research communications\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Crystal structure of poly[di­aqua­(μ-2-carb­­oxy­acetato-κ3O,O′:O′′)(2-carb­­oxy­acetato-κO)di-μ-chlorido-dicobalt(II)]

CROSSMARK_Color_square_no_text.svg

aUnité de Recherche de Chimie de l'Environnement et Moléculaire Structurale (CHEMS), Université Constantine 1, Constantine 25000, Algeria, bLaboratoire de Chimie, Ingénierie Moléculaire et Nanostructures (LCIMN), Université Ferhat Abbas Sétif 1, Sétif 19000, Algeria, cNational Taras Shevchenko University of Kyiv, Department of Chemistry, Volodymyrska str. 64, 01601 Kiev, Ukraine, dSciMax LLC, 2 Marshala Yakubovskogo str. 03191, Kyiv, Ukraine, eDepartment of General and Inorganic Chemistry, National Technical University of Ukraine, `Kyiv Polytechnic Institute', 37 Prospect Peremogy, 03056 Kiev, Ukraine, and fLaboratory of Solid State Chemistry and Mössbauer Spectroscopy, Laboratories for Inorganic Materials, Department of Chemistry and Biochemistry, Concordia University, Montréal, Québec, H3G 1M8, Canada
*Correspondence e-mail: setifi_zouaoui@yahoo.fr, futureintentions@gmail.com

Edited by M. Weil, Vienna University of Technology, Austria (Received 2 November 2015; accepted 3 December 2015; online 1 January 2016)

The asymmetric unit of the title polymer, [Co2(C3H3O4)2Cl2(H2O)2]n, comprises one CoII atom, one water mol­ecule, one singly deprotonated malonic acid mol­ecule (HMal; systematic name 2-carb­oxy­acetate) and one Cl anion. The CoII atom is octa­hedrally coordinated by the O atom of a water mol­ecule, by one terminally bound carboxyl­ate O atom of an HMal anion and by two O atoms of a chelating HMal anion, as well as by two Cl anions. The Cl anions bridge two CoII atoms, forming a centrosymmetric Co2Cl2 core. Each malonate ligand is involved in the formation of six-membered chelate rings involving one CoII atom of the dinuclear unit and at the same time is coordinating to another CoII atom of a neighbouring dinuclear unit in a bridging mode. The combination of chelating and bridging coordination modes leads to the formation of a two-dimensional coordination polymer extending parallel to (001). Within a layer, O—Hwater⋯Cl and O—Hwater⋯O hydrogen bonds are present. Adjacent layers are linked through O—H⋯O=C hydrogen bonds involving the carb­oxy­lic acid OH and carbonyl groups.

1. Chemical context

Complexes with paramagnetic metal ions and extended structures are inter­esting due to their potential applications in mol­ecular magnetism (Moroz et al., 2012[Moroz, Y. S., Demeshko, S., Haukka, M., Mokhir, A., Mitra, U., Stocker, M., Müller, P., Meyer, F. & Fritsky, I. O. (2012). Inorg. Chem. 51, 7445-7447.]; Pavlishchuk et al., 2010[Pavlishchuk, A. V., Kolotilov, S. V., Zeller, M., Thompson, L. K., Fritsky, I. O., Addison, A. W. & Hunter, A. D. (2010). Eur. J. Inorg. Chem. pp. 4851-4858.], 2011[Pavlishchuk, A. V., Kolotilov, S. V., Zeller, M., Shvets, O. V., Fritsky, I. O., Lofland, S. E., Addison, A. W. & Hunter, A. D. (2011). Eur. J. Inorg. Chem. pp. 4826-4836.]; Yuste et al., 2009[Yuste, C., Bentama, A., Marino, N., Armentano, D., Setifi, F., Triki, S., Lloret, F. & Julve, M. (2009). Polyhedron, 28, 1287-1294.]). Malonic acid exhibits both chelating and bridging modes of coordination and is an efficient ligand for achieving two- or three-dimensional polymeric structures (Delgado et al., 2004[Delgado, F. S., Hernandez-Molina, M., Sanchiz, J., Ruiz-Perez, C., Rodriguez-Martin, Y., Lopez, T., Lloret, F. & Julve, M. (2004). CrystEngComm, 6, 106-111.]). In the present communication we report on the structure of a two-dimensional coord­ination polymer, [Co(C3H3O4)Cl(H2O)]n, containing both chelating and bridging functions of singly deprotonated malonic acid ligands.

2. Structural commentary

The structure of the title compound is characterized by the presence of a two-dimensional coordination polymer extending parallel to (001). The monomeric fragment can be described as being composed of a centrosymmetric binuclear Co2Cl4 motif with the CoII atoms having an overall distorted octa­hedral environment. The two octa­hedra are fused together via two bridging Cl atoms with Co—Cl bond lengths of 2.4312 (12) and 2.4657 (16) Å.

[Scheme 1]

In the octa­hedron, the Cl atoms occupy equatorial positions, the other two equatorial positions being defined by the carboxyl­ate O atom of a bridging hydrogenmalonate anion (HMal) and one O atom of a chelating HMal anion, while one water O atom and the other O atom of the chelating HMal anion are in axial positions (Fig. 1[link]). The corresponding Co—Omalonate bond lengths range from 2.051 (3) to 2.165 (3) Å which is similar to other structures containing this ligand in chelating and bridging modes (Delgado et al., 2004[Delgado, F. S., Hernandez-Molina, M., Sanchiz, J., Ruiz-Perez, C., Rodriguez-Martin, Y., Lopez, T., Lloret, F. & Julve, M. (2004). CrystEngComm, 6, 106-111.]). The Co—Owater bond has a length of 2.046 (3) Å. The C—O bond lengths in the carb­oxy­lic group differ significantly [1.225 (2) and 1.306 (4) Å] while those in the carboxyl­ate group [1.258 (4) and 1.267 (4) Å] are more or less the same, which is typical for this functional group (Wörl et al., 2005a[Wörl, S., Pritzkow, H., Fritsky, I. O. & Krämer, R. (2005a). Dalton Trans. pp. 27-29.],b[Wörl, S., Fritsky, I. O., Hellwinkel, D., Pritzkow, H. & Krämer, R. (2005b). Eur. J. Inorg. Chem. pp. 759-765.]).

[Figure 1]
Figure 1
A fragment of the title coordination polymer, showing the atom labelling. All H atoms, except those of hy­droxy groups, have been omitted for clarity. Displacement ellipsoids are drawn at the 30% probability level. The intra­layer O—H⋯Cl hydrogen bonds are shown as dashed lines. [Symmetry codes: (a) [{1\over 2}] + x, [{3\over 2}] − y, 1 − z; (b) 1 − x, 1 − y, 1 − z; (c) [{3\over 2}] − x, −[{1\over 2}] + y, z; (d) [{3\over 2}] − x, [{1\over 2}] + y, z.]

3. Supra­molecular features

The distribution of the dinuclear units within a coordination layer follows a chess-like pattern whereby each dinuclear coordination node is inter­connected with each other through four bridging HMal ligands (Fig. 2[link]). The binuclear coordin­ation nodes are additionally connected via intra­layer O—Hwater⋯Cl and O—Hwater⋯O hydrogen bonds (Table 1[link] and Fig. 3[link]). Adjacent layers are linked along [001] via inter­layer O—H⋯O=C hydrogen bonds involving two HMal ligands (Table 1[link] and Fig. 3[link]).

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
O2—H1O2⋯O5i 0.93 1.94 2.689 (4) 136
O2—H2O2⋯Cl1ii 0.92 2.32 3.135 (3) 147
O4—H1O4⋯O1iii 0.97 1.67 2.629 (4) 169
Symmetry codes: (i) [-x+{\script{3\over 2}}, y-{\script{1\over 2}}, z]; (ii) [x-{\script{1\over 2}}, -y+{\script{1\over 2}}, -z+1]; (iii) [-x+1, y-{\script{1\over 2}}, -z+{\script{3\over 2}}].
[Figure 2]
Figure 2
A view of the polymeric coordination layer in the crystal of the title compound, extending parallel to (001).
[Figure 3]
Figure 3
A view along [010] of the crystal packing of the title compound showing the inter- and intra­layer hydrogen-bonding system (dashed lines).

4. Database survey

A search of the Cambridge Structural Database (Groom & Allen, 2014[Groom, C. R. & Allen, F. H. (2014). Angew. Chem. Int. Ed. 53, 662-671.]) revealed a number of coordination polymeric structures containing cobalt(II) malonate moieties in different coordination modes. While the most typical coordination mode of malonate ligands in polymeric structures appears to be a μ3-bridging mode of the fully deprotonated acid involving all four oxygen atoms (usually two of them forming a chelating ring with one CoII atom) (Delgado et al., 2004[Delgado, F. S., Hernandez-Molina, M., Sanchiz, J., Ruiz-Perez, C., Rodriguez-Martin, Y., Lopez, T., Lloret, F. & Julve, M. (2004). CrystEngComm, 6, 106-111.]; Xue et al., 2003[Xue, Y.-H., Lin, D.-D. & Xu, D.-J. (2003). Acta Cryst. E59, m750-m752.]; Lightfoot & Snedden, 1999[Lightfoot, P. & Snedden, A. (1999). J. Chem. Soc. Dalton Trans. pp. 3549-3551.]; Walter-Levy et al., 1973[Walter-Levy, L., Perrotey, J. & Visser, J. W. (1973). C. R. Acad. Sci. Ser. C, 277, 1351-1354.]; Zheng & Xie, 2004[Zheng, Y.-Q. & Xie, H.-Z. (2004). J. Coord. Chem. 57, 1537-]; Montney et al., 2008[Montney, M. R., Supkowski, R. M. & LaDuca, R. L. (2008). Polyhedron, 27, 2997-3003.]; Fu et al., 2006[Fu, X.-C., Nie, L., Zhang, Q., Li, M.-T. & Wang, X.-Y. (2006). Chin. J. Struct. Chem. (Jiegou Huaxue), 25, 1449-1452.]; Djeghri et al., 2006[Djeghri, A., Balegroune, F., Guehria Laidoudi, A. & Toupet, L. (2006). Acta Cryst. C62, m126-m128.]), there are also cases of less-common coordination modes in polymeric structures such as a μ2-bridging mode of the fully deprotonated ligand connecting two metal atoms (Gil de Muro et al., 1999[Gil de Muro, I., Insausti, M., Lezama, L., Pizarro, J. L., Arriortua, M. I. & Rojo, T. (1999). Eur. J. Inorg. Chem. pp. 935-943.]; Pérez-Yáñez et al., 2009[Pérez-Yáñez, S., Castillo, O., Cepeda, J., García-Terán, J. P., Luque, A. & Román, P. (2009). Eur. J. Inorg. Chem. pp. 3889-3899.]; Jin & Chen, 2007[Jin, S.-W. & Chen, W.-Z. (2007). Polyhedron, 26, 3074-3084.]). Much less common in coordination polymers is a mono-deprotonated state of malonic acid (Adarsh et al., 2010[Adarsh, N. N., Sahoo, P. & Dastidar, P. (2010). Cryst. Growth Des. 10, 4976-4986.]), while there are also few examples of non-polymeric coordination compounds (Walter-Levy et al., 1973[Walter-Levy, L., Perrotey, J. & Visser, J. W. (1973). C. R. Acad. Sci. Ser. C, 277, 1351-1354.]; Clarkson et al., 2001[Clarkson, A. J., Blackman, A. G. & Clark, C. R. (2001). J. Chem. Soc. Dalton Trans. pp. 758-765.]; Wang et al., 2005[Wang, Z.-L., Wei, L.-H. & Niu, J.-Y. (2005). Acta Cryst. E61, m1907-m1908.]).

5. Synthesis and crystallization

The title compound was synthesized by heating together 0.104 g (1 mmol) malonic acid dissolved in 15 ml of propanol and 0.238 g (1 mmol) of CoCl2·6H2O dissolved in 5 ml of water. Violet crystals suitable for X-ray analysis were isolated after two weeks by slow evaporation of the solvent from the resulting mixture. Crystals were washed with small amounts of propanol and dried in air yielding 0.071 g (36%) of the title compound.

6. Refinement

Crystal data, data collection and structure refinement details are summarized in Table 2[link]. H atoms bound to O atoms were located from a difference-Fourier map and constrained to ride on their parent atoms, with Uiso(H) = 1.5 Ueq(O). All C-bound H atoms were positioned geometrically and were also constrained to ride on their parent atoms, with C—H = 0.97 Å, and Uiso(H) = 1.2Ueq(C).

Table 2
Experimental details

Crystal data
Chemical formula [Co2(C3H3O4)2Cl2(H2O)2]
Mr 430.90
Crystal system, space group Orthorhombic, Pbca
Temperature (K) 296
a, b, c (Å) 7.568 (5), 8.879 (5), 19.168 (5)
V3) 1288.0 (12)
Z 4
Radiation type Mo Kα
μ (mm−1) 3.04
Crystal size (mm) 0.20 × 0.14 × 0.07
 
Data collection
Diffractometer Nonius KappaCCD
Absorption correction Multi-scan (SADABS; Bruker, 2004[Bruker (2004). SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.])
Tmin, Tmax 0.632, 0.820
No. of measured, independent and observed [I > 2σ(I)] reflections 6888, 1875, 1400
Rint 0.055
(sin θ/λ)max−1) 0.704
 
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.046, 0.116, 1.05
No. of reflections 1875
No. of parameters 91
H-atom treatment H-atom parameters constrained
Δρmax, Δρmin (e Å−3) 1.05, −1.00
Computer programs: COLLECT (Nonius, 2000[Nonius (2000). COLLECT. Nonius BV, Delft, The Netherlands.]), DENZO/SCALEPACK (Otwinowski & Minor, 1997[Otwinowski, Z. & Minor, W. (1997). Methods in Enzymology, Vol. 276, Macromolecular Crystallography, Part A, edited by C. W. Carter Jr & R. M. Sweet, pp. 307-326. New York: Academic Press.]), SHELXS97 and SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]) and DIAMOND (Brandenburg, 2010[Brandenburg, K. (2010). DIAMOND. Crystal Impact GbR, Bonn, Germany.]).

Supporting information


Computing details top

Data collection: COLLECT (Nonius, 2000); cell refinement: DENZO/SCALEPACK (Otwinowski & Minor, 1997); data reduction: DENZO/SCALEPACK (Otwinowski & Minor, 1997); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: DIAMOND (Brandenburg, 2010); software used to prepare material for publication: SHELXL97 (Sheldrick, 2008).

Poly[diaqua(µ-2-carboxyacetato-κ3O,O':O'')(2-carboxyacetato-κO)di-µ-chlorido-cobalt(II)] top
Crystal data top
[Co2(C3H3O4)2Cl2(H2O)2]F(000) = 856
Mr = 430.90Dx = 2.222 Mg m3
Orthorhombic, PbcaMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ac 2abCell parameters from 1003 reflections
a = 7.568 (5) Åθ = 3.4–27.6°
b = 8.879 (5) ŵ = 3.04 mm1
c = 19.168 (5) ÅT = 296 K
V = 1288.0 (12) Å3Block, violet
Z = 40.20 × 0.14 × 0.07 mm
Data collection top
Nonius KappaCCD
diffractometer
1875 independent reflections
Radiation source: fine-focus sealed tube1400 reflections with I > 2σ(I)
Horizontally mounted graphite crystal monochromatorRint = 0.055
Detector resolution: 9 pixels mm-1θmax = 30.0°, θmin = 3.4°
φ scans and ω scans with κ offseth = 1010
Absorption correction: multi-scan
(SADABS; Bruker, 2004)
k = 1212
Tmin = 0.632, Tmax = 0.820l = 2426
6888 measured reflections
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.046Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.116H-atom parameters constrained
S = 1.05 w = 1/[σ2(Fo2) + (0.0552P)2 + 0.9469P]
where P = (Fo2 + 2Fc2)/3
1875 reflections(Δ/σ)max < 0.001
91 parametersΔρmax = 1.05 e Å3
0 restraintsΔρmin = 1.00 e Å3
Special details top

Experimental. The O-H hydrogens were located from the difference Fourier map but constrained to ride it's parent atom, with Uiso = 1.5 Ueq(parent atom). Other hydrogens were positioned geometrically and were also constrained to ride on their parent atoms, with C—H = 0.97 Å, and Uiso = 1.2 Ueq(parent atom).

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > 2sigma(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Co10.57087 (6)0.47694 (6)0.58530 (2)0.01449 (15)
Cl10.71412 (10)0.46924 (11)0.47183 (5)0.0223 (2)
C10.4104 (4)0.6347 (4)0.70892 (19)0.0177 (7)
C20.4303 (4)0.7853 (4)0.6731 (2)0.0176 (7)
H2A0.33230.79910.64110.021*
H2B0.42370.86440.70790.021*
C30.6012 (4)0.8016 (4)0.63323 (18)0.0133 (7)
O10.6877 (3)0.9227 (3)0.64044 (14)0.0179 (5)
O20.5004 (3)0.2544 (3)0.58516 (16)0.0276 (6)
H1O20.59660.19290.57460.041*
H2O20.39700.20040.58570.041*
O30.4575 (3)0.5133 (3)0.68488 (14)0.0202 (6)
O40.3363 (4)0.6465 (3)0.77023 (15)0.0321 (7)
H1O40.33610.55740.79940.048*
O50.6515 (3)0.6967 (3)0.59383 (13)0.0175 (5)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Co10.0156 (2)0.0112 (2)0.0167 (3)0.00042 (16)0.00079 (17)0.00210 (19)
Cl10.0181 (4)0.0284 (5)0.0204 (4)0.0089 (3)0.0002 (3)0.0038 (4)
C10.0123 (13)0.0175 (19)0.0233 (19)0.0019 (12)0.0039 (13)0.0013 (15)
C20.0146 (13)0.0125 (17)0.0257 (19)0.0004 (12)0.0054 (13)0.0009 (15)
C30.0148 (13)0.0099 (16)0.0152 (17)0.0007 (11)0.0005 (11)0.0014 (13)
O10.0206 (11)0.0110 (12)0.0220 (13)0.0028 (9)0.0063 (10)0.0034 (11)
O20.0171 (11)0.0177 (15)0.0481 (19)0.0021 (10)0.0059 (12)0.0016 (13)
O30.0274 (13)0.0133 (13)0.0198 (14)0.0018 (10)0.0038 (10)0.0005 (11)
O40.0514 (17)0.0192 (15)0.0257 (15)0.0046 (13)0.0211 (14)0.0029 (12)
O50.0213 (11)0.0116 (12)0.0196 (13)0.0021 (9)0.0052 (10)0.0047 (10)
Geometric parameters (Å, º) top
Co1—O22.046 (3)C2—C31.509 (4)
Co1—O52.051 (3)C2—H2A0.9700
Co1—O32.118 (3)C2—H2B0.9700
Co1—O1i2.165 (3)C3—O51.258 (4)
Co1—Cl12.4312 (12)C3—O11.267 (4)
Co1—Cl1ii2.4657 (16)O1—Co1iii2.165 (3)
Cl1—Co1ii2.4657 (16)O2—H1O20.9325
C1—O31.225 (5)O2—H2O20.9180
C1—O41.306 (4)O4—H1O40.9698
C1—C21.511 (5)
O2—Co1—O5174.98 (11)O4—C1—C2112.4 (3)
O2—Co1—O392.46 (11)C3—C2—C1113.6 (3)
O5—Co1—O384.46 (10)C3—C2—H2A108.8
O2—Co1—O1i90.35 (10)C1—C2—H2A108.8
O5—Co1—O1i85.50 (10)C3—C2—H2B108.8
O3—Co1—O1i86.33 (10)C1—C2—H2B108.8
O2—Co1—Cl195.04 (9)H2A—C2—H2B107.7
O5—Co1—Cl188.02 (7)O5—C3—O1122.5 (3)
O3—Co1—Cl1172.49 (8)O5—C3—C2119.5 (3)
O1i—Co1—Cl193.10 (8)O1—C3—C2118.0 (3)
O2—Co1—Cl1ii87.62 (8)C3—O1—Co1iii124.9 (2)
O5—Co1—Cl1ii96.38 (8)Co1—O2—H1O2111.3
O3—Co1—Cl1ii90.93 (8)Co1—O2—H2O2136.6
O1i—Co1—Cl1ii176.52 (8)H1O2—O2—H2O2111.2
Cl1—Co1—Cl1ii89.89 (4)C1—O3—Co1126.2 (3)
Co1—Cl1—Co1ii90.11 (4)C1—O4—H1O4117.0
O3—C1—O4122.3 (4)C3—O5—Co1131.5 (2)
O3—C1—C2125.3 (3)
O2—Co1—Cl1—Co1ii87.60 (8)C2—C1—O3—Co12.5 (5)
O5—Co1—Cl1—Co1ii96.39 (8)O2—Co1—O3—C1158.3 (3)
O1i—Co1—Cl1—Co1ii178.22 (8)O5—Co1—O3—C125.7 (3)
Cl1ii—Co1—Cl1—Co1ii0.0O1i—Co1—O3—C1111.5 (3)
O3—C1—C2—C338.3 (5)Cl1ii—Co1—O3—C170.6 (3)
O4—C1—C2—C3141.5 (3)O1—C3—O5—Co1166.5 (2)
C1—C2—C3—O546.5 (5)C2—C3—O5—Co114.4 (5)
C1—C2—C3—O1134.3 (4)O3—Co1—O5—C317.1 (3)
O5—C3—O1—Co1iii2.2 (5)O1i—Co1—O5—C3103.9 (3)
C2—C3—O1—Co1iii176.9 (2)Cl1—Co1—O5—C3162.9 (3)
O4—C1—O3—Co1177.8 (2)Cl1ii—Co1—O5—C373.2 (3)
Symmetry codes: (i) x+3/2, y1/2, z; (ii) x+1, y+1, z+1; (iii) x+3/2, y+1/2, z.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O2—H1O2···O5i0.931.942.689 (4)136
O2—H2O2···Cl1iv0.922.323.135 (3)147
O4—H1O4···O1v0.971.672.629 (4)169
Symmetry codes: (i) x+3/2, y1/2, z; (iv) x1/2, y+1/2, z+1; (v) x+1, y1/2, z+3/2.
 

Acknowledgements

The authors acknowledge the Algerian MESRS (Ministère de l'Enseignement Supérieur et de la Recherche Scientifique), the DGRSDT (Direction Générale de la Recherche Scientifique et du Développement Technologique) and URCHEMS for financial support.

References

First citationAdarsh, N. N., Sahoo, P. & Dastidar, P. (2010). Cryst. Growth Des. 10, 4976–4986.  Web of Science CSD CrossRef CAS Google Scholar
First citationBrandenburg, K. (2010). DIAMOND. Crystal Impact GbR, Bonn, Germany.  Google Scholar
First citationBruker (2004). SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationClarkson, A. J., Blackman, A. G. & Clark, C. R. (2001). J. Chem. Soc. Dalton Trans. pp. 758–765.  Web of Science CSD CrossRef Google Scholar
First citationDelgado, F. S., Hernandez-Molina, M., Sanchiz, J., Ruiz-Perez, C., Rodriguez-Martin, Y., Lopez, T., Lloret, F. & Julve, M. (2004). CrystEngComm, 6, 106–111.  Web of Science CSD CrossRef CAS Google Scholar
First citationDjeghri, A., Balegroune, F., Guehria Laidoudi, A. & Toupet, L. (2006). Acta Cryst. C62, m126–m128.  Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
First citationFu, X.-C., Nie, L., Zhang, Q., Li, M.-T. & Wang, X.-Y. (2006). Chin. J. Struct. Chem. (Jiegou Huaxue), 25, 1449–1452.  CAS Google Scholar
First citationGil de Muro, I., Insausti, M., Lezama, L., Pizarro, J. L., Arriortua, M. I. & Rojo, T. (1999). Eur. J. Inorg. Chem. pp. 935–943.  CrossRef Google Scholar
First citationGroom, C. R. & Allen, F. H. (2014). Angew. Chem. Int. Ed. 53, 662–671.  Web of Science CSD CrossRef CAS Google Scholar
First citationJin, S.-W. & Chen, W.-Z. (2007). Polyhedron, 26, 3074–3084.  Web of Science CSD CrossRef CAS Google Scholar
First citationLightfoot, P. & Snedden, A. (1999). J. Chem. Soc. Dalton Trans. pp. 3549–3551.  Web of Science CrossRef Google Scholar
First citationMontney, M. R., Supkowski, R. M. & LaDuca, R. L. (2008). Polyhedron, 27, 2997–3003.  Web of Science CSD CrossRef CAS Google Scholar
First citationMoroz, Y. S., Demeshko, S., Haukka, M., Mokhir, A., Mitra, U., Stocker, M., Müller, P., Meyer, F. & Fritsky, I. O. (2012). Inorg. Chem. 51, 7445–7447.  Web of Science CSD CrossRef CAS PubMed Google Scholar
First citationNonius (2000). COLLECT. Nonius BV, Delft, The Netherlands.  Google Scholar
First citationOtwinowski, Z. & Minor, W. (1997). Methods in Enzymology, Vol. 276, Macromolecular Crystallography, Part A, edited by C. W. Carter Jr & R. M. Sweet, pp. 307–326. New York: Academic Press.  Google Scholar
First citationPavlishchuk, A. V., Kolotilov, S. V., Zeller, M., Shvets, O. V., Fritsky, I. O., Lofland, S. E., Addison, A. W. & Hunter, A. D. (2011). Eur. J. Inorg. Chem. pp. 4826–4836.  Web of Science CSD CrossRef Google Scholar
First citationPavlishchuk, A. V., Kolotilov, S. V., Zeller, M., Thompson, L. K., Fritsky, I. O., Addison, A. W. & Hunter, A. D. (2010). Eur. J. Inorg. Chem. pp. 4851–4858.  Web of Science CSD CrossRef Google Scholar
First citationPérez-Yáñez, S., Castillo, O., Cepeda, J., García-Terán, J. P., Luque, A. & Román, P. (2009). Eur. J. Inorg. Chem. pp. 3889–3899.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationWalter-Levy, L., Perrotey, J. & Visser, J. W. (1973). C. R. Acad. Sci. Ser. C, 277, 1351–1354.  CAS Google Scholar
First citationWang, Z.-L., Wei, L.-H. & Niu, J.-Y. (2005). Acta Cryst. E61, m1907–m1908.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationWörl, S., Fritsky, I. O., Hellwinkel, D., Pritzkow, H. & Krämer, R. (2005b). Eur. J. Inorg. Chem. pp. 759–765.  Google Scholar
First citationWörl, S., Pritzkow, H., Fritsky, I. O. & Krämer, R. (2005a). Dalton Trans. pp. 27–29.  Google Scholar
First citationXue, Y.-H., Lin, D.-D. & Xu, D.-J. (2003). Acta Cryst. E59, m750–m752.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationYuste, C., Bentama, A., Marino, N., Armentano, D., Setifi, F., Triki, S., Lloret, F. & Julve, M. (2009). Polyhedron, 28, 1287–1294.  Web of Science CSD CrossRef CAS Google Scholar
First citationZheng, Y.-Q. & Xie, H.-Z. (2004). J. Coord. Chem. 57, 1537–  Web of Science CSD CrossRef CAS Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds