organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Crystal structure of (tert-butyl­carbamo­yl)(4-chloro-2-oxo-2H-chromen-3-yl)methyl acetate

aDepartment of Applied Chemistry, Graduate School of Engineering, Kyushu Institute of Technology, 1-1 Sensui-cho, Tobata-ku, Kitakyushu 804-8550, Japan, and bJapan Bruker AXS K.K.3-9, Moriya-cho Kanagawaku Yokohama 221-0022, Japan
*Correspondence e-mail: moriguch@che.kyutech.ac.jp

Edited by G. Smith, Queensland University of Technology, Australia (Received 5 November 2015; accepted 18 November 2015; online 28 November 2015)

In the title compound, C17H18ClNO5, which was synthesized by reacting 4-chloro-3-formyl­coumarin, acetic acid and tert-butyl isocyanide, the acetamido side chain is convoluted with ring-to-side chain C—C—C—C, C—C—C—N and C—C—N—C torsion angles of −123.30 (14), −135.73 (12) and 176.10 (12)°, respectively. In the crystal, N—H⋯O and weak C—H⋯O hydrogen bonds are present, which together with ππ coumarin-ring inter­actions [ring centroid separations = 3.4582 (8) and 3.6421 (9) Å], give rise to a layered structure lying parallel to (001).

1. Related literature

For applications of coumarin derivatives, see: Luo et al. (2012[Luo, X., He, W., Yin, H., Li, Q., Liu, Q., Huang, Y. & Zhang, S. (2012). Molecules, 17, 6944-6952.]); Medina-Franco et al. (2011[Medina-Franco, J. L., López-Vallejo, F., Kuck, D. & Lyko, F. (2011). Mol. Divers. 15, 293-304.]); Sun et al. (2013[Sun, C., Peng, C., Wang, J., Wang, Q., Liu, W., Zhou, H. & Yang, C. (2013). Heterocycles, 87, 1711-1726.]); Zen et al. (2014[Zen, A. A., Aylott, J. W. & Chan, W. C. (2014). Tetrahedron Lett. 55, 5521-5524.]).

[Scheme 1]

2. Experimental

2.1. Crystal data

  • C17H18ClNO5

  • Mr = 351.77

  • Trigonal, [R \overline 3]

  • a = 29.831 (2) Å

  • c = 9.7983 (8) Å

  • V = 7551.2 (14) Å3

  • Z = 18

  • Mo Kα radiation

  • μ = 0.25 mm−1

  • T = 90 K

  • 0.50 × 0.45 × 0.45 mm

2.2. Data collection

  • Bruker APEXII diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 2009[Bruker (2009). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]) Tmin = 0.746, Tmax = 0.892

  • 24469 measured reflections

  • 2975 independent reflections

  • 2742 reflections with I > 2σ(I)

  • Rint = 0.026

2.3. Refinement

  • R[F2 > 2σ(F2)] = 0.027

  • wR(F2) = 0.094

  • S = 1.12

  • 2975 reflections

  • 221 parameters

  • H-atom parameters constrained

  • Δρmax = 0.41 e Å−3

  • Δρmin = −0.31 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
N1—H1⋯O1i 0.86 2.33 3.0787 (16) 145
C16—H16A⋯O1i 0.96 2.56 3.287 (2) 133
Symmetry code: (i) x-y, x, -z.

Data collection: APEX2 (Bruker, 2009[Bruker (2009). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2009[Bruker (2009). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: Mercury (Macrae et al., 2008[Macrae, C. F., Bruno, I. J., Chisholm, J. A., Edgington, P. R., McCabe, P., Pidcock, E., Rodriguez-Monge, L., Taylor, R., van de Streek, J. & Wood, P. A. (2008). J. Appl. Cryst. 41, 466-470.]); software used to prepare material for publication: SHELXL97.

Supporting information


Comment top

Coumarin and its derivatives have gained significant importance due to their applications in various fields. 3-acetamido coumain derivatives isolated from plants used as DNA methyltransferase inhibitors for the development of cancer drugs (Medina-Franco et al., 2011). 3-acetamido coumarin derivatives were also used as protein tyrosine phosphatase 1B (PTP 1B) inhibitors to develop effective drugs for diabetes and obesity (Sun et al., 2013). Some of the coumarin derivatives were used as fluorescent sensors (Zen et al., 2014). Natural coumarin derivatives isolated from plants such as microminutin, micromelin, psoralen and 8-methoxypsoralen have important properties in medicinal chemistry and bio-photochemistry (Luo et al. 2012). Thus, the elucidation of the crystal structures of coumarin derivatives has attracted much attention. Here,we report the crystal structure of the racemic title compound, C17H18ClNO5, which was synthesized by reacting 4-chloro-3-formyl coumarin, acetic acid and tert-butyl isocyanide in a one-pot reaction (Fig. 3).

In this compound (Fig. 1), the acetamido side chain is convoluted, with ring to side chain torsion angles C3—C2—C10—C13, C2—C10—C13—N1 and C10—C13—N1—C14 of -123.30 (14), -135.73 (12) and 176.10 (12)°, respectively. A number of intramolecular C—H···O, C—H···Cl and a N—H···O interactions are present. In the crystal, intermolecular N1—H···O1i and weak C16—H···O1i hydrogen bonds are present (Table 1) [for symmetry code (i), x - y, x, -z]. These, together with ππ coumarin ring interactions [ring centroid separations 3.4582 (8) and 3.6421 (9) Å], give a two-dimensional layered structure lying parallel to (001) (Fig. 2). The structure also has 34 Å3 solvent accessible voids.

Related literature top

For applications of coumarin derivatives, see: Luo et al. (2012); Medina-Franco et al. (2011); Sun et al. (2013); Zen et al. (2014).

Experimental top

The title compound was synthesized as follows. A solution of 4-chloro-3-formyl coumarin (1 mmol), acetic acid (1 mmol) and t-butyl isocyanide (1 mmol) in 10 ml of benzene were refluxed at 80 0C for 40h. The volatiles were removed under reduced pressure. The crude reaction mixture was subjected to column chromatography using an EtOAc/hexane mobile phase. The compound was isolated as a white colored solid with 70% yield. Single crystals of the title compound (m.p. 195–197 °C) suitable for X-ray analysis were obtained by slow room temperature evaporation of a dichloromethane solution. The molecule was crystallized in racemic form. Analysis: IR; νmax(KBr) 3144, 1735, 1680 cm-1; δH (500 MHz CDCl3) 7.97 (1 H, J=1.3 Hz, dd), 7.80 (1 H, m), 7.49-7.53 (2 H, m), 7.19 (1 H, s), 6.28 (1 H, s), 2.13 (3 H, s), 1.28 (9 H, s); δC (125 MHz, CDCl3) 168, 165, 158, 152, 150, 133, 126, 125, 122, 118, 116, 70, 52, 28, 20; LCMS: MH+, 350.

Refinement top

All hydrogen atoms on aromatic C atoms and the N atom were placed in calculated positions and refined using a riding model, with C—H = 0.93–0.96 Å and N—H = 0.86 Å and with Uiso(H) = 1.2Ueq(aromatic C and N) or 1.5 Ueq(methyl C). One reflection was considered to be affected by the beamstop.

Structure description top

Coumarin and its derivatives have gained significant importance due to their applications in various fields. 3-acetamido coumain derivatives isolated from plants used as DNA methyltransferase inhibitors for the development of cancer drugs (Medina-Franco et al., 2011). 3-acetamido coumarin derivatives were also used as protein tyrosine phosphatase 1B (PTP 1B) inhibitors to develop effective drugs for diabetes and obesity (Sun et al., 2013). Some of the coumarin derivatives were used as fluorescent sensors (Zen et al., 2014). Natural coumarin derivatives isolated from plants such as microminutin, micromelin, psoralen and 8-methoxypsoralen have important properties in medicinal chemistry and bio-photochemistry (Luo et al. 2012). Thus, the elucidation of the crystal structures of coumarin derivatives has attracted much attention. Here,we report the crystal structure of the racemic title compound, C17H18ClNO5, which was synthesized by reacting 4-chloro-3-formyl coumarin, acetic acid and tert-butyl isocyanide in a one-pot reaction (Fig. 3).

In this compound (Fig. 1), the acetamido side chain is convoluted, with ring to side chain torsion angles C3—C2—C10—C13, C2—C10—C13—N1 and C10—C13—N1—C14 of -123.30 (14), -135.73 (12) and 176.10 (12)°, respectively. A number of intramolecular C—H···O, C—H···Cl and a N—H···O interactions are present. In the crystal, intermolecular N1—H···O1i and weak C16—H···O1i hydrogen bonds are present (Table 1) [for symmetry code (i), x - y, x, -z]. These, together with ππ coumarin ring interactions [ring centroid separations 3.4582 (8) and 3.6421 (9) Å], give a two-dimensional layered structure lying parallel to (001) (Fig. 2). The structure also has 34 Å3 solvent accessible voids.

For applications of coumarin derivatives, see: Luo et al. (2012); Medina-Franco et al. (2011); Sun et al. (2013); Zen et al. (2014).

Computing details top

Data collection: APEX2 (Bruker, 2009); cell refinement: SAINT (Bruker, 2009); data reduction: SAINT (Bruker, 2009); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: Mercury (Macrae et al., 2008); software used to prepare material for publication: SHELXL97 (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. Molecular configuration and atom-numbering scheme for the title compound with displacement ellipsoids drawn at the 50% probability level.
[Figure 2] Fig. 2. Crystal packing diagram of the title compound, viewed along the c axis, with hydrogen atoms omitted for clarity.
[Figure 3] Fig. 3. Reaction scheme for the synthesis of the title compound.
(tert-Butylcarbamoyl)(4-chloro-2-oxo-2H-chromen-3-yl)methyl acetate top
Crystal data top
C17H18ClNO5Dx = 1.392 Mg m3
Mr = 351.77Mo Kα radiation, λ = 0.71073 Å
Trigonal, R3Cell parameters from 24469 reflections
a = 29.831 (2) Åθ = 1.4–25.0°
c = 9.7983 (8) ŵ = 0.25 mm1
V = 7551.2 (14) Å3T = 90 K
Z = 18Prism, colorless
F(000) = 33120.50 × 0.45 × 0.45 mm
Data collection top
Bruker APEXII
diffractometer
2975 independent reflections
Radiation source: fine focus sealed tube2742 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.026
Detector resolution: 8.333 pixels mm-1θmax = 25.0°, θmin = 1.4°
ω scansh = 3535
Absorption correction: multi-scan
(SADABS; Bruker, 2009)
k = 3535
Tmin = 0.746, Tmax = 0.892l = 1111
24469 measured reflections
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.027Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.094H-atom parameters constrained
S = 1.12 w = 1/[σ2(Fo2) + (0.0575P)2 + 6.6693P]
where P = (Fo2 + 2Fc2)/3
2975 reflections(Δ/σ)max = 0.001
221 parametersΔρmax = 0.41 e Å3
0 restraintsΔρmin = 0.31 e Å3
Crystal data top
C17H18ClNO5Z = 18
Mr = 351.77Mo Kα radiation
Trigonal, R3µ = 0.25 mm1
a = 29.831 (2) ÅT = 90 K
c = 9.7983 (8) Å0.50 × 0.45 × 0.45 mm
V = 7551.2 (14) Å3
Data collection top
Bruker APEXII
diffractometer
2975 independent reflections
Absorption correction: multi-scan
(SADABS; Bruker, 2009)
2742 reflections with I > 2σ(I)
Tmin = 0.746, Tmax = 0.892Rint = 0.026
24469 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0270 restraints
wR(F2) = 0.094H-atom parameters constrained
S = 1.12Δρmax = 0.41 e Å3
2975 reflectionsΔρmin = 0.31 e Å3
221 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
C10.21876 (5)0.00044 (5)0.08087 (13)0.0160 (3)
C20.26499 (5)0.05104 (5)0.07629 (13)0.0157 (3)
C30.31212 (5)0.05536 (5)0.08748 (13)0.0155 (3)
C40.31867 (5)0.01052 (5)0.09456 (13)0.0158 (3)
C50.27379 (5)0.03793 (5)0.09425 (13)0.0160 (3)
C60.27504 (6)0.08370 (5)0.09608 (14)0.0188 (3)
H60.24460.11550.09580.023*
C70.32278 (6)0.08086 (5)0.09835 (14)0.0208 (3)
H70.32440.11120.09920.025*
C80.36839 (6)0.03316 (6)0.09933 (14)0.0206 (3)
H80.40020.03180.10150.025*
C90.36650 (5)0.01214 (5)0.09716 (14)0.0180 (3)
H90.39710.04390.09740.022*
C100.25496 (5)0.09571 (5)0.06509 (14)0.0168 (3)
H100.28790.12810.07460.02*
C110.26696 (6)0.12189 (5)0.16856 (15)0.0206 (3)
C120.23933 (6)0.12088 (6)0.29691 (15)0.0268 (3)
H12A0.26420.1390.36760.04*
H12B0.21910.13730.2810.04*
H12C0.21690.08560.32440.04*
C130.21854 (5)0.09265 (5)0.17996 (14)0.0168 (3)
C140.13982 (5)0.09650 (6)0.24241 (15)0.0217 (3)
C150.16453 (7)0.13872 (7)0.35092 (18)0.0346 (4)
H15A0.19010.13470.40030.052*
H15B0.13840.1360.41290.052*
H15C0.18070.17210.30780.052*
C160.10059 (6)0.10327 (7)0.15898 (18)0.0307 (4)
H16A0.11750.13660.11550.046*
H16B0.07380.10080.2180.046*
H16C0.08570.07670.09070.046*
C170.11322 (7)0.04277 (7)0.3076 (2)0.0368 (4)
H17A0.10030.01690.23730.055*
H17B0.08490.03870.36330.055*
H17C0.13770.0390.36310.055*
Cl10.367571 (12)0.115323 (12)0.09482 (3)0.01946 (13)
N10.18014 (4)0.10112 (4)0.14609 (12)0.0179 (3)
H10.17870.10980.06320.021*
O10.17497 (4)0.00851 (4)0.07831 (10)0.0197 (2)
O20.22535 (4)0.04259 (3)0.09066 (10)0.0168 (2)
O30.23274 (4)0.09548 (4)0.06642 (9)0.0183 (2)
O40.31297 (4)0.14258 (4)0.15359 (11)0.0286 (3)
O50.22830 (4)0.08419 (4)0.29548 (10)0.0231 (2)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
C10.0201 (7)0.0159 (7)0.0134 (6)0.0101 (6)0.0014 (5)0.0015 (5)
C20.0187 (7)0.0151 (6)0.0130 (6)0.0083 (5)0.0001 (5)0.0016 (5)
C30.0177 (7)0.0143 (6)0.0114 (6)0.0056 (5)0.0001 (5)0.0021 (5)
C40.0200 (7)0.0183 (7)0.0099 (7)0.0102 (6)0.0009 (5)0.0018 (5)
C50.0181 (7)0.0206 (7)0.0116 (6)0.0114 (6)0.0006 (5)0.0014 (5)
C60.0239 (7)0.0165 (7)0.0159 (7)0.0102 (6)0.0007 (5)0.0004 (5)
C70.0307 (8)0.0228 (7)0.0163 (7)0.0188 (6)0.0025 (6)0.0023 (5)
C80.0233 (7)0.0304 (8)0.0147 (7)0.0184 (6)0.0024 (5)0.0032 (6)
C90.0190 (7)0.0211 (7)0.0130 (7)0.0094 (6)0.0017 (5)0.0031 (5)
C100.0179 (7)0.0148 (6)0.0174 (7)0.0081 (5)0.0018 (5)0.0018 (5)
C110.0276 (8)0.0137 (6)0.0229 (7)0.0120 (6)0.0069 (6)0.0028 (5)
C120.0358 (9)0.0211 (7)0.0211 (7)0.0122 (7)0.0023 (6)0.0034 (6)
C130.0186 (7)0.0116 (6)0.0195 (7)0.0069 (5)0.0002 (5)0.0019 (5)
C140.0190 (7)0.0223 (7)0.0256 (8)0.0117 (6)0.0062 (6)0.0052 (6)
C150.0316 (9)0.0434 (10)0.0342 (9)0.0227 (8)0.0053 (7)0.0095 (7)
C160.0223 (8)0.0373 (9)0.0371 (9)0.0184 (7)0.0061 (7)0.0098 (7)
C170.0294 (9)0.0349 (9)0.0464 (10)0.0163 (8)0.0151 (8)0.0199 (8)
Cl10.01575 (19)0.01499 (19)0.0235 (2)0.00460 (13)0.00001 (12)0.00316 (12)
N10.0199 (6)0.0183 (6)0.0176 (6)0.0112 (5)0.0021 (4)0.0023 (4)
O10.0155 (5)0.0169 (5)0.0262 (5)0.0077 (4)0.0018 (4)0.0009 (4)
O20.0161 (5)0.0133 (4)0.0215 (5)0.0077 (4)0.0002 (4)0.0008 (4)
O30.0212 (5)0.0165 (5)0.0171 (5)0.0094 (4)0.0007 (4)0.0023 (4)
O40.0242 (6)0.0313 (6)0.0299 (6)0.0137 (5)0.0078 (4)0.0079 (5)
O50.0262 (5)0.0297 (6)0.0193 (5)0.0184 (5)0.0013 (4)0.0007 (4)
Geometric parameters (Å, º) top
C1—O11.2045 (16)C11—O31.3638 (17)
C1—O21.3695 (16)C11—C121.496 (2)
C1—C21.4644 (18)C12—H12A0.96
C2—C31.3507 (19)C12—H12B0.96
C2—C101.5085 (18)C12—H12C0.96
C3—C41.4469 (18)C13—O51.2260 (17)
C3—Cl11.7269 (13)C13—N11.3325 (18)
C4—C51.3952 (19)C14—N11.4802 (17)
C4—C91.4033 (19)C14—C161.521 (2)
C5—O21.3814 (16)C14—C151.527 (2)
C5—C61.3843 (19)C14—C171.528 (2)
C6—C71.384 (2)C15—H15A0.96
C6—H60.93C15—H15B0.96
C7—C81.393 (2)C15—H15C0.96
C7—H70.93C16—H16A0.96
C8—C91.380 (2)C16—H16B0.96
C8—H80.93C16—H16C0.96
C9—H90.93C17—H17A0.96
C10—O31.4475 (16)C17—H17B0.96
C10—C131.5352 (19)C17—H17C0.96
C10—H100.98N1—H10.86
C11—O41.1998 (18)
O1—C1—O2117.20 (12)C11—C12—H12B109.5
O1—C1—C2124.58 (12)H12A—C12—H12B109.5
O2—C1—C2118.21 (11)C11—C12—H12C109.5
C3—C2—C1119.15 (12)H12A—C12—H12C109.5
C3—C2—C10125.34 (12)H12B—C12—H12C109.5
C1—C2—C10115.46 (11)O5—C13—N1125.74 (13)
C2—C3—C4122.08 (12)O5—C13—C10117.08 (12)
C2—C3—Cl1120.95 (10)N1—C13—C10117.14 (12)
C4—C3—Cl1116.97 (10)N1—C14—C16106.75 (12)
C5—C4—C9117.92 (12)N1—C14—C15109.41 (12)
C5—C4—C3117.02 (12)C16—C14—C15110.54 (13)
C9—C4—C3125.02 (12)N1—C14—C17109.62 (12)
O2—C5—C6116.35 (12)C16—C14—C17109.48 (13)
O2—C5—C4121.20 (11)C15—C14—C17110.95 (14)
C6—C5—C4122.45 (12)C14—C15—H15A109.5
C7—C6—C5118.30 (13)C14—C15—H15B109.5
C7—C6—H6120.8H15A—C15—H15B109.5
C5—C6—H6120.8C14—C15—H15C109.5
C6—C7—C8120.80 (13)H15A—C15—H15C109.5
C6—C7—H7119.6H15B—C15—H15C109.5
C8—C7—H7119.6C14—C16—H16A109.5
C9—C8—C7120.20 (13)C14—C16—H16B109.5
C9—C8—H8119.9H16A—C16—H16B109.5
C7—C8—H8119.9C14—C16—H16C109.5
C8—C9—C4120.32 (13)H16A—C16—H16C109.5
C8—C9—H9119.8H16B—C16—H16C109.5
C4—C9—H9119.8C14—C17—H17A109.5
O3—C10—C2110.68 (10)C14—C17—H17B109.5
O3—C10—C13110.09 (11)H17A—C17—H17B109.5
C2—C10—C13109.95 (11)C14—C17—H17C109.5
O3—C10—H10108.7H17A—C17—H17C109.5
C2—C10—H10108.7H17B—C17—H17C109.5
C13—C10—H10108.7C13—N1—C14124.00 (12)
O4—C11—O3122.73 (13)C13—N1—H1118.0
O4—C11—C12126.18 (13)C14—N1—H1118.0
O3—C11—C12111.08 (12)C1—O2—C5122.19 (10)
C11—C12—H12A109.5C11—O3—C10116.22 (11)
O1—C1—C2—C3176.34 (13)C3—C4—C9—C8177.79 (12)
O2—C1—C2—C32.70 (19)C3—C2—C10—O3114.86 (14)
O1—C1—C2—C101.13 (19)C1—C2—C10—O367.85 (14)
O2—C1—C2—C10179.83 (11)C3—C2—C10—C13123.30 (14)
C1—C2—C3—C44.3 (2)C1—C2—C10—C1353.99 (15)
C10—C2—C3—C4178.51 (12)O3—C10—C13—O5168.64 (11)
C1—C2—C3—Cl1175.38 (9)C2—C10—C13—O546.45 (16)
C10—C2—C3—Cl11.81 (19)O3—C10—C13—N113.54 (16)
C2—C3—C4—C52.2 (2)C2—C10—C13—N1135.73 (12)
Cl1—C3—C4—C5177.46 (9)O5—C13—N1—C146.3 (2)
C2—C3—C4—C9175.57 (13)C10—C13—N1—C14176.10 (12)
Cl1—C3—C4—C94.74 (19)C16—C14—N1—C13173.64 (13)
C9—C4—C5—O2179.48 (11)C15—C14—N1—C1366.72 (17)
C3—C4—C5—O21.52 (19)C17—C14—N1—C1355.16 (18)
C9—C4—C5—C60.1 (2)O1—C1—O2—C5179.92 (11)
C3—C4—C5—C6177.82 (12)C2—C1—O2—C50.97 (18)
O2—C5—C6—C7179.39 (11)C6—C5—O2—C1176.28 (11)
C4—C5—C6—C70.0 (2)C4—C5—O2—C13.10 (19)
C5—C6—C7—C80.3 (2)O4—C11—O3—C102.96 (18)
C6—C7—C8—C90.4 (2)C12—C11—O3—C10177.30 (11)
C7—C8—C9—C40.3 (2)C2—C10—O3—C1189.05 (13)
C5—C4—C9—C80.0 (2)C13—C10—O3—C11149.19 (11)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1···O30.862.252.6627 (17)109
N1—H1···O1i0.862.333.0787 (16)145
C9—H9···Cl10.932.683.0623 (15)105
C10—H10···Cl10.982.603.1220 (17)114
C15—H15A···O50.962.523.107 (3)120
C16—H16A···O1i0.962.563.287 (2)133
C17—H17C···O50.962.433.014 (3)119
Symmetry code: (i) xy, x, z.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1···O1i0.862.333.0787 (16)145
C16—H16A···O1i0.962.563.287 (2)133
Symmetry code: (i) xy, x, z.
 

Acknowledgements

We are grateful to the Center for Instrumental Analysis, Kyushu Institute of Technology (KITCIA) for the X-ray analysis. This research was supported financially by JSPS KAKENH grant No 15 K05611.

References

First citationBruker (2009). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationLuo, X., He, W., Yin, H., Li, Q., Liu, Q., Huang, Y. & Zhang, S. (2012). Molecules, 17, 6944–6952.  Web of Science CrossRef CAS PubMed Google Scholar
First citationMacrae, C. F., Bruno, I. J., Chisholm, J. A., Edgington, P. R., McCabe, P., Pidcock, E., Rodriguez-Monge, L., Taylor, R., van de Streek, J. & Wood, P. A. (2008). J. Appl. Cryst. 41, 466–470.  Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
First citationMedina-Franco, J. L., López-Vallejo, F., Kuck, D. & Lyko, F. (2011). Mol. Divers. 15, 293–304.  Web of Science CAS PubMed Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationZen, A. A., Aylott, J. W. & Chan, W. C. (2014). Tetrahedron Lett. 55, 5521–5524.  Google Scholar
First citationSun, C., Peng, C., Wang, J., Wang, Q., Liu, W., Zhou, H. & Yang, C. (2013). Heterocycles, 87, 1711–1726.  Web of Science CSD CrossRef CAS Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds