.0183 (9) | 0.0288 (9) | 0.0021 (8) | 0.0016 (7) | 0.0019 (8) |
N20 | 0.0206 (8) | 0.0232 (8) | 0.0304 (8) | 0.0042 (6) | 0.0043 (6) | 0.0003 (7) |
C21 | 0.0194 (8) | 0.0219 (9) | 0.0253 (9) | 0.0026 (7) | 0.0084 (7) | −0.0024 (7) |
O1—C5 | 1.444 (2) | C8—H8B | 0.9900 |
O1—C4 | 1.457 (2) | C9—C10 | 1.508 (2) |
O2—C12 | 1.348 (2) | C9—H9A | 0.9900 |
O2—C6 | 1.4585 (19) | C9—H9B | 0.9900 |
O3—C12 | 1.210 (2) | C10—C14 | 1.507 (3) |
C1—C10 | 1.337 (2) | C11—C13 | 1.336 (2) |
C1—C2 | 1.504 (2) | C11—C12 | 1.484 (2) |
C1—H1A | 0.9500 | C13—C16 | 1.470 (2) |
C2—C3 | 1.549 (2) | C13—H13A | 0.9500 |
C2—H2A | 0.9900 | C14—H14A | 0.9800 |
C2—H2B | 0.9900 | C14—H14B | 0.9800 |
C3—C4 | 1.507 (2) | C14—H14C | 0.9800 |
C3—H3A | 0.9900 | C15—H15A | 0.9800 |
C3—H3B | 0.9900 | C15—H15B | 0.9800 |
C4—C5 | 1.471 (2) | C15—H15C | 0.9800 |
C4—C15 | 1.505 (3) | C16—C17 | 1.383 (3) |
C5—C6 | 1.511 (2) | C16—C21 | 1.393 (2) |
C5—H5A | 1.0000 | C17—N18 | 1.339 (2) |
C6—C7 | 1.556 (2) | C17—H17A | 0.9500 |
C6—H6A | 1.0000 | N18—C19 | 1.330 (2) |
C7—C11 | 1.510 (2) | C19—N20 | 1.327 (3) |
C7—C8 | 1.546 (2) | C19—H19A | 0.9500 |
C7—H7A | 1.0000 | N20—C21 | 1.335 (3) |
C8—C9 | 1.547 (2) | C21—H21A | 0.9500 |
C8—H8A | 0.9900 | ||
C5—O1—C4 | 60.94 (10) | H8A—C8—H8B | 107.8 |
C12—O2—C6 | 111.31 (12) | C10—C9—C8 | 113.70 (14) |
C10—C1—C2 | 128.05 (17) | C10—C9—H9A | 108.8 |
C10—C1—H1A | 116.0 | C8—C9—H9A | 108.8 |
C2—C1—H1A | 116.0 | C10—C9—H9B | 108.8 |
C1—C2—C3 | 110.73 (14) | C8—C9—H9B | 108.8 |
C1—C2—H2A | 109.5 | H9A—C9—H9B | 107.7 |
C3—C2—H2A | 109.5 | C1—C10—C14 | 124.58 (16) |
C1—C2—H2B | 109.5 | C1—C10—C9 | 121.22 (16) |
C3—C2—H2B | 109.5 | C14—C10—C9 | 114.20 (15) |
H2A—C2—H2B | 108.1 | C13—C11—C12 | 119.20 (15) |
C4—C3—C2 | 108.68 (14) | C13—C11—C7 | 132.19 (16) |
C4—C3—H3A | 110.0 | C12—C11—C7 | 108.42 (13) |
C2—C3—H3A | 110.0 | O3—C12—O2 | 121.43 (16) |
C4—C3—H3B | 110.0 | O3—C12—C11 | 128.78 (16) |
C2—C3—H3B | 110.0 | O2—C12—C11 | 109.75 (13) |
H3A—C3—H3B | 108.3 | C11—C13—C16 | 127.89 (16) |
O1—C4—C5 | 59.08 (10) | C11—C13—H13A | 116.1 |
O1—C4—C15 | 112.05 (15) | C16—C13—H13A | 116.1 |
C5—C4—C15 | 121.46 (15) | C10—C14—H14A | 109.5 |
O1—C4—C3 | 118.08 (14) | C10—C14—H14B | 109.5 |
C5—C4—C3 | 116.40 (15) | H14A—C14—H14B | 109.5 |
C15—C4—C3 | 116.73 (15) | C10—C14—H14C | 109.5 |
O1—C5—C4 | 59.97 (10) | H14A—C14—H14C | 109.5 |
O1—C5—C6 | 120.41 (14) | H14B—C14—H14C | 109.5 |
C4—C5—C6 | 122.16 (14) | C4—C15—H15A | 109.5 |
O1—C5—H5A | 114.5 | C4—C15—H15B | 109.5 |
C4—C5—H5A | 114.5 | H15A—C15—H15B | 109.5 |
C6—C5—H5A | 114.5 | C4—C15—H15C | 109.5 |
O2—C6—C5 | 109.48 (12) | H15A—C15—H15C | 109.5 |
O2—C6—C7 | 106.97 (12) | H15B—C15—H15C | 109.5 |
C5—C6—C7 | 112.07 (13) | C17—C16—C21 | 115.11 (16) |
O2—C6—H6A | 109.4 | C17—C16—C13 | 124.52 (15) |
C5—C6—H6A | 109.4 | C21—C16—C13 | 120.31 (15) |
C7—C6—H6A | 109.4 | N18—C17—C16 | 123.19 (16) |
C11—C7—C8 | 115.01 (13) | N18—C17—H17A | 118.4 |
C11—C7—C6 | 102.45 (13) | C16—C17—H17A | 118.4 |
C8—C7—C6 | 115.15 (13) | C19—N18—C17 | 115.52 (17) |
C11—C7—H7A | 107.9 | N20—C19—N18 | 127.34 (18) |
C8—C7—H7A | 107.9 | N20—C19—H19A | 116.3 |
C6—C7—H7A | 107.9 | N18—C19—H19A | 116.3 |
C7—C8—C9 | 112.99 (13) | C19—N20—C21 | 115.48 (15) |
C7—C8—H8A | 109.0 | N20—C21—C16 | 123.23 (17) |
C9—C8—H8A | 109.0 | N20—C21—H21A | 118.4 |
C7—C8—H8B | 109.0 | C16—C21—H21A | 118.4 |
C9—C8—H8B | 109.0 | ||
C10—C1—C2—C3 | −110.99 (19) | C2—C1—C10—C14 | −8.9 (3) |
C1—C2—C3—C4 | 53.54 (19) | C2—C1—C10—C9 | 171.47 (16) |
C5—O1—C4—C15 | −114.44 (16) | C8—C9—C10—C1 | −107.23 (18) |
C5—O1—C4—C3 | 105.54 (17) | C8—C9—C10—C14 | 73.07 (19) |
C2—C3—C4—O1 | −152.28 (15) | C8—C7—C11—C13 | −56.5 (2) |
C2—C3—C4—C5 | −84.95 (18) | C6—C7—C11—C13 | 177.78 (17) |
C2—C3—C4—C15 | 69.54 (18) | C8—C7—C11—C12 | 128.73 (15) |
C4—O1—C5—C6 | 111.94 (17) | C6—C7—C11—C12 | 3.06 (16) |
C15—C4—C5—O1 | 98.43 (17) | C6—O2—C12—O3 | 172.90 (16) |
C3—C4—C5—O1 | −108.37 (16) | C6—O2—C12—C11 | −9.33 (18) |
O1—C4—C5—C6 | −109.10 (17) | C13—C11—C12—O3 | 5.6 (3) |
C15—C4—C5—C6 | −10.7 (2) | C7—C11—C12—O3 | −178.86 (18) |
C3—C4—C5—C6 | 142.53 (15) | C13—C11—C12—O2 | −171.94 (15) |
C12—O2—C6—C5 | 132.85 (14) | C7—C11—C12—O2 | 3.59 (18) |
C12—O2—C6—C7 | 11.21 (17) | C12—C11—C13—C16 | 172.57 (15) |
O1—C5—C6—O2 | 36.7 (2) | C7—C11—C13—C16 | −1.7 (3) |
C4—C5—C6—O2 | 108.24 (17) | C11—C13—C16—C17 | −29.8 (3) |
O1—C5—C6—C7 | 155.20 (14) | C11—C13—C16—C21 | 153.17 (17) |
C4—C5—C6—C7 | −133.25 (15) | C21—C16—C17—N18 | −3.7 (3) |
O2—C6—C7—C11 | −8.19 (16) | C13—C16—C17—N18 | 179.10 (17) |
C5—C6—C7—C11 | −128.18 (14) | C16—C17—N18—C19 | 1.1 (3) |
O2—C6—C7—C8 | −133.78 (14) | C17—N18—C19—N20 | 1.7 (3) |
C5—C6—C7—C8 | 106.23 (15) | N18—C19—N20—C21 | −1.4 (3) |
C11—C7—C8—C9 | 153.12 (15) | C19—N20—C21—C16 | −1.7 (3) |
C6—C7—C8—C9 | −88.08 (18) | C17—C16—C21—N20 | 4.0 (2) |
C7—C8—C9—C10 | 69.71 (19) | C13—C16—C21—N20 | −178.66 (16) |
Acknowledgements
This work was supported by NIH/NCI grant CA158275.
References
Awang, D. V. C. (1989). Can. Pharm. J. 122, 266–270. Google Scholar
Bartsch, H.-H., Jarchow, O. & Schmalle, H. W. (1983). Z. Kristallogr. 162, 15–17. Google Scholar
Bruker (2006). APEX2, SAINT and SADABS. Bruker-AXS Inc., Madison, Wisconsin, USA. Google Scholar
Castañeda-Acosta, J., Fischer, N. H. & Vargas, D. (1993). J. Nat. Prod. 56, 90–98. PubMed Web of Science Google Scholar
Gopal, Y. N. V., Arora, T. S. & Van Dyke, M. W. (2007). Chem. Biol. 14, 813–823. Web of Science CrossRef PubMed CAS Google Scholar
Groom, C. R. & Allen, F. H. (2014). Angew. Chem. Int. Ed. 53, 662–671. Web of Science CSD CrossRef CAS Google Scholar
Guzman, M. L., Rossi, R. M., Neelakantan, S., Li, X., Corbett, C. A., Hassane, D. C., Becker, M. W., Bennett, J. M., Sullivan, E., Lachowicz, J. L., Vaughan, A., Sweeney, C. J., Matthews, W., Carroll, M., Liesveld, J. L., Crooks, P. A. & Jordan, C. T. (2007). Blood, 110, 4427–4435. Web of Science CrossRef PubMed CAS Google Scholar
Han, C., Barrios, F. J., Riofski, M. V. & Colby, D. A. (2009). J. Org. Chem. 74, 7176–7179. Web of Science CSD CrossRef PubMed CAS Google Scholar
Nasim, S. & Crooks, P. A. (2008). Bioorg. Med. Chem. Lett. 18, 3870–3873. Web of Science CSD CrossRef PubMed CAS Google Scholar
Parkin, S. (2000). Acta Cryst. A56, 157–162. Web of Science CrossRef CAS IUCr Journals Google Scholar
Parkin, S. (2013). CIFFIX. http://xray.uky.edu/people/parkin/programs/ciffix Google Scholar
Parsons, S., Flack, H. D. & Wagner, T. (2013). Acta Cryst. B69, 249–259. Web of Science CrossRef CAS IUCr Journals Google Scholar
Penthala, N. R., Bommagani, S., Janganati, V., MacNicol, K. B., Cragle, C. E., Madadi, N. R., Hardy, L. L., MacNicol, A. M. & Crooks, P. A. (2014a). Eur. J. Med. Chem. 85, 517–525. Web of Science CrossRef CAS PubMed Google Scholar
Penthala, N. R., Bommagani, S., Janganati, V., Parkin, S. & Crooks, P. A. (2014b). Acta Cryst. E70, o1092–o1093. CSD CrossRef IUCr Journals Google Scholar
Penthala, N. R., Janganati, V., Parkin, S., Varughese, K. I. & Crooks, P. A. (2013). Acta Cryst. E69, o1709–o1710. CSD CrossRef CAS IUCr Journals Google Scholar
Picman, A. K. (1986). Biochem. Syst. Ecol. 14, 255–281. CrossRef CAS Web of Science Google Scholar
Quick, A. & Rogers, D. (1976). J. Chem. Soc. Perkin Trans. 2, pp. 465–469. CSD CrossRef Web of Science Google Scholar
Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. Web of Science CrossRef CAS IUCr Journals Google Scholar
Sheldrick, G. M. (2015). Acta Cryst. C71, 3–8. Web of Science CrossRef IUCr Journals Google Scholar
Spek, A. L. (2009). Acta Cryst. D65, 148–155. Web of Science CrossRef CAS IUCr Journals Google Scholar
This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.