research communications\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Crystal structure of K0.75[FeII3.75FeIII1.25(HPO3)6]·0.5H2O, an open-framework iron phosphite with mixed-valent FeII/FeIII ions

CROSSMARK_Color_square_no_text.svg

aDpto. Mineralogía y Petrología, Universidad del País Vasco, UPV/EHU, Sarrina s/n, 48940 Leioa, Spain, bDpto. Química Inorgánica, Universidad del País Vasco, UPV/EHU, Sarrina s/n, 48940 Leioa, Spain, cBasque Center for Materials, Applications & Nanostructures (BCMaterials), Parque Tecnológico de Zamudio, Camino de Ibaizabal, Edificio 500-1°, 48160 Derio, Spain, and dDpto. Ingeniería Química, Universidad del País Vasco, UPV/EHU, Sarrina s/n, 48940 Leioa, Spain
*Correspondence e-mail: edurne.serrano@ehu.eus

Edited by M. Weil, Vienna University of Technology, Austria (Received 8 September 2015; accepted 14 December 2015; online 1 January 2016)

Single crystals of the title compound, potassium hexa­phosphito­penta­ferrate(II,III) hemihydrate, K0.75[FeII3.75FeIII1.25(HPO3)6]·0.5H2O, were grown under mild hydro­thermal conditions. The crystal structure is isotypic with Li1.43[FeII4.43FeIII0.57(HPO3)6]·1.5H2O and (NH4)2[FeII5(HPO3)6] and exhibits a [FeII3.75FeIII1.25(HPO3)6]0.75− open framework with disordered K+ (occupancy 3/4) as counter-cations. The anionic framework is based on (001) sheets of two [FeO6] octa­hedra (one with point group symmetry 3.. and one with point group symmetry .2.) linked along [001] through [HPO3]2− oxoanions. Each sheet is constructed from 12-membered rings of edge-sharing [FeO6] octa­hedra, giving rise to channels with a radius of ca 3.1 Å where the K+ cations and likewise disordered water mol­ecules (occupancy 1/4) are located. O⋯O contacts between the water mol­ecule and framework O atoms of 2.864 (5) Å indicate hydrogen-bonding inter­actions of medium strength. The infrared spectrum of the compound shows vibrational bands typical for phosphite and water groups. The Mössbauer spectrum is in accordance with the presence of FeII and FeIII ions.

1. Chemical context

Open-framework materials have been a major research topic in materials science during the last decades because of their potential applications (Barrer, 1982[Barrer, R. M. (1982). Hydrothermal Chemistry of Zeolites, Academic Press, London.]; Wilson et al., 1982[Wilson, S. T., Lok, B. M., Messina, C. A., Cannan, T. R. & Flanigen, E. D. (1982). J. Am. Chem. Soc. 104, 1146-1147.]; Davis, 2002[Davis, M. E. (2002). Nature, 417, 813-821.], Adams & Pendlebury, 2011[Adams, J. & Pendlebury, D. (2011). Global Research Report. Materials Science and Technology. Philadelphia: Thomsons Reuters.]). Many efforts have been made to obtain porous materials using different oxoanions in combination with metals (Yu & Xu, 2010[Yu, J. & Xu, R. (2010). Acc. Chem. Res. 43, 1195-1204.]). The use of structure-directing agents or templates, not only organic but also inorganic, has also been extended in order to achieve this purpose. In this context, a new porous mixed-valent FeII/FeIII phosphitoferrate with lithium cations and an open-framework structure, Li1.43[FeII4.43FeIII0.57(HPO3)6]·1.5H2O, has been reported (Chung et al., 2011[Chung, U.-C., Mesa, J. L., Pizarro, J. L., de Meatza, I., Bengoechea, M., Rodríguez Fernández, J., Arriortua, M. I. & Rojo, T. (2011). Chem. Mater. 23, 4317-4330.]). This structure presents channels of ca 5.5 Å diameter along the [001] direction in which water mol­ecules and lithium ions are located. The same type of framework but with FeII cations and with ammonium counter-anions was reported recently for (NH4)2[FeII5(HPO3)6] (Berrocal et al., 2014[Berrocal, T., Mesa, J. L., Larrea, E. S. & Arrieta, J. M. (2014). Acta Cryst. E70, 309-311.]).

Here we report on the synthesis and crystal structure of isotypic K0.75[FeII3.75FeIII1.25(HPO3)6]·0.5H2O resulting from the replacement of lithium/ammonium by potassium. The iron cations in this compound are again in a mixed valence oxidation state of +II and +III.

2. Structural commentary

The asymmetric unit of K0.75[FeII3.75FeIII1.25(HPO3)6]·0.5H2O (Fig. 1[link]) contains two Fe sites on special positions (6f and 4d) with site symmetries of .2. and .3., respectively, three O sites, one P site and one H site. In addition, disordered sites associated with a water mol­ecule (O1W) and the potassium counter-cation are present. The crystal structure is made up of two types of [FeO6] octa­hedra linked via edge-sharing into sheets parallel to (001). These sheets consist of 12-membered rings formed by six [Fe1O6] octa­hedra and six [Fe2O6] octa­hedra. In one of the FeO6 octa­hedra (Fe1), the Fe—O bond lengths range from 2.046 (2) to 2.179 (2) Å while in the [Fe2O6] octa­hedron, a more uniform bond-length distribution from 2.134 (2) to 2.143 (2) is observed. In order to assign the content of FeII and FeIII on these sites, a Mössbauer spectrum was recorded (Fig. 2[link]). Three different components were observed, two doublets, corresponding to FeII cations, and a third doublet, corresponding to FeIII cations. The determined FeII/FeIII ratio is 3.1, in good agreement with the formula. According to bond-valence calculations (Brown, 2002[Brown, I. D. (2002). The Chemical Bond in Inorganic Chemistry: The Bond Valence Model. Oxford University Press.]), a clear assignment of which of the two iron sites carries the FeIII cations cannot be made. The calculated bond-valence sum for site Fe1 assuming FeII is 2.213 valence units (v.u.), while assuming FeIII gives 2.367. Corresponding values for the Fe2 site are 2.014 v.u. assuming FeII and 2.155 assuming FeIII. The O—Fe—O bond angles of the two [FeO6] octa­hedra are in the range between 78.10 (8) and 102.63 (7)° for cis- and between 175.77 (11) and 163.23 (8)° for the trans-angles.

[Figure 1]
Figure 1
Asymmetric unit of K0.75[FeII3.75FeIII1.25(HPO3)6]·0.5H2O with displacement parameters drawn at the 50% probability level.
[Figure 2]
Figure 2
Mössbauer spectrum of the title compound showing the presence of FeII and FeIII. The fit was made with the NORMOS program (Brand et al., 1983[Brand, R. A., Lauer, J. & Herlach, D. M. (1983). J. Phys. F: Met. Phys. 13, 675-683.]).

The (001) iron oxide sheets are linked through phosphite groups whereby six anions share the innermost oxygen atoms of each ring (Fig. 3[link]), forming 12-membered channels extending along [001]. The channels have a radius of about 3.1 Å. The P—O bond lengths of the anion range from 1.529 (2) to 1.541 (2) Å and are comparable with those of the two isotypic structures. The P—H distance in the title compound is 1.29 (4) Å, and the O—P—O bond angles range from 110.24 (11) to 114.32 (11)°.

[Figure 3]
Figure 3
Crystal structure of K0.75[FeII3.75FeIII1.25(HPO3)6]·0.5H2O in polyhedral representation, in a projection along [001]. Colour code: Fe1O6 octa­hedra are blue, Fe2O6 octa­hedra are magenta, HPO3 tetra­hedra are orange, O atoms are red and K+ ions are grey. Hydrogen-bonding inter­actions between O1 from the framework and O1W are shown with dashed lines.

The disordered potassium cations and water mol­ecules are located on special positions in the twelve-membered channels of the framework with site symmetries of 32. and 3.., respectively. The occupancy factors are 0.75 for potassium and 0.25 for the water mol­ecule. Although the hydrogen atoms of the water mol­ecule could not be located, the O⋯O distance of 2.864 (5) Å between the water O1W atom and the O1 atom of the framework indicates possible hydrogen-bonding inter­actions of medium strength. Because the O1W site is located on a threefold rotation axis, three hydrogen bonds with the inorganic skeleton with an angle of 113.42 (5)° are possible.

3. Synthesis and characterization

K0.75[FeII3.75FeIII1.25(HPO3)6]·0.5H2O was synthesized under mild hydro­thermal conditions and autogeneous pressure (10–20 bar at 343 K). The reaction mixture was prepared from 30 ml water, 2 ml of hypo­phospho­rous acid, 0.17 mmol of KOH and 0.37 mmol of FeCl·6H2O. The mixture had a pH value of ≃ 3.0. The reaction mixture was sealed in a polytetra­fluoro­ethyl­ene (PTFE)-lined steel pressure vessel, which was maintained at 343 K for five days. This procedure allowed the formation of single crystals of the title compound with a dark green to black colour.

The IR spectrum (see supporting information for this submission) shows typical bands corresponding to the stretching and deformation mode of the water mol­ecules at 3235 and 2410 cm−1, respectively. The spectrum also shows the stretching and deformation modes of the P—H bond at 1750 cm−1. The bands corresponding to the symmetric (νs) and anti­symmetric (νas) stretching vibrational modes of the (PO3) groups appear at 930 and 1151 cm−1, whereas the symmetric (δs) and anti­symmetric (δas) deformation modes of this group are centred at 450 and 590 cm−1 (Nakamoto, 1997[Nakamoto, K. (1997). Infrared and Raman Spectroscopy of Inorganic and Coordination Compounds, John Wiley & Sons: New York.]; Chung et al., 2011[Chung, U.-C., Mesa, J. L., Pizarro, J. L., de Meatza, I., Bengoechea, M., Rodríguez Fernández, J., Arriortua, M. I. & Rojo, T. (2011). Chem. Mater. 23, 4317-4330.]).

Thermogravimetric analysis of the title compound (see supporting information for this submission) shows a first mass-loss process of 1.05% between room temperature and 498 K. This mass loss corresponds to the removal of water (theoretical value: 1.13%). Between 498 K and 673 K, another mass loss of 0.45% takes place which could not be assigned to a chemical reaction. This second process is followed by a third continuous process associated with a considerable gain of mass due to the oxidation of the compound.

4. Refinement

Crystal data, data collection and structure refinement details are summarized in Table 1[link]. H atoms of the water mol­ecule were not modelled. The hydrogen atom of the phosphite group was located in a difference density map and was refined without any constraint. Potassium and water oxygen sites are located in the channels. The occupancy factors of both atoms were initially set taking into account the previous characterization (themogravimetric measurement, Mössbauer spectrum fit). Some trials to refine the occupancy factors of these atoms were made. However, the results were very similar to those initially set, with a slight increase of reliability factors. Therefore, for the final model the occupancy factors were fixed at 0.75 for the K1 and at 0.25 for the O1W site.

Table 1
Experimental details

Crystal data
Chemical formula K0.75[FeII3.75FeIII1.25(HPO3)6]·0.5H2O
Mr 797.45
Crystal system, space group Trigonal, P[\overline{3}]c1
Temperature (K) 100
a, c (Å) 10.1567 (5), 9.2774 (6)
V3) 828.82 (8)
Z 2
Radiation type Mo Kα
μ (mm−1) 5.14
Crystal size (mm) 0.29 × 0.05 × 0.04
 
Data collection
Diffractometer Agilent SuperNova
Absorption correction Analytical (CrysAlis PRO; Agilent, 2014[Agilent (2014). CrysAlis PRO. Agilent Technologies UK Ltd, Yarnton, England.])
Tmin, Tmax 0.423, 0.845
No. of measured, independent and observed [I > 2σ(I)] reflections 5132, 647, 618
Rint 0.026
(sin θ/λ)max−1) 0.664
 
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.026, 0.061, 1.19
No. of reflections 647
No. of parameters 54
H-atom treatment All H-atom parameters refined
Δρmax, Δρmin (e Å−3) 0.8, −0.50
Computer programs: CrysAlis PRO (Agilent, 2014[Agilent (2014). CrysAlis PRO. Agilent Technologies UK Ltd, Yarnton, England.]), OLEX2 (Dolomanov, 2009[Dolomanov, O. V., Bourhis, L. J., Gildea, R. J., Howard, J. A. K. & Puschmann, H. (2009). J. Appl. Cryst. 42, 339-341.]), SHELXL2014 (Sheldrick, 2015[Sheldrick, G. M. (2015). Acta Cryst. C71, 3-8.]), DIAMOND (Brandenburg, 2001[Brandenburg, K. (2001). Diamond, Crystal Impact GbR, Bonn, Germany.]) and WinGX (Farrugia, 2012[Farrugia, L. J. (2012). J. Appl. Cryst. 45, 849-854.]).

Supporting information


Computing details top

Data collection: CrysAlis PRO (Agilent, 2014); cell refinement: CrysAlis PRO (Agilent, 2014); data reduction: CrysAlis PRO (Agilent, 2014); program(s) used to solve structure: OLEX2 (Dolomanov, 2009); program(s) used to refine structure: SHELXL2014 (Sheldrick, 2015); molecular graphics: DIAMOND (Brandenburg, 2001); software used to prepare material for publication: WinGX (Farrugia, 2012).

Potassium hexaphosphitopentaferrate(II,III) hemihydrate top
Crystal data top
K0.75[FeII3.75FeIII1.25(HPO3)6]·0.5H2ODx = 3.195 Mg m3
Mr = 797.45Mo Kα radiation, λ = 0.71073 Å
Trigonal, P3c1Cell parameters from 3002 reflections
Hall symbol: -P 3 2"cθ = 2.3–28.0°
a = 10.1567 (5) ŵ = 5.14 mm1
c = 9.2774 (6) ÅT = 100 K
V = 828.82 (8) Å3Prism, black
Z = 20.29 × 0.05 × 0.04 mm
F(000) = 779
Data collection top
Agilent SuperNova
diffractometer
647 independent reflections
Radiation source: Nova (Mo) X-ray micro-source618 reflections with I > 2σ(I)
Multilayer optics monochromatorRint = 0.026
Detector resolution: 16.2439 pixels mm-1θmax = 28.2°, θmin = 2.3°
ω scansh = 1312
Absorption correction: analytical
(CrysAlis Pro; Agilent, 2014)
k = 913
Tmin = 0.423, Tmax = 0.845l = 1210
5132 measured reflections
Refinement top
Refinement on F2Primary atom site location: iterative
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.026Hydrogen site location: difference Fourier map
wR(F2) = 0.061All H-atom parameters refined
S = 1.19 w = 1/[σ2(Fo2) + (0.0254P)2 + 2.2546P]
where P = (Fo2 + 2Fc2)/3
647 reflections(Δ/σ)max = 0.015
54 parametersΔρmax = 0.8 e Å3
0 restraintsΔρmin = 0.50 e Å3
Special details top

Geometry. All s.u.'s (except the s.u. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell s.u.'s are taken into account individually in the estimation of s.u.'s in distances, angles and torsion angles; correlations between s.u.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell s.u.'s is used for estimating s.u.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > 2σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/UeqOcc. (<1)
Fe10.62108 (5)00.250.00709 (16)
Fe20.66670.33330.33159 (7)0.00659 (18)
P10.70307 (8)0.11196 (8)0.58780 (7)0.00748 (18)
O30.6916 (2)0.1569 (2)0.4316 (2)0.0110 (4)
O20.3954 (2)0.1473 (2)0.3120 (2)0.0095 (4)
O10.8210 (2)0.1342 (2)0.1437 (2)0.0124 (4)
K1100.250.0247 (5)0.75
O1W100.063 (2)0.033 (4)0.25
H10.645 (4)0.033 (4)0.592 (4)0.011 (9)*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Fe10.0070 (2)0.0067 (3)0.0075 (3)0.00336 (14)0.00016 (10)0.00031 (19)
Fe20.0062 (2)0.0062 (2)0.0074 (3)0.00310 (11)00
P10.0072 (3)0.0087 (3)0.0068 (3)0.0042 (3)0.0006 (2)0.0003 (2)
O30.0112 (10)0.0147 (10)0.0083 (9)0.0075 (8)0.0018 (7)0.0024 (8)
O20.0091 (9)0.0079 (9)0.0113 (9)0.0041 (8)0.0023 (7)0.0004 (7)
O10.0153 (10)0.0095 (10)0.0140 (10)0.0073 (9)0.0003 (8)0.0002 (8)
K10.0151 (7)0.0151 (7)0.0439 (15)0.0075 (3)00
O1W0.018 (5)0.018 (5)0.062 (12)0.009 (2)00
Geometric parameters (Å, º) top
Fe1—O12.046 (2)P1—H11.29 (4)
Fe1—O1i2.046 (2)O2—P1vii1.534 (2)
Fe1—O22.096 (2)O2—Fe2viii2.134 (2)
Fe1—O2i2.096 (2)O1—P1ix1.529 (2)
Fe1—O3i2.179 (2)O1—K12.935 (2)
Fe1—O32.179 (2)K1—O1x2.935 (2)
Fe1—K13.8486 (6)K1—O1xi2.935 (2)
Fe2—O2i2.134 (2)K1—O1xii2.935 (2)
Fe2—O2ii2.134 (2)K1—O1xiii2.935 (2)
Fe2—O2iii2.134 (2)K1—O1i2.935 (2)
Fe2—O32.143 (2)K1—Fe1xii3.8486 (6)
Fe2—O3iv2.143 (2)K1—Fe1x3.8486 (6)
Fe2—O3v2.143 (2)K1—K1xiv4.6387 (3)
P1—O1vi1.529 (2)K1—K1xv4.6387 (3)
P1—O2vii1.534 (2)O1W—O1Wxv1.17 (4)
P1—O31.541 (2)
O1—Fe1—O1i97.50 (12)O1xi—K1—O1xii63.23 (8)
O1—Fe1—O2167.07 (8)O1x—K1—O1xiii63.23 (8)
O1i—Fe1—O289.81 (8)O1xi—K1—O1xiii109.30 (4)
O1—Fe1—O2i89.81 (8)O1xii—K1—O1xiii78.54 (8)
O1i—Fe1—O2i167.07 (8)O1x—K1—O1109.30 (4)
O2—Fe1—O2i85.10 (11)O1xi—K1—O178.54 (8)
O1—Fe1—O3i90.97 (8)O1xii—K1—O1109.30 (4)
O1i—Fe1—O3i91.82 (8)O1xiii—K1—O1171.12 (8)
O2—Fe1—O3i78.11 (8)O1x—K1—O1i78.54 (8)
O2i—Fe1—O3i98.73 (7)O1xi—K1—O1i109.30 (4)
O1—Fe1—O391.82 (8)O1xii—K1—O1i171.12 (8)
O1i—Fe1—O390.97 (8)O1xiii—K1—O1i109.30 (4)
O2—Fe1—O398.73 (7)O1—K1—O1i63.23 (8)
O2i—Fe1—O378.11 (8)O1x—K1—Fe1xii140.73 (4)
O3i—Fe1—O3175.77 (11)O1xi—K1—Fe1xii31.62 (4)
O1—Fe1—K148.75 (6)O1xii—K1—Fe1xii31.62 (4)
O1i—Fe1—K148.75 (6)O1xiii—K1—Fe1xii94.44 (4)
O2—Fe1—K1137.45 (6)O1—K1—Fe1xii94.44 (4)
O2i—Fe1—K1137.45 (6)O1i—K1—Fe1xii140.73 (4)
O3i—Fe1—K192.11 (5)O1x—K1—Fe1x31.62 (4)
O3—Fe1—K192.11 (5)O1xi—K1—Fe1x140.73 (4)
O2i—Fe2—O2ii85.13 (8)O1xii—K1—Fe1x94.44 (4)
O2i—Fe2—O2iii85.13 (8)O1xiii—K1—Fe1x31.62 (4)
O2ii—Fe2—O2iii85.13 (8)O1—K1—Fe1x140.73 (4)
O2i—Fe2—O378.10 (8)O1i—K1—Fe1x94.44 (4)
O2ii—Fe2—O393.44 (7)Fe1xii—K1—Fe1x120
O2iii—Fe2—O3163.22 (8)O1x—K1—Fe194.44 (4)
O2i—Fe2—O3iv163.23 (8)O1xi—K1—Fe194.44 (4)
O2ii—Fe2—O3iv78.10 (8)O1xii—K1—Fe1140.73 (4)
O2iii—Fe2—O3iv93.44 (7)O1xiii—K1—Fe1140.73 (4)
O3—Fe2—O3iv102.63 (7)O1—K1—Fe131.62 (4)
O2i—Fe2—O3v93.44 (7)O1i—K1—Fe131.62 (4)
O2ii—Fe2—O3v163.22 (8)Fe1xii—K1—Fe1120
O2iii—Fe2—O3v78.10 (8)Fe1x—K1—Fe1120
O3—Fe2—O3v102.63 (7)O1x—K1—K1xiv109.64 (4)
O3iv—Fe2—O3v102.63 (7)O1xi—K1—K1xiv70.36 (4)
O1vi—P1—O2vii112.13 (11)O1xii—K1—K1xiv109.64 (4)
O1vi—P1—O3114.32 (11)O1xiii—K1—K1xiv70.36 (4)
O2vii—P1—O3110.24 (11)O1—K1—K1xiv109.64 (4)
O1vi—P1—H1105.9 (16)O1i—K1—K1xiv70.36 (4)
O2vii—P1—H1105.6 (16)Fe1xii—K1—K1xiv90
O3—P1—H1108.1 (16)Fe1x—K1—K1xiv90
P1—O3—Fe2135.47 (12)Fe1—K1—K1xiv90
P1—O3—Fe1123.82 (12)O1x—K1—K1xv70.36 (4)
Fe2—O3—Fe198.26 (8)O1xi—K1—K1xv109.64 (4)
P1vii—O2—Fe1127.45 (12)O1xii—K1—K1xv70.36 (4)
P1vii—O2—Fe2viii130.31 (12)O1xiii—K1—K1xv109.64 (4)
Fe1—O2—Fe2viii101.19 (8)O1—K1—K1xv70.36 (4)
P1ix—O1—Fe1129.84 (13)O1i—K1—K1xv109.64 (4)
P1ix—O1—K1124.86 (11)Fe1xii—K1—K1xv90
Fe1—O1—K199.63 (7)Fe1x—K1—K1xv90
O1x—K1—O1xi171.12 (8)Fe1—K1—K1xv90
O1x—K1—O1xii109.30 (4)K1xiv—K1—K1xv180
Symmetry codes: (i) xy, y, z+1/2; (ii) y+1, x, z+1/2; (iii) x+1, x+y+1, z+1/2; (iv) y+1, xy, z; (v) x+y+1, x+1, z; (vi) y+1, x+1, z+1/2; (vii) x+1, y, z+1; (viii) y, x1, z+1/2; (ix) y+1, x+1, z1/2; (x) y+1, xy1, z; (xi) x+2, x+y+1, z+1/2; (xii) x+y+2, x+1, z; (xiii) y+1, x1, z+1/2; (xiv) x+2, y, z+1; (xv) x+2, y, z.
 

Acknowledgements

We gratefully acknowledge financial support of this work by the Ministerio de Economía y Competitividad (MAT2013–42092-R), the Gobierno Vasco (IT-630–13 and SAI12/82) and the University of the Basque Country (UFI-11/15). The authors also thank the technicians of SGIker (UPV/EHU), Dr J. Sangüesa, Dr Leire San Felices and Dr A. Larrañaga for the X-ray diffraction measurements. ESL thanks the Basque Government for her postdoctoral contract.

References

First citationAdams, J. & Pendlebury, D. (2011). Global Research Report. Materials Science and Technology. Philadelphia: Thomsons Reuters.  Google Scholar
First citationAgilent (2014). CrysAlis PRO. Agilent Technologies UK Ltd, Yarnton, England.  Google Scholar
First citationBarrer, R. M. (1982). Hydrothermal Chemistry of Zeolites, Academic Press, London.  Google Scholar
First citationBerrocal, T., Mesa, J. L., Larrea, E. S. & Arrieta, J. M. (2014). Acta Cryst. E70, 309–311.  CSD CrossRef IUCr Journals Google Scholar
First citationBrand, R. A., Lauer, J. & Herlach, D. M. (1983). J. Phys. F: Met. Phys. 13, 675–683.  Google Scholar
First citationBrandenburg, K. (2001). Diamond, Crystal Impact GbR, Bonn, Germany.  Google Scholar
First citationBrown, I. D. (2002). The Chemical Bond in Inorganic Chemistry: The Bond Valence Model. Oxford University Press.  Google Scholar
First citationChung, U.-C., Mesa, J. L., Pizarro, J. L., de Meatza, I., Bengoechea, M., Rodríguez Fernández, J., Arriortua, M. I. & Rojo, T. (2011). Chem. Mater. 23, 4317–4330.  CSD CrossRef CAS Google Scholar
First citationDavis, M. E. (2002). Nature, 417, 813–821.  Web of Science CrossRef PubMed CAS Google Scholar
First citationDolomanov, O. V., Bourhis, L. J., Gildea, R. J., Howard, J. A. K. & Puschmann, H. (2009). J. Appl. Cryst. 42, 339–341.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationFarrugia, L. J. (2012). J. Appl. Cryst. 45, 849–854.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationNakamoto, K. (1997). Infrared and Raman Spectroscopy of Inorganic and Coordination Compounds, John Wiley & Sons: New York.  Google Scholar
First citationSheldrick, G. M. (2015). Acta Cryst. C71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar
First citationWilson, S. T., Lok, B. M., Messina, C. A., Cannan, T. R. & Flanigen, E. D. (1982). J. Am. Chem. Soc. 104, 1146–1147.  CrossRef CAS Web of Science Google Scholar
First citationYu, J. & Xu, R. (2010). Acc. Chem. Res. 43, 1195–1204.  CrossRef CAS PubMed Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds