research communications
μ-2-carboxyacetato-κ3O,O′:O′′)(2-carboxyacetato-κO)di-μ-chlorido-dicobalt(II)]
of poly[diaqua(aUnité de Recherche de Chimie de l'Environnement et Moléculaire Structurale (CHEMS), Université Constantine 1, Constantine 25000, Algeria, bLaboratoire de Chimie, Ingénierie Moléculaire et Nanostructures (LCIMN), Université Ferhat Abbas Sétif 1, Sétif 19000, Algeria, cNational Taras Shevchenko University of Kyiv, Department of Chemistry, Volodymyrska str. 64, 01601 Kiev, Ukraine, dSciMax LLC, 2 Marshala Yakubovskogo str. 03191, Kyiv, Ukraine, eDepartment of General and Inorganic Chemistry, National Technical University of Ukraine, `Kyiv Polytechnic Institute', 37 Prospect Peremogy, 03056 Kiev, Ukraine, and fLaboratory of Solid State Chemistry and Mössbauer Spectroscopy, Laboratories for Inorganic Materials, Department of Chemistry and Biochemistry, Concordia University, Montréal, Québec, H3G 1M8, Canada
*Correspondence e-mail: setifi_zouaoui@yahoo.fr, futureintentions@gmail.com
The 2(C3H3O4)2Cl2(H2O)2]n, comprises one CoII atom, one water molecule, one singly deprotonated malonic acid molecule (HMal−; 2-carboxyacetate) and one Cl− anion. The CoII atom is octahedrally coordinated by the O atom of a water molecule, by one terminally bound carboxylate O atom of an HMal− anion and by two O atoms of a chelating HMal− anion, as well as by two Cl− anions. The Cl− anions bridge two CoII atoms, forming a centrosymmetric Co2Cl2 core. Each malonate ligand is involved in the formation of six-membered chelate rings involving one CoII atom of the dinuclear unit and at the same time is coordinating to another CoII atom of a neighbouring dinuclear unit in a bridging mode. The combination of chelating and bridging coordination modes leads to the formation of a two-dimensional coordination polymer extending parallel to (001). Within a layer, O—Hwater⋯Cl and O—Hwater⋯O hydrogen bonds are present. Adjacent layers are linked through O—H⋯O=C hydrogen bonds involving the carboxylic acid OH and carbonyl groups.
of the title polymer, [CoKeywords: crystal structure; malonate; cobalt; coordination polymer.
CCDC reference: 1440440
1. Chemical context
Complexes with paramagnetic metal ions and extended structures are interesting due to their potential applications in molecular magnetism (Moroz et al., 2012; Pavlishchuk et al., 2010, 2011; Yuste et al., 2009). Malonic acid exhibits both chelating and bridging modes of coordination and is an efficient ligand for achieving two- or three-dimensional polymeric structures (Delgado et al., 2004). In the present communication we report on the structure of a two-dimensional coordination polymer, [Co(C3H3O4)Cl(H2O)]n, containing both chelating and bridging functions of singly deprotonated malonic acid ligands.
2. Structural commentary
The structure of the title compound is characterized by the presence of a two-dimensional coordination polymer extending parallel to (001). The monomeric fragment can be described as being composed of a centrosymmetric binuclear Co2Cl4 motif with the CoII atoms having an overall distorted octahedral environment. The two octahedra are fused together via two bridging Cl atoms with Co—Cl bond lengths of 2.4312 (12) and 2.4657 (16) Å.
In the octahedron, the Cl− atoms occupy equatorial positions, the other two equatorial positions being defined by the carboxylate O atom of a bridging hydrogenmalonate anion (HMal−) and one O atom of a chelating HMal− anion, while one water O atom and the other O atom of the chelating HMal− anion are in axial positions (Fig. 1). The corresponding Co—Omalonate bond lengths range from 2.051 (3) to 2.165 (3) Å which is similar to other structures containing this ligand in chelating and bridging modes (Delgado et al., 2004). The Co—Owater bond has a length of 2.046 (3) Å. The C—O bond lengths in the carboxylic group differ significantly [1.225 (2) and 1.306 (4) Å] while those in the carboxylate group [1.258 (4) and 1.267 (4) Å] are more or less the same, which is typical for this (Wörl et al., 2005a,b).
3. Supramolecular features
The distribution of the dinuclear units within a coordination layer follows a chess-like pattern whereby each dinuclear coordination node is interconnected with each other through four bridging HMal− ligands (Fig. 2). The binuclear coordination nodes are additionally connected via intralayer O—Hwater⋯Cl and O—Hwater⋯O hydrogen bonds (Table 1 and Fig. 3). Adjacent layers are linked along [001] via interlayer O—H⋯O=C hydrogen bonds involving two HMal− ligands (Table 1 and Fig. 3).
4. Database survey
A search of the Cambridge Structural Database (Groom & Allen, 2014) revealed a number of coordination polymeric structures containing cobalt(II) malonate moieties in different coordination modes. While the most typical coordination mode of malonate ligands in polymeric structures appears to be a μ3-bridging mode of the fully deprotonated acid involving all four oxygen atoms (usually two of them forming a chelating ring with one CoII atom) (Delgado et al., 2004; Xue et al., 2003; Lightfoot & Snedden, 1999; Walter-Levy et al., 1973; Zheng & Xie, 2004; Montney et al., 2008; Fu et al., 2006; Djeghri et al., 2006), there are also cases of less-common coordination modes in polymeric structures such as a μ2-bridging mode of the fully deprotonated ligand connecting two metal atoms (Gil de Muro et al., 1999; Pérez-Yáñez et al., 2009; Jin & Chen, 2007). Much less common in coordination polymers is a mono-deprotonated state of malonic acid (Adarsh et al., 2010), while there are also few examples of non-polymeric coordination compounds (Walter-Levy et al., 1973; Clarkson et al., 2001; Wang et al., 2005).
5. Synthesis and crystallization
The title compound was synthesized by heating together 0.104 g (1 mmol) malonic acid dissolved in 15 ml of propanol and 0.238 g (1 mmol) of CoCl2·6H2O dissolved in 5 ml of water. Violet crystals suitable for X-ray analysis were isolated after two weeks by slow evaporation of the solvent from the resulting mixture. Crystals were washed with small amounts of propanol and dried in air yielding 0.071 g (36%) of the title compound.
6. Refinement
Crystal data, data collection and structure . H atoms bound to O atoms were located from a difference-Fourier map and constrained to ride on their parent atoms, with Uiso(H) = 1.5 Ueq(O). All C-bound H atoms were positioned geometrically and were also constrained to ride on their parent atoms, with C—H = 0.97 Å, and Uiso(H) = 1.2Ueq(C).
details are summarized in Table 2Supporting information
CCDC reference: 1440440
10.1107/S2056989015023269/wm5235sup1.cif
contains datablock I. DOI:Structure factors: contains datablock I. DOI: 10.1107/S2056989015023269/wm5235Isup2.hkl
Data collection: COLLECT (Nonius, 2000); cell
DENZO/SCALEPACK (Otwinowski & Minor, 1997); data reduction: DENZO/SCALEPACK (Otwinowski & Minor, 1997); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: DIAMOND (Brandenburg, 2010); software used to prepare material for publication: SHELXL97 (Sheldrick, 2008).[Co2(C3H3O4)2Cl2(H2O)2] | F(000) = 856 |
Mr = 430.90 | Dx = 2.222 Mg m−3 |
Orthorhombic, Pbca | Mo Kα radiation, λ = 0.71073 Å |
Hall symbol: -P 2ac 2ab | Cell parameters from 1003 reflections |
a = 7.568 (5) Å | θ = 3.4–27.6° |
b = 8.879 (5) Å | µ = 3.04 mm−1 |
c = 19.168 (5) Å | T = 296 K |
V = 1288.0 (12) Å3 | Block, violet |
Z = 4 | 0.20 × 0.14 × 0.07 mm |
Nonius KappaCCD diffractometer | 1875 independent reflections |
Radiation source: fine-focus sealed tube | 1400 reflections with I > 2σ(I) |
Horizontally mounted graphite crystal monochromator | Rint = 0.055 |
Detector resolution: 9 pixels mm-1 | θmax = 30.0°, θmin = 3.4° |
φ scans and ω scans with κ offset | h = −10→10 |
Absorption correction: multi-scan (SADABS; Bruker, 2004) | k = −12→12 |
Tmin = 0.632, Tmax = 0.820 | l = −24→26 |
6888 measured reflections |
Refinement on F2 | Primary atom site location: structure-invariant direct methods |
Least-squares matrix: full | Secondary atom site location: difference Fourier map |
R[F2 > 2σ(F2)] = 0.046 | Hydrogen site location: inferred from neighbouring sites |
wR(F2) = 0.116 | H-atom parameters constrained |
S = 1.05 | w = 1/[σ2(Fo2) + (0.0552P)2 + 0.9469P] where P = (Fo2 + 2Fc2)/3 |
1875 reflections | (Δ/σ)max < 0.001 |
91 parameters | Δρmax = 1.05 e Å−3 |
0 restraints | Δρmin = −1.00 e Å−3 |
Experimental. The O-H hydrogens were located from the difference Fourier map but constrained to ride it's parent atom, with Uiso = 1.5 Ueq(parent atom). Other hydrogens were positioned geometrically and were also constrained to ride on their parent atoms, with C—H = 0.97 Å, and Uiso = 1.2 Ueq(parent atom). |
Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes. |
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > 2sigma(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger. |
x | y | z | Uiso*/Ueq | ||
Co1 | 0.57087 (6) | 0.47694 (6) | 0.58530 (2) | 0.01449 (15) | |
Cl1 | 0.71412 (10) | 0.46924 (11) | 0.47183 (5) | 0.0223 (2) | |
C1 | 0.4104 (4) | 0.6347 (4) | 0.70892 (19) | 0.0177 (7) | |
C2 | 0.4303 (4) | 0.7853 (4) | 0.6731 (2) | 0.0176 (7) | |
H2A | 0.3323 | 0.7991 | 0.6411 | 0.021* | |
H2B | 0.4237 | 0.8644 | 0.7079 | 0.021* | |
C3 | 0.6012 (4) | 0.8016 (4) | 0.63323 (18) | 0.0133 (7) | |
O1 | 0.6877 (3) | 0.9227 (3) | 0.64044 (14) | 0.0179 (5) | |
O2 | 0.5004 (3) | 0.2544 (3) | 0.58516 (16) | 0.0276 (6) | |
H1O2 | 0.5966 | 0.1929 | 0.5746 | 0.041* | |
H2O2 | 0.3970 | 0.2004 | 0.5857 | 0.041* | |
O3 | 0.4575 (3) | 0.5133 (3) | 0.68488 (14) | 0.0202 (6) | |
O4 | 0.3363 (4) | 0.6465 (3) | 0.77023 (15) | 0.0321 (7) | |
H1O4 | 0.3361 | 0.5574 | 0.7994 | 0.048* | |
O5 | 0.6515 (3) | 0.6967 (3) | 0.59383 (13) | 0.0175 (5) |
U11 | U22 | U33 | U12 | U13 | U23 | |
Co1 | 0.0156 (2) | 0.0112 (2) | 0.0167 (3) | −0.00042 (16) | −0.00079 (17) | −0.00210 (19) |
Cl1 | 0.0181 (4) | 0.0284 (5) | 0.0204 (4) | 0.0089 (3) | 0.0002 (3) | −0.0038 (4) |
C1 | 0.0123 (13) | 0.0175 (19) | 0.0233 (19) | −0.0019 (12) | 0.0039 (13) | 0.0013 (15) |
C2 | 0.0146 (13) | 0.0125 (17) | 0.0257 (19) | 0.0004 (12) | 0.0054 (13) | 0.0009 (15) |
C3 | 0.0148 (13) | 0.0099 (16) | 0.0152 (17) | 0.0007 (11) | 0.0005 (11) | 0.0014 (13) |
O1 | 0.0206 (11) | 0.0110 (12) | 0.0220 (13) | −0.0028 (9) | 0.0063 (10) | −0.0034 (11) |
O2 | 0.0171 (11) | 0.0177 (15) | 0.0481 (19) | −0.0021 (10) | −0.0059 (12) | −0.0016 (13) |
O3 | 0.0274 (13) | 0.0133 (13) | 0.0198 (14) | −0.0018 (10) | 0.0038 (10) | −0.0005 (11) |
O4 | 0.0514 (17) | 0.0192 (15) | 0.0257 (15) | 0.0046 (13) | 0.0211 (14) | 0.0029 (12) |
O5 | 0.0213 (11) | 0.0116 (12) | 0.0196 (13) | −0.0021 (9) | 0.0052 (10) | −0.0047 (10) |
Co1—O2 | 2.046 (3) | C2—C3 | 1.509 (4) |
Co1—O5 | 2.051 (3) | C2—H2A | 0.9700 |
Co1—O3 | 2.118 (3) | C2—H2B | 0.9700 |
Co1—O1i | 2.165 (3) | C3—O5 | 1.258 (4) |
Co1—Cl1 | 2.4312 (12) | C3—O1 | 1.267 (4) |
Co1—Cl1ii | 2.4657 (16) | O1—Co1iii | 2.165 (3) |
Cl1—Co1ii | 2.4657 (16) | O2—H1O2 | 0.9325 |
C1—O3 | 1.225 (5) | O2—H2O2 | 0.9180 |
C1—O4 | 1.306 (4) | O4—H1O4 | 0.9698 |
C1—C2 | 1.511 (5) | ||
O2—Co1—O5 | 174.98 (11) | O4—C1—C2 | 112.4 (3) |
O2—Co1—O3 | 92.46 (11) | C3—C2—C1 | 113.6 (3) |
O5—Co1—O3 | 84.46 (10) | C3—C2—H2A | 108.8 |
O2—Co1—O1i | 90.35 (10) | C1—C2—H2A | 108.8 |
O5—Co1—O1i | 85.50 (10) | C3—C2—H2B | 108.8 |
O3—Co1—O1i | 86.33 (10) | C1—C2—H2B | 108.8 |
O2—Co1—Cl1 | 95.04 (9) | H2A—C2—H2B | 107.7 |
O5—Co1—Cl1 | 88.02 (7) | O5—C3—O1 | 122.5 (3) |
O3—Co1—Cl1 | 172.49 (8) | O5—C3—C2 | 119.5 (3) |
O1i—Co1—Cl1 | 93.10 (8) | O1—C3—C2 | 118.0 (3) |
O2—Co1—Cl1ii | 87.62 (8) | C3—O1—Co1iii | 124.9 (2) |
O5—Co1—Cl1ii | 96.38 (8) | Co1—O2—H1O2 | 111.3 |
O3—Co1—Cl1ii | 90.93 (8) | Co1—O2—H2O2 | 136.6 |
O1i—Co1—Cl1ii | 176.52 (8) | H1O2—O2—H2O2 | 111.2 |
Cl1—Co1—Cl1ii | 89.89 (4) | C1—O3—Co1 | 126.2 (3) |
Co1—Cl1—Co1ii | 90.11 (4) | C1—O4—H1O4 | 117.0 |
O3—C1—O4 | 122.3 (4) | C3—O5—Co1 | 131.5 (2) |
O3—C1—C2 | 125.3 (3) | ||
O2—Co1—Cl1—Co1ii | 87.60 (8) | C2—C1—O3—Co1 | −2.5 (5) |
O5—Co1—Cl1—Co1ii | −96.39 (8) | O2—Co1—O3—C1 | −158.3 (3) |
O1i—Co1—Cl1—Co1ii | 178.22 (8) | O5—Co1—O3—C1 | 25.7 (3) |
Cl1ii—Co1—Cl1—Co1ii | 0.0 | O1i—Co1—O3—C1 | 111.5 (3) |
O3—C1—C2—C3 | −38.3 (5) | Cl1ii—Co1—O3—C1 | −70.6 (3) |
O4—C1—C2—C3 | 141.5 (3) | O1—C3—O5—Co1 | 166.5 (2) |
C1—C2—C3—O5 | 46.5 (5) | C2—C3—O5—Co1 | −14.4 (5) |
C1—C2—C3—O1 | −134.3 (4) | O3—Co1—O5—C3 | −17.1 (3) |
O5—C3—O1—Co1iii | 2.2 (5) | O1i—Co1—O5—C3 | −103.9 (3) |
C2—C3—O1—Co1iii | −176.9 (2) | Cl1—Co1—O5—C3 | 162.9 (3) |
O4—C1—O3—Co1 | 177.8 (2) | Cl1ii—Co1—O5—C3 | 73.2 (3) |
Symmetry codes: (i) −x+3/2, y−1/2, z; (ii) −x+1, −y+1, −z+1; (iii) −x+3/2, y+1/2, z. |
D—H···A | D—H | H···A | D···A | D—H···A |
O2—H1O2···O5i | 0.93 | 1.94 | 2.689 (4) | 136 |
O2—H2O2···Cl1iv | 0.92 | 2.32 | 3.135 (3) | 147 |
O4—H1O4···O1v | 0.97 | 1.67 | 2.629 (4) | 169 |
Symmetry codes: (i) −x+3/2, y−1/2, z; (iv) x−1/2, −y+1/2, −z+1; (v) −x+1, y−1/2, −z+3/2. |
Acknowledgements
The authors acknowledge the Algerian MESRS (Ministère de l'Enseignement Supérieur et de la Recherche Scientifique), the DGRSDT (Direction Générale de la Recherche Scientifique et du Développement Technologique) and URCHEMS for financial support.
References
Adarsh, N. N., Sahoo, P. & Dastidar, P. (2010). Cryst. Growth Des. 10, 4976–4986. Web of Science CSD CrossRef CAS Google Scholar
Brandenburg, K. (2010). DIAMOND. Crystal Impact GbR, Bonn, Germany. Google Scholar
Bruker (2004). SADABS. Bruker AXS Inc., Madison, Wisconsin, USA. Google Scholar
Clarkson, A. J., Blackman, A. G. & Clark, C. R. (2001). J. Chem. Soc. Dalton Trans. pp. 758–765. Web of Science CSD CrossRef Google Scholar
Delgado, F. S., Hernandez-Molina, M., Sanchiz, J., Ruiz-Perez, C., Rodriguez-Martin, Y., Lopez, T., Lloret, F. & Julve, M. (2004). CrystEngComm, 6, 106–111. Web of Science CSD CrossRef CAS Google Scholar
Djeghri, A., Balegroune, F., Guehria Laidoudi, A. & Toupet, L. (2006). Acta Cryst. C62, m126–m128. Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
Fu, X.-C., Nie, L., Zhang, Q., Li, M.-T. & Wang, X.-Y. (2006). Chin. J. Struct. Chem. (Jiegou Huaxue), 25, 1449–1452. CAS Google Scholar
Gil de Muro, I., Insausti, M., Lezama, L., Pizarro, J. L., Arriortua, M. I. & Rojo, T. (1999). Eur. J. Inorg. Chem. pp. 935–943. CrossRef Google Scholar
Groom, C. R. & Allen, F. H. (2014). Angew. Chem. Int. Ed. 53, 662–671. Web of Science CSD CrossRef CAS Google Scholar
Jin, S.-W. & Chen, W.-Z. (2007). Polyhedron, 26, 3074–3084. Web of Science CSD CrossRef CAS Google Scholar
Lightfoot, P. & Snedden, A. (1999). J. Chem. Soc. Dalton Trans. pp. 3549–3551. Web of Science CrossRef Google Scholar
Montney, M. R., Supkowski, R. M. & LaDuca, R. L. (2008). Polyhedron, 27, 2997–3003. Web of Science CSD CrossRef CAS Google Scholar
Moroz, Y. S., Demeshko, S., Haukka, M., Mokhir, A., Mitra, U., Stocker, M., Müller, P., Meyer, F. & Fritsky, I. O. (2012). Inorg. Chem. 51, 7445–7447. Web of Science CSD CrossRef CAS PubMed Google Scholar
Nonius (2000). COLLECT. Nonius BV, Delft, The Netherlands. Google Scholar
Otwinowski, Z. & Minor, W. (1997). Methods in Enzymology, Vol. 276, Macromolecular Crystallography, Part A, edited by C. W. Carter Jr & R. M. Sweet, pp. 307–326. New York: Academic Press. Google Scholar
Pavlishchuk, A. V., Kolotilov, S. V., Zeller, M., Shvets, O. V., Fritsky, I. O., Lofland, S. E., Addison, A. W. & Hunter, A. D. (2011). Eur. J. Inorg. Chem. pp. 4826–4836. Web of Science CSD CrossRef Google Scholar
Pavlishchuk, A. V., Kolotilov, S. V., Zeller, M., Thompson, L. K., Fritsky, I. O., Addison, A. W. & Hunter, A. D. (2010). Eur. J. Inorg. Chem. pp. 4851–4858. Web of Science CSD CrossRef Google Scholar
Pérez-Yáñez, S., Castillo, O., Cepeda, J., García-Terán, J. P., Luque, A. & Román, P. (2009). Eur. J. Inorg. Chem. pp. 3889–3899. Google Scholar
Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. Web of Science CrossRef CAS IUCr Journals Google Scholar
Walter-Levy, L., Perrotey, J. & Visser, J. W. (1973). C. R. Acad. Sci. Ser. C, 277, 1351–1354. CAS Google Scholar
Wang, Z.-L., Wei, L.-H. & Niu, J.-Y. (2005). Acta Cryst. E61, m1907–m1908. Web of Science CSD CrossRef IUCr Journals Google Scholar
Wörl, S., Fritsky, I. O., Hellwinkel, D., Pritzkow, H. & Krämer, R. (2005b). Eur. J. Inorg. Chem. pp. 759–765. Google Scholar
Wörl, S., Pritzkow, H., Fritsky, I. O. & Krämer, R. (2005a). Dalton Trans. pp. 27–29. Google Scholar
Xue, Y.-H., Lin, D.-D. & Xu, D.-J. (2003). Acta Cryst. E59, m750–m752. Web of Science CSD CrossRef IUCr Journals Google Scholar
Yuste, C., Bentama, A., Marino, N., Armentano, D., Setifi, F., Triki, S., Lloret, F. & Julve, M. (2009). Polyhedron, 28, 1287–1294. Web of Science CSD CrossRef CAS Google Scholar
Zheng, Y.-Q. & Xie, H.-Z. (2004). J. Coord. Chem. 57, 1537– Web of Science CSD CrossRef CAS Google Scholar
This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.