organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Crystal structure of 2,6-bis­­(2-hy­dr­oxy-5-methyl­phen­yl)-4-phenyl­pyridinium bromide di­chloro­methane hemisolvate hemihydrate

aN.D. Zelinsky Institute of Organic Chemistry, Leninsky prospekt 47, Moscow 119991, Russian Federation, bDepartment of Chemistry, M.V. Lomonosov Moscow State University, Moscow, Russian Federation, and cInstitute of General and Inorganic Chemistry, Russian Academy of Sciences, Moscow, Russian Federation
*Correspondence e-mail: churakov@igic.ras.ru

Edited by G. Smith, Queensland University of Technology, Australia (Received 28 October 2015; accepted 11 November 2015; online 18 November 2015)

The asymmetric unit in the structure of the title compound, C25H22NO2+·Br ·0.5CH2Cl2·0.5H2O, comprises two pseudosymmetry-related cations, two bromide anions, a di­chloro­methane molecule and a water mol­ecule of solvation. The two independent cations are conformationally similar with the comparative dihedral angles between the central pyridine ring and the three benzene substituent rings being 3.0 (2), 36.4 (1) and 24.2 (1)°, and 3.7 (2), 36.5 (1) and 24.8 (1)°, respectively. In the crystal, the cations, anions and water mol­ecules are linked through O—H⋯O and O—H⋯Br hydrogen bonds, forming an insular unit. Within the cations there are also intra­molecular N—H⋯O hydrogen bonds. Adjacent centrosymmetrically related aggregates are linked by ππ stacking inter­actions between the pyridine ring and a benzene ring in both cations [ring-centroid separations = 3.525 (3) and 3.668 (3) Å], forming chains extending across the ac diagonal. Voids between these chains are filled by dichloromethane molecules.

1. Related literature

For general background to the chemistry affording 2,6-bis-(2-hy­droxy­phen­yl)pyridines, see: Huang et al. (2012[Huang, M., Kireenko, M. M., Zaitsev, K. V., Oprunenko, Y. F., Churakov, A. V., Howard, J. A. K., Lermontova, E. K., Sorokin, D., Linder, T., Sundermeyer, J., Karlov, S. S. & Zaitseva, G. S. (2012). Eur. J. Inorg. Chem. 2012, 3712-3724.], 2013[Huang, M., Kireenko, M. M., Lermontova, E. K., Churakov, A. V., Oprunenko, Y. F., Zaitsev, K. V., Sorokin, D., Harms, K., Sundermeyer, J., Zaitseva, G. S. & Karlov, S. S. (2013). Z. Anorg. Allg. Chem. 639, 502-511.]); Kire­enko et al. (2013[Kireenko, M. M., Zaitsev, K. V., Oprunenko, Y. F., Churakov, A. V., Tafeenko, V. A., Karlov, S. S. & Zaitseva, G. S. (2013). Dalton Trans. 42, 7901-7912.]); Klein et al. (2010[Klein, A., Butsch, K. & Neudörfl, J. (2010). Inorg. Chim. Acta, 363, 3282-3290.]); Li et al. (2000[Li, Y., Liu, Y., Bu, W., Guo, J. & Wang, Y. (2000). Chem. Commun. pp. 1551-1552.]); Steinhauser et al. (2004[Steinhauser, S., Heinz, U., Sander, J. & Hegetschweiler, K. (2004). Z. Anorg. Allg. Chem. 630, 1829-1838.]); Zhang et al. (2006[Zhang, H., Huo, C., Ye, K., Zhang, P., Tian, W. & Wang, Y. (2006). Inorg. Chem. 45, 2788-2794.]). For the closely related structure of the parent derivative compound, see: Silva et al. (1997[Silva, A. M. S., Almeida, L. M. P. M., Cavaleiro, J. S., Foces-Foces, C., Llamas-Saiz, A. L., Fontenas, C., Jagerovic, N. & Elguero, J. (1997). Tetrahedron, 53, 11645-11658.]).

[Scheme 1]

2. Experimental

2.1. Crystal data

  • 2C25H22NO2+·2Br·CH2Cl2·H2O

  • Mr = 999.63

  • Monoclinic, P 21 /c

  • a = 14.7890 (12) Å

  • b = 17.5387 (14) Å

  • c = 19.0163 (15) Å

  • β = 112.577 (1)°

  • V = 4554.4 (6) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 1.95 mm−1

  • T = 150 K

  • 0.25 × 0.20 × 0.10 mm

2.2. Data collection

  • Bruker SMART APEXII diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 2008[Bruker (2008). APEX2, SADABS and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]) Tmin = 0.642, Tmax = 0.829

  • 34435 measured reflections

  • 8482 independent reflections

  • 6350 reflections with I > 2σ(I)

  • Rint = 0.050

2.3. Refinement

  • R[F2 > 2σ(F2)] = 0.051

  • wR(F2) = 0.132

  • S = 1.06

  • 8482 reflections

  • 585 parameters

  • 15 restraints

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 0.99 e Å−3

  • Δρmin = −0.92 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
N1—H1⋯O11 0.88 1.82 2.547 (4) 138
N2—H2⋯O21 0.88 1.85 2.575 (4) 138
O11—H3⋯O1 0.79 (2) 1.80 (3) 2.578 (4) 167 (5)
O12—H4⋯Br1 0.79 (2) 2.43 (2) 3.219 (3) 175 (5)
O21—H5⋯Br1i 0.79 (2) 2.41 (2) 3.200 (3) 170 (5)
O22—H6⋯Br2 0.79 (2) 2.35 (2) 3.131 (3) 170 (5)
O1—H7⋯Br2ii 0.80 (2) 2.41 (2) 3.206 (3) 173 (5)
O1—H8⋯Br1 0.79 (2) 2.61 (3) 3.365 (3) 159 (5)
Symmetry codes: (i) [-x+1, y+{\script{1\over 2}}, -z+{\script{1\over 2}}]; (ii) [-x+1, y-{\script{1\over 2}}, -z+{\script{1\over 2}}].

Data collection: APEX2 (Bruker, 2008[Bruker (2008). APEX2, SADABS and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2008[Bruker (2008). APEX2, SADABS and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); software used to prepare material for publication: SHELXTL.

Supporting information


Comment top

Interest in dianionic tridentate ONO-type ligands has grown steadily over the past several decades due to their ability to stabilize unusual metal oxidation states and the coordination geometry around metal centers. As a part of our investigation on the synthesis of tridentate ligands (Kireenko et al., 2013; Huang et al., 2013, 2012) we obtained and studied the structure of the title compound, 2(C25H22NO2+) . 2Br - . CH2Cl2 . H2O, which may be regarded as a precursor of a promising ligand for the preparation of complexes of main group metal elements.

The asymmetric unit comprises two independent ligand cations, two bromide anions, a dichlormethane and a water molecule of solvation (Fig. 1). The cations are related by pseudotranslation (one half of the ab diagonal) and possess very similar geometrical parameters and conformations. The comparative dihedral angles between the central pyridine ring and the three benzene substituent rings are 3.0 (2), 36.4 (1), 24.2 (1)° and 3.7 (2), 36.5 (1), 24.8 (1)°, respectively for cations 1 and 2. Figure 2 represents the superposition of one independent cation with another shifted by x + 0.5, y + 0.5, z. However, the bromide anions and the solvent water molecules do not satisfy this pseudosymmetry law.

In the crystal, the two crystallographically independent organic cations, the two bromide anions, and the water molecules are associated through moderately strong inter-species O—H···O and O—H···Br hydrogen bonds (Table 1), forming an insular framework (Fig. 3). Within the unit there are also intramolecular N—H···O hydrogen bonds. Adjacent centrosymmetrically- related aggregates are linked by ππ stacking interactions between the pyridine ring (N1–C31 in cation 1 and N2–C61 in cation 2) and a benzene ring (C11–C16 in cation 1 and C41–C46 in cation 2), giving ring centroid separations of 3.525 (3) and 3.668 (3) Å, respectively. This results in the formation of chains extending across the ac diagonal (Fig. 4).

Related literature top

For general background to the chemistry affording 2,6-bis-(2-hydroxyphenyl)pyridines, see: Huang et al. (2012, 2013); Kireenko et al. (2013); Klein et al. (2010); Li et al. (2000); Steinhauser et al. (2004); Zhang et al. (2006). For a closely related structure of the parent derivative compound, see: Silva et al. (1997).

Experimental top

The precursor of the title salt, 2,6-bis(2'-hydroxy-5'-methylphenyl)-4- phenylpyridine, was obtained from 2-hydroxy-5-methylacetophenone via two parallel reactions: (a), condensation of the above acetophenone with benzaldehyde in the presence of NaOH and (b), iodination of above acetophenone in the presence of pyridine. The reaction of an equimolar mixture of the above intermediates with ammonium acetate led to formation of the precursor, with moderate yield.

NMR spectra of 2,6-bis(2'-hydroxy-5'-methylphenyl)-4-phenylpyridine: 1H NMR (CDCl3): δ 9.83 (s, 2H, OH), 7.86 (s, 2H, aromatic H atoms), 7.74 (d, J = 7.6 Hz, 2H, aromatic H atoms), 7.48–7.57 (m, 5H, aromatic H atoms), 7.15 (d, J = 8.3 Hz, 2H, aromatic H atoms), 6.98 (d, J = 8.3 Hz, 2H, aromatic H atoms), 2.37 (s, 6H, Me) p.p.m.. 13C NMR (CDCl3): δ 156.52, 154.43, 151.93, 138.15, 132.17, 129.53, 129.20, 129.02, 128.29, 127.20, 121.36, 117.88, 117.76 (aromatic carbons), 20.60 (Me) p.p.m.

Crystals of the title compound suitable for X-ray analysis were precipitated from the reaction of 2,6-bis(2'-hydroxy-5'-methylphenyl)-4-phenylpyridine with silicon tetrabromide in dichloromethane.

Refinement top

All hydrogen atoms on aromatic atoms (both C and N) and methyl groups were placed in calculated positions and refined using a riding model, with C—H = 0.95–0.98 Å, with N—H = 0.88 Å, and with Uiso(H) = 1.2 Ueq(C,N) or 1.5 Ueq(C) for methyl H atoms. A rotating model was applied to the methyl groups. All hydroxy and water hydrogen atoms were found from difference Fourier syntheses and refined with Uiso(H) = 1.5 Ueq(O) and restrained O—H distances (SADI). Three outliers (-1 1 1, 0 1 1, 1 1 0) were omitted from the data set in the last cycles of refinement.

Structure description top

Interest in dianionic tridentate ONO-type ligands has grown steadily over the past several decades due to their ability to stabilize unusual metal oxidation states and the coordination geometry around metal centers. As a part of our investigation on the synthesis of tridentate ligands (Kireenko et al., 2013; Huang et al., 2013, 2012) we obtained and studied the structure of the title compound, 2(C25H22NO2+) . 2Br - . CH2Cl2 . H2O, which may be regarded as a precursor of a promising ligand for the preparation of complexes of main group metal elements.

The asymmetric unit comprises two independent ligand cations, two bromide anions, a dichlormethane and a water molecule of solvation (Fig. 1). The cations are related by pseudotranslation (one half of the ab diagonal) and possess very similar geometrical parameters and conformations. The comparative dihedral angles between the central pyridine ring and the three benzene substituent rings are 3.0 (2), 36.4 (1), 24.2 (1)° and 3.7 (2), 36.5 (1), 24.8 (1)°, respectively for cations 1 and 2. Figure 2 represents the superposition of one independent cation with another shifted by x + 0.5, y + 0.5, z. However, the bromide anions and the solvent water molecules do not satisfy this pseudosymmetry law.

In the crystal, the two crystallographically independent organic cations, the two bromide anions, and the water molecules are associated through moderately strong inter-species O—H···O and O—H···Br hydrogen bonds (Table 1), forming an insular framework (Fig. 3). Within the unit there are also intramolecular N—H···O hydrogen bonds. Adjacent centrosymmetrically- related aggregates are linked by ππ stacking interactions between the pyridine ring (N1–C31 in cation 1 and N2–C61 in cation 2) and a benzene ring (C11–C16 in cation 1 and C41–C46 in cation 2), giving ring centroid separations of 3.525 (3) and 3.668 (3) Å, respectively. This results in the formation of chains extending across the ac diagonal (Fig. 4).

For general background to the chemistry affording 2,6-bis-(2-hydroxyphenyl)pyridines, see: Huang et al. (2012, 2013); Kireenko et al. (2013); Klein et al. (2010); Li et al. (2000); Steinhauser et al. (2004); Zhang et al. (2006). For a closely related structure of the parent derivative compound, see: Silva et al. (1997).

Computing details top

Data collection: APEX2 (Bruker, 2008); cell refinement: SAINT (Bruker, 2008); data reduction: SAINT (Bruker, 2008); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. The asymmetric unit in the structure of the title compound, with displacement ellipsoids shown at the 50% probability level. Hydrogen bonds are shown as dashed lines.
[Figure 2] Fig. 2. The result of superposition of one independent cation with another shifted by an x + 1/2, y + 1/2, z operation.
[Figure 3] Fig. 3. Insular hydrogen bonded aggregates in the structure. Hydrogen bonds are shown as dashed lines. Suffix A indicates the symmetry operator -x + 1, y - 1/2, -z + 1/2.
[Figure 4] Fig. 4. Chains formed by ππ stacking interactions between aromatic ring systems in adjacent H-bonded frameworks.
2,6-Bis(2-hydroxy-5-methylphenyl)-4-phenylpyridinium bromide dichloromethane hemisolvate hemihydrate top
Crystal data top
2C25H22NO2+·2Br·CH2Cl2·H2OF(000) = 2048
Mr = 999.63Dx = 1.458 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ybcCell parameters from 6112 reflections
a = 14.7890 (12) Åθ = 2.2–23.3°
b = 17.5387 (14) ŵ = 1.95 mm1
c = 19.0163 (15) ÅT = 150 K
β = 112.577 (1)°Prism, orange
V = 4554.4 (6) Å30.25 × 0.20 × 0.10 mm
Z = 4
Data collection top
Bruker SMART APEXII
diffractometer
8482 independent reflections
Radiation source: fine-focus sealed tube6350 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.050
ω scansθmax = 25.5°, θmin = 1.5°
Absorption correction: multi-scan
(SADABS; Bruker, 2008)
h = 1717
Tmin = 0.642, Tmax = 0.829k = 2121
34435 measured reflectionsl = 2323
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.051Hydrogen site location: mixed
wR(F2) = 0.132H atoms treated by a mixture of independent and constrained refinement
S = 1.06 w = 1/[σ2(Fo2) + (0.0499P)2 + 10.5059P]
where P = (Fo2 + 2Fc2)/3
8482 reflections(Δ/σ)max = 0.001
585 parametersΔρmax = 0.99 e Å3
15 restraintsΔρmin = 0.92 e Å3
Crystal data top
2C25H22NO2+·2Br·CH2Cl2·H2OV = 4554.4 (6) Å3
Mr = 999.63Z = 4
Monoclinic, P21/cMo Kα radiation
a = 14.7890 (12) ŵ = 1.95 mm1
b = 17.5387 (14) ÅT = 150 K
c = 19.0163 (15) Å0.25 × 0.20 × 0.10 mm
β = 112.577 (1)°
Data collection top
Bruker SMART APEXII
diffractometer
8482 independent reflections
Absorption correction: multi-scan
(SADABS; Bruker, 2008)
6350 reflections with I > 2σ(I)
Tmin = 0.642, Tmax = 0.829Rint = 0.050
34435 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.05115 restraints
wR(F2) = 0.132H atoms treated by a mixture of independent and constrained refinement
S = 1.06 w = 1/[σ2(Fo2) + (0.0499P)2 + 10.5059P]
where P = (Fo2 + 2Fc2)/3
8482 reflectionsΔρmax = 0.99 e Å3
585 parametersΔρmin = 0.92 e Å3
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Br10.37349 (4)0.71568 (2)0.20516 (2)0.03429 (13)
Br20.99858 (4)1.19630 (3)0.23428 (3)0.04276 (15)
O10.2325 (2)0.71111 (18)0.30809 (18)0.0353 (7)
H70.1742 (17)0.711 (3)0.295 (3)0.053*
H80.253 (4)0.719 (3)0.276 (2)0.053*
C10.2288 (7)0.1114 (6)0.2630 (6)0.132 (4)
H1A0.20720.06370.23340.159*
H1B0.16980.14270.25460.159*
Cl10.28379 (17)0.08839 (13)0.35994 (17)0.1249 (9)
Cl20.3025 (3)0.15925 (15)0.2295 (2)0.1806 (16)
N10.3903 (2)0.45926 (17)0.38647 (17)0.0214 (7)
H10.36580.50220.36280.026*
O110.3172 (2)0.59130 (16)0.38313 (16)0.0282 (6)
H30.284 (3)0.625 (2)0.359 (3)0.049 (16)*
O120.4366 (2)0.55415 (17)0.29039 (16)0.0326 (7)
H40.418 (3)0.5929 (18)0.268 (2)0.034 (14)*
C110.3174 (3)0.5801 (2)0.4537 (2)0.0233 (8)
C120.2787 (3)0.6347 (2)0.4869 (2)0.0288 (9)
H120.24980.67950.45920.035*
C130.2816 (3)0.6247 (2)0.5598 (2)0.0306 (10)
H130.25420.66250.58150.037*
C140.3240 (3)0.5603 (2)0.6016 (2)0.0281 (9)
C150.3605 (3)0.5048 (2)0.5675 (2)0.0259 (9)
H150.38820.45990.59540.031*
C160.3582 (3)0.5126 (2)0.4933 (2)0.0218 (8)
C170.3961 (3)0.4507 (2)0.4591 (2)0.0217 (8)
C180.4351 (3)0.3826 (2)0.4955 (2)0.0223 (8)
H180.43970.37430.54610.027*
C190.3313 (4)0.5514 (3)0.6828 (3)0.0428 (12)
H19A0.26580.55510.68410.064*
H19B0.37320.59170.71450.064*
H19C0.35970.50150.70250.064*
C210.4112 (3)0.4948 (2)0.2400 (2)0.0276 (9)
C220.3957 (3)0.5043 (3)0.1632 (2)0.0314 (10)
H220.40360.55310.14480.038*
C230.3689 (3)0.4430 (3)0.1142 (2)0.0336 (10)
H230.35750.45060.06200.040*
C240.3583 (3)0.3703 (3)0.1392 (2)0.0335 (10)
C250.3768 (3)0.3605 (2)0.2163 (2)0.0293 (9)
H250.37170.31100.23450.035*
C260.4027 (3)0.4217 (2)0.2674 (2)0.0256 (9)
C270.4198 (3)0.4063 (2)0.3481 (2)0.0238 (8)
C280.4607 (3)0.3400 (2)0.3845 (2)0.0251 (9)
H280.48440.30330.35900.030*
C290.3259 (4)0.3031 (3)0.0851 (3)0.0436 (12)
H29A0.36530.25820.10890.065*
H29B0.33470.31520.03790.065*
H29C0.25660.29230.07360.065*
C310.4678 (3)0.3259 (2)0.4590 (2)0.0237 (8)
C320.5077 (3)0.2525 (2)0.4977 (2)0.0255 (9)
C330.5463 (3)0.2452 (2)0.5764 (2)0.0280 (9)
H330.55080.28910.60690.034*
C340.5781 (3)0.1763 (2)0.6115 (3)0.0330 (10)
H340.60420.17300.66550.040*
C350.5721 (3)0.1118 (2)0.5680 (3)0.0365 (11)
H350.59390.06400.59200.044*
C360.5345 (4)0.1173 (2)0.4896 (3)0.0394 (11)
H360.53020.07310.45970.047*
C370.5029 (3)0.1869 (2)0.4544 (3)0.0344 (10)
H370.47780.19020.40040.041*
N20.8706 (2)0.96667 (17)0.38890 (17)0.0207 (7)
H20.84811.01000.36530.025*
O210.8014 (2)1.10189 (16)0.38610 (16)0.0292 (7)
H50.763 (3)1.134 (2)0.365 (2)0.040 (15)*
O220.9207 (2)1.05281 (16)0.29143 (16)0.0323 (7)
H60.934 (3)1.0917 (18)0.277 (3)0.040 (14)*
C410.8155 (3)1.0944 (2)0.4612 (2)0.0234 (8)
C420.7898 (3)1.1537 (2)0.4984 (2)0.0309 (10)
H420.76091.19870.47120.037*
C430.8060 (3)1.1474 (2)0.5745 (2)0.0314 (10)
H430.78701.18800.59900.038*
C440.8495 (3)1.0829 (2)0.6162 (2)0.0284 (9)
C450.8743 (3)1.0243 (2)0.5782 (2)0.0265 (9)
H450.90380.97980.60610.032*
C460.8581 (3)1.0274 (2)0.5005 (2)0.0216 (8)
C470.8837 (3)0.9611 (2)0.4636 (2)0.0208 (8)
C480.9198 (3)0.8924 (2)0.4998 (2)0.0231 (8)
H480.92880.88610.55170.028*
C490.8700 (3)1.0787 (3)0.7002 (2)0.0380 (11)
H49A0.89211.02710.71890.057*
H49B0.81011.09060.70850.057*
H49C0.92121.11550.72770.057*
C510.8924 (3)0.9936 (2)0.2414 (2)0.0273 (9)
C520.8854 (3)1.0006 (3)0.1662 (2)0.0331 (10)
H520.90061.04770.14850.040*
C530.8561 (3)0.9384 (3)0.1179 (2)0.0357 (11)
H530.85100.94380.06680.043*
C540.8339 (3)0.8682 (3)0.1414 (2)0.0352 (11)
C550.8426 (3)0.8619 (2)0.2168 (2)0.0271 (9)
H550.82770.81460.23410.033*
C560.8727 (3)0.9230 (2)0.2678 (2)0.0246 (9)
C570.8900 (3)0.9097 (2)0.3485 (2)0.0224 (8)
C580.9268 (3)0.8424 (2)0.3845 (2)0.0220 (8)
H580.94150.80230.35710.026*
C590.8031 (4)0.8003 (3)0.0885 (3)0.0470 (13)
H59A0.84940.75840.10960.071*
H59B0.80260.81460.03850.071*
H59C0.73730.78400.08290.071*
C610.9431 (3)0.8322 (2)0.4614 (2)0.0225 (8)
C620.9826 (3)0.7596 (2)0.5007 (2)0.0256 (9)
C631.0329 (3)0.7553 (2)0.5791 (2)0.0297 (9)
H631.04310.80050.60860.036*
C641.0682 (3)0.6878 (3)0.6149 (3)0.0361 (10)
H641.10250.68650.66860.043*
C651.0540 (3)0.6209 (3)0.5729 (3)0.0382 (11)
H651.07790.57380.59770.046*
C661.0051 (4)0.6234 (3)0.4947 (3)0.0426 (12)
H660.99590.57800.46550.051*
C670.9694 (4)0.6919 (2)0.4589 (3)0.0354 (10)
H670.93550.69310.40520.042*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Br10.0507 (3)0.0241 (2)0.0290 (2)0.00541 (19)0.0163 (2)0.00051 (17)
Br20.0458 (3)0.0455 (3)0.0442 (3)0.0152 (2)0.0254 (2)0.0000 (2)
O10.0412 (19)0.0322 (16)0.0332 (18)0.0032 (15)0.0150 (16)0.0008 (14)
C10.114 (7)0.103 (7)0.193 (11)0.038 (6)0.073 (8)0.032 (7)
Cl10.0854 (14)0.0902 (15)0.167 (2)0.0199 (12)0.0125 (15)0.0345 (15)
Cl20.288 (4)0.0771 (16)0.247 (4)0.066 (2)0.181 (4)0.0282 (19)
N10.0251 (18)0.0179 (16)0.0216 (17)0.0018 (13)0.0093 (14)0.0006 (13)
O110.0392 (18)0.0219 (15)0.0278 (16)0.0056 (13)0.0176 (14)0.0026 (12)
O120.0473 (19)0.0242 (16)0.0258 (16)0.0014 (14)0.0135 (14)0.0034 (13)
C110.022 (2)0.022 (2)0.027 (2)0.0053 (16)0.0099 (17)0.0046 (16)
C120.032 (2)0.023 (2)0.036 (2)0.0015 (18)0.017 (2)0.0020 (18)
C130.032 (2)0.027 (2)0.038 (3)0.0015 (18)0.019 (2)0.0086 (18)
C140.029 (2)0.030 (2)0.029 (2)0.0027 (18)0.0157 (19)0.0062 (17)
C150.026 (2)0.025 (2)0.027 (2)0.0001 (17)0.0113 (18)0.0008 (16)
C160.019 (2)0.0214 (19)0.024 (2)0.0038 (16)0.0080 (17)0.0052 (16)
C170.022 (2)0.0212 (19)0.022 (2)0.0054 (16)0.0082 (17)0.0046 (15)
C180.022 (2)0.023 (2)0.021 (2)0.0008 (16)0.0076 (17)0.0001 (16)
C190.055 (3)0.048 (3)0.034 (3)0.007 (2)0.026 (2)0.005 (2)
C210.026 (2)0.030 (2)0.027 (2)0.0039 (18)0.0117 (18)0.0022 (18)
C220.032 (2)0.038 (2)0.026 (2)0.0091 (19)0.0136 (19)0.0063 (18)
C230.027 (2)0.051 (3)0.025 (2)0.011 (2)0.0121 (19)0.002 (2)
C240.029 (2)0.044 (3)0.029 (2)0.008 (2)0.0126 (19)0.009 (2)
C250.029 (2)0.030 (2)0.031 (2)0.0055 (18)0.0134 (19)0.0038 (18)
C260.026 (2)0.026 (2)0.026 (2)0.0024 (17)0.0121 (18)0.0019 (17)
C270.023 (2)0.023 (2)0.026 (2)0.0031 (16)0.0100 (17)0.0046 (16)
C280.026 (2)0.024 (2)0.027 (2)0.0011 (17)0.0127 (18)0.0051 (16)
C290.041 (3)0.055 (3)0.036 (3)0.002 (2)0.017 (2)0.018 (2)
C310.022 (2)0.0211 (19)0.029 (2)0.0041 (16)0.0111 (17)0.0034 (16)
C320.026 (2)0.021 (2)0.033 (2)0.0009 (17)0.0153 (18)0.0013 (17)
C330.027 (2)0.024 (2)0.033 (2)0.0013 (17)0.0114 (19)0.0016 (18)
C340.031 (2)0.032 (2)0.034 (2)0.0006 (19)0.010 (2)0.0037 (19)
C350.038 (3)0.023 (2)0.051 (3)0.0031 (19)0.021 (2)0.008 (2)
C360.053 (3)0.022 (2)0.051 (3)0.002 (2)0.029 (3)0.003 (2)
C370.049 (3)0.025 (2)0.035 (2)0.004 (2)0.022 (2)0.0009 (18)
N20.0253 (18)0.0185 (16)0.0202 (16)0.0015 (13)0.0110 (14)0.0017 (13)
O210.0441 (19)0.0212 (15)0.0266 (16)0.0079 (14)0.0184 (14)0.0019 (12)
O220.052 (2)0.0236 (16)0.0258 (16)0.0005 (14)0.0197 (15)0.0030 (12)
C410.025 (2)0.023 (2)0.024 (2)0.0036 (16)0.0113 (17)0.0024 (16)
C420.038 (3)0.022 (2)0.037 (2)0.0015 (18)0.020 (2)0.0030 (18)
C430.036 (3)0.030 (2)0.034 (2)0.0006 (19)0.020 (2)0.0113 (19)
C440.027 (2)0.034 (2)0.028 (2)0.0028 (18)0.0146 (19)0.0075 (18)
C450.024 (2)0.031 (2)0.024 (2)0.0012 (17)0.0095 (18)0.0019 (17)
C460.018 (2)0.024 (2)0.025 (2)0.0040 (16)0.0108 (16)0.0068 (16)
C470.019 (2)0.0225 (19)0.023 (2)0.0038 (15)0.0109 (16)0.0039 (16)
C480.027 (2)0.024 (2)0.020 (2)0.0006 (17)0.0118 (17)0.0008 (16)
C490.042 (3)0.047 (3)0.028 (2)0.006 (2)0.017 (2)0.008 (2)
C510.028 (2)0.034 (2)0.021 (2)0.0101 (18)0.0090 (18)0.0021 (17)
C520.031 (2)0.046 (3)0.025 (2)0.012 (2)0.0132 (19)0.0081 (19)
C530.029 (2)0.061 (3)0.018 (2)0.017 (2)0.0095 (19)0.002 (2)
C540.026 (2)0.053 (3)0.022 (2)0.018 (2)0.0037 (18)0.010 (2)
C550.023 (2)0.032 (2)0.024 (2)0.0090 (17)0.0070 (17)0.0031 (17)
C560.023 (2)0.029 (2)0.023 (2)0.0071 (17)0.0099 (17)0.0015 (16)
C570.022 (2)0.022 (2)0.023 (2)0.0032 (16)0.0088 (17)0.0069 (16)
C580.025 (2)0.0194 (19)0.024 (2)0.0002 (16)0.0122 (17)0.0030 (15)
C590.040 (3)0.061 (3)0.035 (3)0.012 (2)0.008 (2)0.020 (2)
C610.021 (2)0.0215 (19)0.027 (2)0.0035 (16)0.0103 (17)0.0003 (16)
C620.031 (2)0.022 (2)0.030 (2)0.0006 (17)0.0185 (19)0.0021 (17)
C630.034 (2)0.028 (2)0.029 (2)0.0018 (19)0.015 (2)0.0016 (18)
C640.040 (3)0.039 (3)0.031 (2)0.001 (2)0.015 (2)0.008 (2)
C650.042 (3)0.027 (2)0.052 (3)0.006 (2)0.024 (2)0.014 (2)
C660.062 (3)0.023 (2)0.049 (3)0.001 (2)0.028 (3)0.003 (2)
C670.049 (3)0.024 (2)0.037 (3)0.001 (2)0.020 (2)0.0022 (18)
Geometric parameters (Å, º) top
O1—H70.80 (2)C36—C371.384 (6)
O1—H80.79 (2)C36—H360.9500
C1—Cl21.681 (10)C37—H370.9500
C1—Cl11.752 (10)N2—C571.357 (5)
C1—H1A0.9900N2—C471.362 (5)
C1—H1B0.9900N2—H20.8800
N1—C271.352 (5)O21—C411.369 (5)
N1—C171.359 (5)O21—H50.79 (2)
N1—H10.8800O22—C511.361 (5)
O11—C111.355 (5)O22—H60.79 (2)
O11—H30.79 (2)C41—C421.390 (5)
O12—C211.366 (5)C41—C461.404 (5)
O12—H40.79 (2)C42—C431.378 (6)
C11—C121.386 (5)C42—H420.9500
C11—C161.409 (5)C43—C441.389 (6)
C12—C131.381 (6)C43—H430.9500
C12—H120.9500C44—C451.385 (5)
C13—C141.386 (6)C44—C491.508 (6)
C13—H130.9500C45—C461.405 (5)
C14—C151.389 (5)C45—H450.9500
C14—C191.514 (6)C46—C471.481 (5)
C15—C161.405 (5)C47—C481.388 (5)
C15—H150.9500C48—C611.399 (5)
C16—C171.481 (5)C48—H480.9500
C17—C181.390 (5)C49—H49A0.9800
C18—C311.400 (5)C49—H49B0.9800
C18—H180.9500C49—H49C0.9800
C19—H19A0.9800C51—C521.399 (6)
C19—H19B0.9800C51—C561.408 (6)
C19—H19C0.9800C52—C531.385 (6)
C21—C221.399 (6)C52—H520.9500
C21—C261.407 (6)C53—C541.392 (7)
C22—C231.377 (6)C53—H530.9500
C22—H220.9500C54—C551.392 (6)
C23—C241.390 (6)C54—C591.512 (6)
C23—H230.9500C55—C561.399 (6)
C24—C251.394 (6)C55—H550.9500
C24—C291.516 (6)C56—C571.474 (5)
C25—C261.399 (6)C57—C581.368 (5)
C25—H250.9500C58—C611.400 (5)
C26—C271.482 (5)C58—H580.9500
C27—C281.370 (6)C59—H59A0.9800
C28—C311.403 (5)C59—H59B0.9800
C28—H280.9500C59—H59C0.9800
C29—H29A0.9800C61—C621.479 (5)
C29—H29B0.9800C62—C631.389 (6)
C29—H29C0.9800C62—C671.400 (6)
C31—C321.487 (5)C63—C641.365 (6)
C32—C331.388 (6)C63—H630.9500
C32—C371.401 (6)C64—C651.389 (6)
C33—C341.372 (6)C64—H640.9500
C33—H330.9500C65—C661.382 (7)
C34—C351.385 (6)C65—H650.9500
C34—H340.9500C66—C671.381 (6)
C35—C361.379 (6)C66—H660.9500
C35—H350.9500C67—H670.9500
H7—O1—H8116 (6)C36—C37—C32120.5 (4)
Cl2—C1—Cl1114.0 (6)C36—C37—H37119.7
Cl2—C1—H1A108.7C32—C37—H37119.7
Cl1—C1—H1A108.7C57—N2—C47124.2 (3)
Cl2—C1—H1B108.7C57—N2—H2117.9
Cl1—C1—H1B108.7C47—N2—H2117.9
H1A—C1—H1B107.6C41—O21—H5113 (4)
C27—N1—C17124.4 (3)C51—O22—H6117 (4)
C27—N1—H1117.8O21—C41—C42119.8 (4)
C17—N1—H1117.8O21—C41—C46119.5 (3)
C11—O11—H3116 (4)C42—C41—C46120.7 (4)
C21—O12—H4110 (3)C43—C42—C41120.2 (4)
O11—C11—C12120.5 (4)C43—C42—H42119.9
O11—C11—C16119.2 (3)C41—C42—H42119.9
C12—C11—C16120.4 (4)C42—C43—C44121.3 (4)
C13—C12—C11120.7 (4)C42—C43—H43119.3
C13—C12—H12119.7C44—C43—H43119.3
C11—C12—H12119.7C45—C44—C43117.7 (4)
C12—C13—C14120.8 (4)C45—C44—C49122.0 (4)
C12—C13—H13119.6C43—C44—C49120.4 (4)
C14—C13—H13119.6C44—C45—C46123.2 (4)
C13—C14—C15118.3 (4)C44—C45—H45118.4
C13—C14—C19120.6 (4)C46—C45—H45118.4
C15—C14—C19121.1 (4)C41—C46—C45116.9 (3)
C14—C15—C16122.6 (4)C41—C46—C47123.4 (3)
C14—C15—H15118.7C45—C46—C47119.7 (3)
C16—C15—H15118.7N2—C47—C48116.9 (3)
C15—C16—C11117.2 (3)N2—C47—C46118.5 (3)
C15—C16—C17120.2 (3)C48—C47—C46124.5 (3)
C11—C16—C17122.6 (3)C47—C48—C61121.4 (3)
N1—C17—C18116.9 (3)C47—C48—H48119.3
N1—C17—C16118.5 (3)C61—C48—H48119.3
C18—C17—C16124.5 (3)C44—C49—H49A109.5
C17—C18—C31121.3 (4)C44—C49—H49B109.5
C17—C18—H18119.3H49A—C49—H49B109.5
C31—C18—H18119.3C44—C49—H49C109.5
C14—C19—H19A109.5H49A—C49—H49C109.5
C14—C19—H19B109.5H49B—C49—H49C109.5
H19A—C19—H19B109.5O22—C51—C52121.9 (4)
C14—C19—H19C109.5O22—C51—C56118.2 (3)
H19A—C19—H19C109.5C52—C51—C56119.9 (4)
H19B—C19—H19C109.5C53—C52—C51119.4 (4)
O12—C21—C22122.1 (4)C53—C52—H52120.3
O12—C21—C26118.4 (3)C51—C52—H52120.3
C22—C21—C26119.5 (4)C52—C53—C54122.4 (4)
C23—C22—C21120.2 (4)C52—C53—H53118.8
C23—C22—H22119.9C54—C53—H53118.8
C21—C22—H22119.9C53—C54—C55117.5 (4)
C22—C23—C24121.7 (4)C53—C54—C59122.0 (4)
C22—C23—H23119.1C55—C54—C59120.6 (5)
C24—C23—H23119.1C54—C55—C56122.2 (4)
C23—C24—C25118.0 (4)C54—C55—H55118.9
C23—C24—C29122.0 (4)C56—C55—H55118.9
C25—C24—C29120.0 (4)C55—C56—C51118.7 (4)
C24—C25—C26121.8 (4)C55—C56—C57118.9 (4)
C24—C25—H25119.1C51—C56—C57122.3 (4)
C26—C25—H25119.1N2—C57—C58118.8 (3)
C25—C26—C21118.7 (4)N2—C57—C56118.9 (3)
C25—C26—C27118.3 (4)C58—C57—C56122.3 (3)
C21—C26—C27123.0 (3)C57—C58—C61120.6 (3)
N1—C27—C28118.8 (4)C57—C58—H58119.7
N1—C27—C26118.2 (3)C61—C58—H58119.7
C28—C27—C26122.9 (3)C54—C59—H59A109.5
C27—C28—C31120.5 (4)C54—C59—H59B109.5
C27—C28—H28119.8H59A—C59—H59B109.5
C31—C28—H28119.8C54—C59—H59C109.5
C24—C29—H29A109.5H59A—C59—H59C109.5
C24—C29—H29B109.5H59B—C59—H59C109.5
H29A—C29—H29B109.5C48—C61—C58118.1 (3)
C24—C29—H29C109.5C48—C61—C62121.0 (3)
H29A—C29—H29C109.5C58—C61—C62120.9 (3)
H29B—C29—H29C109.5C63—C62—C67117.6 (4)
C18—C31—C28118.0 (4)C63—C62—C61122.3 (4)
C18—C31—C32121.1 (4)C67—C62—C61120.1 (4)
C28—C31—C32120.9 (3)C64—C63—C62121.8 (4)
C33—C32—C37117.7 (4)C64—C63—H63119.1
C33—C32—C31122.3 (4)C62—C63—H63119.1
C37—C32—C31119.9 (4)C63—C64—C65120.1 (4)
C34—C33—C32121.9 (4)C63—C64—H64120.0
C34—C33—H33119.1C65—C64—H64120.0
C32—C33—H33119.1C66—C65—C64119.5 (4)
C33—C34—C35119.8 (4)C66—C65—H65120.2
C33—C34—H34120.1C64—C65—H65120.2
C35—C34—H34120.1C67—C66—C65120.1 (4)
C36—C35—C34119.7 (4)C67—C66—H66120.0
C36—C35—H35120.2C65—C66—H66120.0
C34—C35—H35120.2C66—C67—C62121.0 (4)
C35—C36—C37120.4 (4)C66—C67—H67119.5
C35—C36—H36119.8C62—C67—H67119.5
C37—C36—H36119.8
O11—C11—C12—C13177.9 (4)O21—C41—C42—C43178.3 (4)
C16—C11—C12—C131.6 (6)C46—C41—C42—C430.1 (6)
C11—C12—C13—C140.5 (6)C41—C42—C43—C441.1 (6)
C12—C13—C14—C152.1 (6)C42—C43—C44—C451.4 (6)
C12—C13—C14—C19177.1 (4)C42—C43—C44—C49177.6 (4)
C13—C14—C15—C161.6 (6)C43—C44—C45—C460.4 (6)
C19—C14—C15—C16177.6 (4)C49—C44—C45—C46178.6 (4)
C14—C15—C16—C110.5 (6)O21—C41—C46—C45177.5 (3)
C14—C15—C16—C17178.5 (4)C42—C41—C46—C451.0 (6)
O11—C11—C16—C15177.4 (3)O21—C41—C46—C473.9 (6)
C12—C11—C16—C152.1 (5)C42—C41—C46—C47177.6 (4)
O11—C11—C16—C173.6 (5)C44—C45—C46—C410.8 (6)
C12—C11—C16—C17176.9 (4)C44—C45—C46—C47178.0 (4)
C27—N1—C17—C180.0 (5)C57—N2—C47—C480.3 (5)
C27—N1—C17—C16178.2 (3)C57—N2—C47—C46179.0 (3)
C15—C16—C17—N1178.3 (3)C41—C46—C47—N23.8 (5)
C11—C16—C17—N10.6 (5)C45—C46—C47—N2177.6 (3)
C15—C16—C17—C180.2 (6)C41—C46—C47—C48175.5 (4)
C11—C16—C17—C18178.7 (4)C45—C46—C47—C483.1 (6)
N1—C17—C18—C310.6 (5)N2—C47—C48—C611.1 (6)
C16—C17—C18—C31178.7 (4)C46—C47—C48—C61179.6 (4)
O12—C21—C22—C23179.2 (4)O22—C51—C52—C53180.0 (4)
C26—C21—C22—C232.3 (6)C56—C51—C52—C532.1 (6)
C21—C22—C23—C241.2 (6)C51—C52—C53—C540.6 (6)
C22—C23—C24—C250.8 (6)C52—C53—C54—C550.4 (6)
C22—C23—C24—C29178.1 (4)C52—C53—C54—C59179.3 (4)
C23—C24—C25—C261.8 (6)C53—C54—C55—C560.2 (6)
C29—C24—C25—C26177.2 (4)C59—C54—C55—C56178.7 (4)
C24—C25—C26—C210.7 (6)C54—C55—C56—C511.7 (6)
C24—C25—C26—C27179.2 (4)C54—C55—C56—C57173.7 (4)
O12—C21—C26—C25179.9 (4)O22—C51—C56—C55179.4 (3)
C22—C21—C26—C251.4 (6)C52—C51—C56—C552.6 (6)
O12—C21—C26—C270.2 (6)O22—C51—C56—C575.4 (6)
C22—C21—C26—C27178.8 (4)C52—C51—C56—C57172.7 (4)
C17—N1—C27—C281.8 (6)C47—N2—C57—C581.2 (6)
C17—N1—C27—C26175.9 (3)C47—N2—C57—C56179.9 (3)
C25—C26—C27—N1142.9 (4)C55—C56—C57—N2147.1 (4)
C21—C26—C27—N136.9 (6)C51—C56—C57—N237.7 (5)
C25—C26—C27—C2834.7 (6)C55—C56—C57—C5834.3 (6)
C21—C26—C27—C28145.4 (4)C51—C56—C57—C58141.0 (4)
N1—C27—C28—C312.8 (6)N2—C57—C58—C610.7 (6)
C26—C27—C28—C31174.8 (4)C56—C57—C58—C61179.4 (4)
C17—C18—C31—C280.4 (6)C47—C48—C61—C581.5 (6)
C17—C18—C31—C32178.8 (4)C47—C48—C61—C62179.3 (4)
C27—C28—C31—C182.2 (6)C57—C58—C61—C480.6 (6)
C27—C28—C31—C32177.0 (4)C57—C58—C61—C62179.8 (4)
C18—C31—C32—C3322.9 (6)C48—C61—C62—C6325.3 (6)
C28—C31—C32—C33157.9 (4)C58—C61—C62—C63155.5 (4)
C18—C31—C32—C37154.1 (4)C48—C61—C62—C67154.4 (4)
C28—C31—C32—C3725.0 (6)C58—C61—C62—C6724.8 (6)
C37—C32—C33—C340.7 (6)C67—C62—C63—C640.4 (6)
C31—C32—C33—C34176.5 (4)C61—C62—C63—C64179.3 (4)
C32—C33—C34—C350.1 (6)C62—C63—C64—C650.1 (7)
C33—C34—C35—C360.2 (7)C63—C64—C65—C660.7 (7)
C34—C35—C36—C370.1 (7)C64—C65—C66—C670.9 (7)
C35—C36—C37—C320.8 (7)C65—C66—C67—C620.4 (7)
C33—C32—C37—C361.0 (6)C63—C62—C67—C660.2 (6)
C31—C32—C37—C36176.2 (4)C61—C62—C67—C66179.5 (4)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1···O110.881.822.547 (4)138
N2—H2···O210.881.852.575 (4)138
O11—H3···O10.79 (2)1.80 (3)2.578 (4)167 (5)
O12—H4···Br10.79 (2)2.43 (2)3.219 (3)175 (5)
O21—H5···Br1i0.79 (2)2.41 (2)3.200 (3)170 (5)
O22—H6···Br20.79 (2)2.35 (2)3.131 (3)170 (5)
O1—H7···Br2ii0.80 (2)2.41 (2)3.206 (3)173 (5)
O1—H8···Br10.79 (2)2.61 (3)3.365 (3)159 (5)
Symmetry codes: (i) x+1, y+1/2, z+1/2; (ii) x+1, y1/2, z+1/2.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1···O110.881.822.547 (4)138
N2—H2···O210.881.852.575 (4)138
O11—H3···O10.79 (2)1.80 (3)2.578 (4)167 (5)
O12—H4···Br10.79 (2)2.43 (2)3.219 (3)175 (5)
O21—H5···Br1i0.79 (2)2.41 (2)3.200 (3)170 (5)
O22—H6···Br20.79 (2)2.35 (2)3.131 (3)170 (5)
O1—H7···Br2ii0.80 (2)2.41 (2)3.206 (3)173 (5)
O1—H8···Br10.79 (2)2.61 (3)3.365 (3)159 (5)
Symmetry codes: (i) x+1, y+1/2, z+1/2; (ii) x+1, y1/2, z+1/2.
 

Acknowledgements

This work was supported by a grant from the Russian Scientific Fund (grant No. 14-13-01456).

References

First citationBruker (2008). APEX2, SADABS and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationHuang, M., Kireenko, M. M., Lermontova, E. K., Churakov, A. V., Oprunenko, Y. F., Zaitsev, K. V., Sorokin, D., Harms, K., Sundermeyer, J., Zaitseva, G. S. & Karlov, S. S. (2013). Z. Anorg. Allg. Chem. 639, 502–511.  Web of Science CSD CrossRef CAS Google Scholar
First citationHuang, M., Kireenko, M. M., Zaitsev, K. V., Oprunenko, Y. F., Churakov, A. V., Howard, J. A. K., Lermontova, E. K., Sorokin, D., Linder, T., Sundermeyer, J., Karlov, S. S. & Zaitseva, G. S. (2012). Eur. J. Inorg. Chem. 2012, 3712–3724.  Web of Science CSD CrossRef CAS Google Scholar
First citationKireenko, M. M., Zaitsev, K. V., Oprunenko, Y. F., Churakov, A. V., Tafeenko, V. A., Karlov, S. S. & Zaitseva, G. S. (2013). Dalton Trans. 42, 7901–7912.  Web of Science CSD CrossRef CAS PubMed Google Scholar
First citationKlein, A., Butsch, K. & Neudörfl, J. (2010). Inorg. Chim. Acta, 363, 3282–3290.  Web of Science CSD CrossRef CAS Google Scholar
First citationLi, Y., Liu, Y., Bu, W., Guo, J. & Wang, Y. (2000). Chem. Commun. pp. 1551–1552.  Web of Science CSD CrossRef Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSilva, A. M. S., Almeida, L. M. P. M., Cavaleiro, J. S., Foces-Foces, C., Llamas-Saiz, A. L., Fontenas, C., Jagerovic, N. & Elguero, J. (1997). Tetrahedron, 53, 11645–11658.  CSD CrossRef CAS Web of Science Google Scholar
First citationSteinhauser, S., Heinz, U., Sander, J. & Hegetschweiler, K. (2004). Z. Anorg. Allg. Chem. 630, 1829–1838.  Web of Science CSD CrossRef CAS Google Scholar
First citationZhang, H., Huo, C., Ye, K., Zhang, P., Tian, W. & Wang, Y. (2006). Inorg. Chem. 45, 2788–2794.  Web of Science CSD CrossRef PubMed CAS Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds