research communications\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 72| Part 3| March 2016| Pages 355-357

Crystal structure of bis­­(2-methyl-1H-imidazol-3-ium) di­hydroxidobis(oxalato-κ2O1,O2)stannate(IV) monohydrate

CROSSMARK_Color_square_no_text.svg

aLaboratoire de Chimie Minérale et Analytique, Département de Chimie, Faculté des Sciences et Techniques, Université Cheikh Anta Diop, Dakar, Senegal, bICMUB UMR 6302, Université de Bourgogne, Faculté des Sciences, 9 avenue Alain Savary, 21000 Dijon, France, and cDépartement de Chimie, Université de Montréal, 2900 Boulevard Édouard-Montpetit, Montréal, Québec, H3C 3J7, Canada
*Correspondence e-mail: mouhamadoubdiop@gmail.com

Edited by M. Weil, Vienna University of Technology, Austria (Received 25 January 2016; accepted 2 February 2016; online 17 February 2016)

In the structure of the hydrated title salt, (C4H7N2)2[Sn(C2O4)2(OH)2]·H2O, the asymmetric unit comprises one stannate(IV) dianion, two organic cations and one water mol­ecule of crystallization. The [Sn(C2O4)2(OH)2]2− dianion consists of an SnIV atom chelated by two oxalate anions and coordinated by two OH ligands in a cis octa­hedral arrangement. Neighbouring anions are connected through O—H⋯O hydrogen bonds between hydroxide groups and non-coordinating oxalate O atoms into layers expanding parallel to (100). In addition, cations and anions are linked through N—H⋯O hydrogen bonds, and the water mol­ecule bridges two anions with two O—H⋯O hydrogen bonds and is also the acceptor of an N—H⋯O hydrogen bond with one of the cations. Weak C—H⋯O hydrogen bonds are also observed. The intricate hydrogen bonding leads to the formation of a three-dimensional network.

1. Chemical context

Organotin(IV) compounds are a class of compounds studied for their numerous applications in various fields involving biological activities (Sirajuddin et al., 2014[Sirajuddin, M., Ali, S., McKee, V., Zaib, S. & Iqbal, J. (2014). RSC Adv. 4, 57505-57521.]), biocidal properties (Davies et al., 2008[Davies, A. G., Gielen, M., Pannell, K. H. & Tiekink, E. R. T. (2008). In Tin Chemistry, Fundamentals, Frontiers and Applications. Chichester, UK: John Wiley & Sons Ltd.]) or catalysis applications (Meneghetti & Meneghetti, 2015[Meneghetti, M. R. & Meneghetti, S. M. P. (2015). Catal. Sci. Technol. 5, 765-771.]). Inter­ested in tin(IV) chemistry, our group has so far synthesized and structurally characterized several compounds of this family, see, for example: Sarr et al. (2015[Sarr, M., Diasse-Sarr, A., Diop, L., Plasseraud, L. & Cattey, H. (2015). Acta Cryst. E71, 151-153.]); Diop et al. (2015[Diop, M. B., Diop, L., Plasseraud, L. & Maris, T. (2015). Acta Cryst. E71, 520-522.]); Gueye et al. (2014[Gueye, N., Diop, L. & Stoeckli-Evans, H. (2014). Acta Cryst. E70, m49-m50.]). In the course of designing new oxalatostannate(IV) complexes, we report here the result of the reaction between bis­(methyl-2-imidazolium) oxalate and SnCl2·2H2O that yielded the title compound (C4H7N2)2[Sn(C2O4)2(OH)2]·H2O with tin in oxidation state +IV. A similar oxidation of SnII to SnIV has been reported recently (Diop et al., 2015[Diop, M. B., Diop, L., Plasseraud, L. & Maris, T. (2015). Acta Cryst. E71, 520-522.]).

[Scheme 1]

2. Structural commentary

The SnIV atom is chelated by two oxalate anions and is coordinated by two OH groups in a cis arrangement, leading to a distorted octa­hedral environment (Fig. 1[link]). The Sn—O distances involving the oxalate anions [2.103 (2) (O1), 2.077 (2) (O2), 2.074 (2) (O5) and 2.114 (2) Å (O6)] are in the typical range reported for oxalatostannate(IV) anions (Sarr et al., 2015[Sarr, M., Diasse-Sarr, A., Diop, L., Plasseraud, L. & Cattey, H. (2015). Acta Cryst. E71, 151-153.]; Gueye et al., 2014[Gueye, N., Diop, L. & Stoeckli-Evans, H. (2014). Acta Cryst. E70, m49-m50.]). The Sn—O distances involving the OH groups [2.001 (2) (O9) and 1.973 (2) Å (O10)] are shorter by ca 0.1 Å. The distortion from the ideal octa­hedron is reflected by the trans angle O1—Sn—O10 of 169.11 (9)° involving one of the hydroxyl groups and the oxalate O1 atom. Within the oxalate ligands, the distances [C1—O1 1.296 (4), C2—O2 1.300 (4), C3—O6 1.290 (4), C4—O5 1.299 (4) Å] and [C2—O3 1.215 (4), C1—O4 1.223 (4), O7—C3 1.220 (4), O8—C4 1.212 (4) Å] are compatible with single C—O and double C=O bonds, respectively. Bond lengths and angles within the two bis­(2-methyl-1H-imidazol-3-ium) cations are in normal ranges.

[Figure 1]
Figure 1
The structure of the mol­ecular components in the title compound, with displacement ellipsoids drawn at the 50% probability level. H atoms are drawn as spheres of arbitrary radius and hydrogen bonds are shown as dashed lines.

3. Supra­molecular features

Each stannate dianion [Sn(C2O4)2(OH)2]2− is linked to two neighbouring anions through hydrox­yl(OH)⋯O hydrogen bonds involving the non-coordinating oxalate O atoms as acceptor groups. These inter­actions lead to the formation of layers extending parallel to (100). The cations inter­act with the anions via N—H⋯O hydrogen bonds (one bifurcated) whereby the non-coordinating oxalate O atoms again are the acceptor groups with the exception of one hydroxyl O atom (O9) as an acceptor (Table 1[link]). The two hydroxyl groups are also acceptor groups of two (water)OH⋯O inter­actions, giving a total of nine hydrogen-bonding inter­actions per stannate dianion (Fig. 2[link]). In addition to the dominant classical O—H⋯O and N—H⋯O inter­actions, weak C—H⋯O hydrogen bonds are also present in the structure (Table 1[link]).

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
O9—H9⋯O7i 0.86 2.00 2.835 (3) 163
O10—H10⋯O4ii 0.87 2.06 2.909 (3) 167
O11—H11A⋯O10 0.83 (2) 1.95 (2) 2.766 (4) 169 (5)
O11—H11B⋯O9iii 0.83 (2) 2.10 (2) 2.914 (4) 170 (7)
N1—H1⋯O3iv 0.88 1.97 2.793 (4) 156
N1—H1⋯O4iv 0.88 2.50 3.131 (3) 129
N2—H2⋯O9 0.88 1.90 2.742 (3) 160
N3—H3⋯O11 0.88 1.84 2.713 (4) 175
N4—H4⋯O8v 0.88 1.94 2.787 (4) 161
C5—H5A⋯O4 0.98 2.55 3.460 (4) 155
C7—H7⋯O2vi 0.95 2.39 3.327 (4) 169
C8—H8⋯O4ii 0.95 2.58 3.444 (4) 152
C12—H12⋯O5vii 0.95 2.33 3.232 (4) 159
Symmetry codes: (i) x, y+1, z; (ii) [x, -y+{\script{3\over 2}}, z+{\script{1\over 2}}]; (iii) x, y-1, z; (iv) -x, -y+2, -z; (v) -x+1, -y, -z+1; (vi) [-x, y+{\script{1\over 2}}, -z+{\script{1\over 2}}]; (vii) -x+1, -y+1, -z+1.
[Figure 2]
Figure 2
A view of a central stannate dianion (ball-and-stick representation) surrounded by its hydrogen-bonded neighbours (stick representation), viz three cations, two water mol­ecules and four other stannate anions. Hydrogen bonds are displayed as black dotted lines and H atoms not involved in hydrogen bonding have been omitted for clarity.

4. Synthesis and crystallization

The title compound was obtained by reacting in methanol in a 2:1 ratio SnCl2·2H2O with bis­(methyl-2-imidazolium) oxalate. The latter was previously prepared in aqueous solution by mixing in a 2:1 ratio methyl-2-imidazole with oxalic acid and allowing the water to evaporate at 333 K. Slow solvent evaporation at room temperature afforded colourless crystals suitable for X-ray diffraction analysis.

5. Refinement

Crystal data, data collection and structure refinement details are summarized in Table 2[link]. The coordinates of H atoms of the water mol­ecules and hy­droxy groups were obtained from a difference map and were refined using SADI and DFIX restraints (Sheldrick, 2015b[Sheldrick, G. M. (2015b). Acta Cryst. C71, 3-8.]). All other H atoms were positioned geometrically (C—H = 0.95, 0.98 Å, N—H = 0.88 Å) and refined as riding with Uiso(H) = xUeq(C, N) with x = 1.5 for methyl and x = 1.2 for other H atoms.

Table 2
Experimental details

Crystal data
Chemical formula (C4H7N2)2[Sn(C2O4)2(H2O)2]·H2O
Mr 512.99
Crystal system, space group Monoclinic, P21/c
Temperature (K) 110
a, b, c (Å) 20.1391 (13), 7.0651 (5), 13.4942 (9)
β (°) 106.582 (2)
V3) 1840.2 (2)
Z 4
Radiation type Ga Kα, λ = 1.34139 Å
μ (mm−1) 7.83
Crystal size (mm) 0.19 × 0.11 × 0.09
 
Data collection
Diffractometer Bruker Venture Metaljet
Absorption correction Multi-scan (SADABS; Krause et al., 2015[Krause, L., Herbst-Irmer, R., Sheldrick, G. M. & Stalke, D. (2015). J. Appl. Cryst. 48, 3-10.])
Tmin, Tmax 0.509, 0.752
No. of measured, independent and observed [I > 2σ(I)] reflections 42907, 4235, 4110
Rint 0.058
(sin θ/λ)max−1) 0.651
 
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.040, 0.101, 1.07
No. of reflections 4235
No. of parameters 265
No. of restraints 4
H-atom treatment H atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å−3) 1.87, −0.81
Computer programs: APEX2 and SAINT (Bruker, 2014[Bruker (2014). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]), SHELXT (Sheldrick, 2015a[Sheldrick, G. M. (2015a). Acta Cryst. A71, 3-8.]), SHELXL2014 (Sheldrick, 2015b[Sheldrick, G. M. (2015b). Acta Cryst. C71, 3-8.]), OLEX2 (Dolomanov et al., 2009[Dolomanov, O. V., Bourhis, L. J., Gildea, R. J., Howard, J. A. K. & Puschmann, H. (2009). J. Appl. Cryst. 42, 339-341.]), Mercury (Macrae et al., 2008[Macrae, C. F., Bruno, I. J., Chisholm, J. A., Edgington, P. R., McCabe, P., Pidcock, E., Rodriguez-Monge, L., Taylor, R., van de Streek, J. & Wood, P. A. (2008). J. Appl. Cryst. 41, 466-470.]) and publCIF (Westrip, 2010[Westrip, S. P. (2010). J. Appl. Cryst. 43, 920-925.]).

Supporting information


Chemical context top

Organotin(IV) compounds are a class of compounds studied for their numerous applications in various fields involving biological activities (Sirajuddin et al., 2014), biocidal properties (Davies et al., 2008) or catalysis applications (Meneghetti & Meneghetti, 2015). Inter­ested in tin(IV) chemistry, our group has so far synthesized and structurally characterized several compounds of this family, see, for example: Sarr et al. (2015); Diop et al. (2015); Gueye et al. (2014). In the course of designing new oxalatostannate(IV) complexes, we report here the result of the reaction between bis­(methyl-2-imidazolium) oxalate and SnCl2·2H2O that yielded the title compound [(C4H7N2)2[Sn(C2O4)2(OH)2]·H2O] with tin in oxidation state +IV. A similar oxidation of SnII to SnIV has been reported recently (Diop et al., 2015).

Structural commentary top

The SnIV atom is chelated by two oxalate anions and is coordinated by two OH groups in a cis arrangement, leading to a distorted o­cta­hedral environment (Fig. 1). The Sn—O distances involving the oxalate anions [2.103 (2) (O1), 2.077 (2) (O2), 2.074 (2) (O5) and 2.114 (2) Å (O6)] are in the typical range reported for oxalatostannate(IV) anions (Sarr et al., 2015; Gueye et al., 2014). The Sn—O distances involving the OH groups [2.001 (2) (O9) and 1.973 (2) Å (O10)] are shorter by ca 0.1 Å. The distortion from the ideal o­cta­hedron is reflected by the trans angle O1—Sn—O10 of 169.11 (9)° involving one of the hydroxyl groups and the oxalate O1 atom. Within the oxalate ligands, the distances [C1—O1 1.296 (4), C2—O2 1.300 (4), C3—O6 1.290 (4), C4—O5 1.299 (4) Å] and [C2—O3 1.215 (4), C1—O4 1.223 (4), O7—C3 1.220 (4), O8—C4 1.212 (4) Å] are compatible with single C—O and double CO bonds, respectively. Bond lengths and angles within the two bis­(2-methyl-1H-imidazol-3-ium) cations are in normal ranges.

Supra­molecular features top

Each stannate dianion [Sn(C2O4)2(OH)2]2− is linked to two neighbouring anions through hydroxyl(OH)···O hydrogen bonds involving the non-coordinating oxalate O atoms as acceptor groups. These inter­actions lead to the formation of layers extending parallel to (100). The cations inter­act with the anions via N—H···O hydrogen bonds (one bifurcated) whereby the non-coordinating oxalate O atoms again are the acceptor groups with the exception of one hydroxyl O atom (O9) as an acceptor (Table 1). The two hydroxyl groups are also acceptor groups of two (water)OH···O inter­actions, giving a total of nine hydrogen-bonding inter­actions per stannate dianion (Fig. 2). In addition to the dominant classical O—H···O and N—H···O inter­actions, weak C—H···O hydrogen bonds are also present in the structure (Table 1).

Synthesis and crystallization top

The title compound was obtained by reacting in methanol in a 2:1 ratio SnCl2·2H2O with bis­(methyl-2-imidazolium) oxalate. The latter was previously prepared in aqueous solution by mixing in a 2:1 ratio methyl-2-imidazole with oxalic acid and allowing the water to evaporate at 333 K. Slow solvent evaporation at room temperature afforded colourless crystals suitable for X-ray diffraction analysis.

Refinement top

Crystal data, data collection and structure refinement details are summarized in Table 2. The coordinates of H atoms of the water molecules and hy­droxy groups were obtained from a difference map and were refined using SADI and DFIX restraints (Sheldrick, 2015b). All other H atoms were positioned geometrically (C—H = 0.95, 0.98 Å, N—H = 0.88 Å) and refined as riding with Uiso(H) = xUeq(C, N) with x = 1.5 for methyl and x = 1.2 for other H atoms.

Structure description top

Organotin(IV) compounds are a class of compounds studied for their numerous applications in various fields involving biological activities (Sirajuddin et al., 2014), biocidal properties (Davies et al., 2008) or catalysis applications (Meneghetti & Meneghetti, 2015). Inter­ested in tin(IV) chemistry, our group has so far synthesized and structurally characterized several compounds of this family, see, for example: Sarr et al. (2015); Diop et al. (2015); Gueye et al. (2014). In the course of designing new oxalatostannate(IV) complexes, we report here the result of the reaction between bis­(methyl-2-imidazolium) oxalate and SnCl2·2H2O that yielded the title compound [(C4H7N2)2[Sn(C2O4)2(OH)2]·H2O] with tin in oxidation state +IV. A similar oxidation of SnII to SnIV has been reported recently (Diop et al., 2015).

The SnIV atom is chelated by two oxalate anions and is coordinated by two OH groups in a cis arrangement, leading to a distorted o­cta­hedral environment (Fig. 1). The Sn—O distances involving the oxalate anions [2.103 (2) (O1), 2.077 (2) (O2), 2.074 (2) (O5) and 2.114 (2) Å (O6)] are in the typical range reported for oxalatostannate(IV) anions (Sarr et al., 2015; Gueye et al., 2014). The Sn—O distances involving the OH groups [2.001 (2) (O9) and 1.973 (2) Å (O10)] are shorter by ca 0.1 Å. The distortion from the ideal o­cta­hedron is reflected by the trans angle O1—Sn—O10 of 169.11 (9)° involving one of the hydroxyl groups and the oxalate O1 atom. Within the oxalate ligands, the distances [C1—O1 1.296 (4), C2—O2 1.300 (4), C3—O6 1.290 (4), C4—O5 1.299 (4) Å] and [C2—O3 1.215 (4), C1—O4 1.223 (4), O7—C3 1.220 (4), O8—C4 1.212 (4) Å] are compatible with single C—O and double CO bonds, respectively. Bond lengths and angles within the two bis­(2-methyl-1H-imidazol-3-ium) cations are in normal ranges.

Each stannate dianion [Sn(C2O4)2(OH)2]2− is linked to two neighbouring anions through hydroxyl(OH)···O hydrogen bonds involving the non-coordinating oxalate O atoms as acceptor groups. These inter­actions lead to the formation of layers extending parallel to (100). The cations inter­act with the anions via N—H···O hydrogen bonds (one bifurcated) whereby the non-coordinating oxalate O atoms again are the acceptor groups with the exception of one hydroxyl O atom (O9) as an acceptor (Table 1). The two hydroxyl groups are also acceptor groups of two (water)OH···O inter­actions, giving a total of nine hydrogen-bonding inter­actions per stannate dianion (Fig. 2). In addition to the dominant classical O—H···O and N—H···O inter­actions, weak C—H···O hydrogen bonds are also present in the structure (Table 1).

Synthesis and crystallization top

The title compound was obtained by reacting in methanol in a 2:1 ratio SnCl2·2H2O with bis­(methyl-2-imidazolium) oxalate. The latter was previously prepared in aqueous solution by mixing in a 2:1 ratio methyl-2-imidazole with oxalic acid and allowing the water to evaporate at 333 K. Slow solvent evaporation at room temperature afforded colourless crystals suitable for X-ray diffraction analysis.

Refinement details top

Crystal data, data collection and structure refinement details are summarized in Table 2. The coordinates of H atoms of the water molecules and hy­droxy groups were obtained from a difference map and were refined using SADI and DFIX restraints (Sheldrick, 2015b). All other H atoms were positioned geometrically (C—H = 0.95, 0.98 Å, N—H = 0.88 Å) and refined as riding with Uiso(H) = xUeq(C, N) with x = 1.5 for methyl and x = 1.2 for other H atoms.

Computing details top

Data collection: APEX2 (Bruker, 2014); cell refinement: SAINT (Bruker, 2014); data reduction: SAINT (Bruker, 2014); program(s) used to solve structure: SHELXT (Sheldrick, 2015a); program(s) used to refine structure: SHELXL2014 (Sheldrick, 2015b); molecular graphics: OLEX2 (Dolomanov et al., 2009) and Mercury (Macrae et al., 2008); software used to prepare material for publication: OLEX2 (Dolomanov et al., 2009) and publCIF (Westrip, 2010).

Figures top
[Figure 1] Fig. 1. The structure of the molecular components in the title compound, with displacement ellipsoids drawn at the 50% probability level. H atoms are drawn as spheres of arbitrary radius and hydrogen bonds are shown as dashed lines.
[Figure 2] Fig. 2. A view of a central stannate dianion (ball-and-stick representation) surrounded by its hydrogen-bonded neighbours (stick representation), viz three cations, two water molecules and four other stannate anions. Hydrogen bonds are displayed as black dotted lines and H atoms not involved in hydrogen bonding have been omitted for clarity.
Bis(2-methyl-1H-imidazol-3-ium) dihydroxidobis(oxalato-κ2O1,O2)stannate(IV) monohydrate top
Crystal data top
(C4H7N2)2[Sn(C2O4)2(H2O)2]·H2OF(000) = 1024
Mr = 512.99Dx = 1.852 Mg m3
Monoclinic, P21/cGa Kα radiation, λ = 1.34139 Å
a = 20.1391 (13) ÅCell parameters from 9589 reflections
b = 7.0651 (5) Åθ = 4.2–60.8°
c = 13.4942 (9) ŵ = 7.83 mm1
β = 106.582 (2)°T = 110 K
V = 1840.2 (2) Å3Block, clear light colourless
Z = 40.19 × 0.11 × 0.09 mm
Data collection top
Bruker Venture Metaljet
diffractometer
4235 independent reflections
Radiation source: Metal Jet, Gallium Liquid Metal Jet Source4110 reflections with I > 2σ(I)
Helios MX Mirror Optics monochromatorRint = 0.058
Detector resolution: 10.24 pixels mm-1θmax = 60.9°, θmin = 2.0°
ω and φ scansh = 2626
Absorption correction: multi-scan
(SADABS; Krause et al., 2015)
k = 89
Tmin = 0.509, Tmax = 0.752l = 1717
42907 measured reflections
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullHydrogen site location: mixed
R[F2 > 2σ(F2)] = 0.040H atoms treated by a mixture of independent and constrained refinement
wR(F2) = 0.101 w = 1/[σ2(Fo2) + (0.0612P)2 + 2.7674P]
where P = (Fo2 + 2Fc2)/3
S = 1.07(Δ/σ)max = 0.001
4235 reflectionsΔρmax = 1.87 e Å3
265 parametersΔρmin = 0.81 e Å3
4 restraints
Crystal data top
(C4H7N2)2[Sn(C2O4)2(H2O)2]·H2OV = 1840.2 (2) Å3
Mr = 512.99Z = 4
Monoclinic, P21/cGa Kα radiation, λ = 1.34139 Å
a = 20.1391 (13) ŵ = 7.83 mm1
b = 7.0651 (5) ÅT = 110 K
c = 13.4942 (9) Å0.19 × 0.11 × 0.09 mm
β = 106.582 (2)°
Data collection top
Bruker Venture Metaljet
diffractometer
4235 independent reflections
Absorption correction: multi-scan
(SADABS; Krause et al., 2015)
4110 reflections with I > 2σ(I)
Tmin = 0.509, Tmax = 0.752Rint = 0.058
42907 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0404 restraints
wR(F2) = 0.101H atoms treated by a mixture of independent and constrained refinement
S = 1.07Δρmax = 1.87 e Å3
4235 reflectionsΔρmin = 0.81 e Å3
265 parameters
Special details top

Experimental. X-ray crystallographic data for I were collected from a single-crystal sample, which was mounted on a loop fiber. Data were collected using a Bruker Venture diffractometer equipped with a Photon 100 CMOS Detector, a Helios MX optics and a Kappa goniometer. The crystal-to-detector distance was 4.0 cm, and the data collection was carried out in 1024 x 1024 pixel mode.

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Sn10.24060 (2)0.62119 (3)0.27535 (2)0.02481 (10)
O10.22492 (11)0.6762 (3)0.11720 (17)0.0312 (4)
O20.13386 (12)0.5897 (3)0.21916 (18)0.0293 (5)
O30.04507 (12)0.6473 (3)0.07971 (18)0.0330 (5)
O40.13911 (12)0.7325 (3)0.02786 (17)0.0347 (5)
O50.34706 (12)0.6212 (3)0.29967 (19)0.0278 (5)
O60.25904 (10)0.3368 (3)0.24215 (18)0.0280 (4)
O70.34600 (13)0.1302 (3)0.2613 (2)0.0368 (6)
O80.43752 (11)0.4264 (3)0.3297 (2)0.0347 (5)
O90.24047 (12)0.9006 (3)0.2994 (2)0.0306 (5)
H90.27220.95400.27770.046*
O100.24113 (12)0.5339 (3)0.41448 (17)0.0321 (5)
H100.21630.60850.44030.048*
C10.16053 (15)0.6868 (4)0.0632 (2)0.0274 (6)
C20.10678 (17)0.6380 (4)0.1231 (2)0.0273 (6)
C30.32352 (15)0.2896 (4)0.2648 (2)0.0280 (6)
C40.37567 (15)0.4559 (4)0.3017 (2)0.0275 (6)
N10.01942 (13)1.1771 (4)0.1086 (2)0.0289 (5)
H10.01151.22880.05590.043*
N20.11571 (14)1.0703 (4)0.2068 (2)0.0299 (5)
H20.15971.03870.23030.045*
C50.12035 (18)1.2002 (5)0.0351 (3)0.0343 (7)
H5A0.12431.08640.00430.051*
H5B0.16671.25090.06830.051*
H5C0.09281.29560.01160.051*
C60.08607 (16)1.1515 (4)0.1151 (2)0.0271 (6)
C70.00616 (19)1.1103 (4)0.1971 (3)0.0332 (7)
H70.03721.11100.21180.040*
C80.06634 (17)1.0440 (5)0.2585 (2)0.0334 (6)
H80.07360.98930.32500.040*
N30.40483 (15)0.0861 (4)0.5690 (2)0.0342 (6)
H30.36110.11600.54040.051*
N40.49720 (14)0.0750 (4)0.6344 (2)0.0306 (5)
H40.52520.17120.65670.046*
C90.38714 (19)0.2637 (5)0.5737 (3)0.0390 (7)
H9A0.40170.34570.63460.059*
H9B0.39410.32980.51360.059*
H9C0.33800.23200.56040.059*
C100.42895 (17)0.0874 (5)0.5925 (2)0.0298 (6)
C110.45913 (19)0.2124 (5)0.5965 (3)0.0380 (7)
H110.45620.34600.58810.046*
C120.5171 (2)0.1116 (4)0.6374 (3)0.0347 (7)
H120.56280.15990.66330.042*
O110.26942 (14)0.1609 (4)0.4740 (2)0.0406 (6)
H11A0.258 (3)0.267 (3)0.449 (4)0.074 (18)*
H11B0.259 (4)0.079 (6)0.428 (4)0.10 (2)*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Sn10.01935 (13)0.02397 (14)0.02993 (14)0.00241 (6)0.00517 (9)0.00129 (6)
O10.0245 (10)0.0368 (11)0.0333 (11)0.0011 (9)0.0097 (8)0.0009 (9)
O20.0236 (10)0.0338 (11)0.0311 (11)0.0006 (9)0.0088 (9)0.0052 (9)
O30.0233 (11)0.0407 (12)0.0327 (11)0.0004 (9)0.0043 (9)0.0021 (9)
O40.0353 (12)0.0380 (12)0.0295 (11)0.0011 (9)0.0073 (9)0.0035 (9)
O50.0205 (10)0.0245 (11)0.0389 (12)0.0019 (7)0.0092 (9)0.0008 (8)
O60.0216 (10)0.0263 (10)0.0357 (11)0.0001 (8)0.0075 (8)0.0016 (9)
O70.0286 (12)0.0265 (12)0.0561 (16)0.0006 (8)0.0136 (11)0.0043 (9)
O80.0218 (10)0.0284 (10)0.0524 (14)0.0023 (9)0.0080 (10)0.0003 (10)
O90.0266 (12)0.0241 (10)0.0408 (12)0.0015 (8)0.0090 (9)0.0010 (9)
O100.0329 (11)0.0344 (12)0.0297 (10)0.0044 (9)0.0100 (9)0.0037 (9)
C10.0257 (14)0.0237 (14)0.0321 (14)0.0011 (11)0.0070 (11)0.0011 (11)
C20.0263 (15)0.0241 (14)0.0295 (14)0.0003 (10)0.0046 (12)0.0011 (10)
C30.0250 (14)0.0259 (14)0.0335 (14)0.0011 (11)0.0089 (11)0.0020 (11)
C40.0253 (14)0.0256 (14)0.0311 (14)0.0012 (11)0.0071 (11)0.0005 (11)
N10.0238 (12)0.0302 (13)0.0311 (12)0.0037 (10)0.0055 (10)0.0016 (10)
N20.0241 (12)0.0287 (12)0.0342 (13)0.0026 (10)0.0039 (10)0.0011 (11)
C50.0340 (16)0.0342 (17)0.0375 (16)0.0007 (13)0.0146 (13)0.0016 (13)
C60.0242 (14)0.0246 (13)0.0324 (15)0.0008 (11)0.0077 (12)0.0019 (11)
C70.0300 (17)0.0335 (17)0.0377 (17)0.0005 (12)0.0122 (14)0.0001 (12)
C80.0378 (17)0.0298 (16)0.0319 (15)0.0003 (13)0.0086 (13)0.0019 (12)
N30.0305 (14)0.0313 (13)0.0377 (14)0.0056 (11)0.0048 (11)0.0020 (11)
N40.0262 (13)0.0274 (12)0.0360 (14)0.0032 (11)0.0052 (11)0.0020 (11)
C90.0348 (17)0.0329 (17)0.0463 (18)0.0007 (14)0.0067 (14)0.0071 (14)
C100.0266 (15)0.0309 (14)0.0313 (15)0.0035 (12)0.0071 (12)0.0041 (12)
C110.0416 (18)0.0270 (15)0.0443 (18)0.0000 (13)0.0106 (15)0.0007 (13)
C120.0328 (17)0.0324 (17)0.0384 (17)0.0040 (12)0.0092 (14)0.0029 (12)
O110.0375 (13)0.0423 (13)0.0409 (13)0.0100 (11)0.0095 (11)0.0049 (12)
Geometric parameters (Å, º) top
Sn1—O12.103 (2)N2—C81.380 (4)
Sn1—O22.077 (2)C5—H5A0.9800
Sn1—O52.074 (2)C5—H5B0.9800
Sn1—O62.114 (2)C5—H5C0.9800
Sn1—O92.001 (2)C5—C61.478 (4)
Sn1—O101.973 (2)C7—H70.9500
O1—C11.296 (4)C7—C81.342 (5)
O2—C21.300 (4)C8—H80.9500
O3—C21.215 (4)N3—H30.8800
O4—C11.223 (4)N3—C101.324 (4)
O5—C41.299 (4)N3—C111.378 (5)
O6—C31.290 (4)N4—H40.8800
O7—C31.220 (4)N4—C101.332 (4)
O8—C41.212 (4)N4—C121.375 (4)
O9—H90.8616C9—H9A0.9800
O10—H100.8653C9—H9B0.9800
C1—C21.563 (4)C9—H9C0.9800
C3—C41.560 (4)C9—C101.484 (5)
N1—H10.8800C11—H110.9500
N1—C61.332 (4)C11—C121.344 (5)
N1—C71.379 (4)C12—H120.9500
N2—H20.8800O11—H11A0.831 (15)
N2—C61.339 (4)O11—H11B0.827 (16)
O1—Sn1—O686.86 (9)C8—N2—H2125.4
O2—Sn1—O179.01 (9)H5A—C5—H5B109.5
O2—Sn1—O692.69 (8)H5A—C5—H5C109.5
O5—Sn1—O190.55 (9)H5B—C5—H5C109.5
O5—Sn1—O2166.65 (9)C6—C5—H5A109.5
O5—Sn1—O678.32 (8)C6—C5—H5B109.5
O9—Sn1—O188.58 (10)C6—C5—H5C109.5
O9—Sn1—O296.65 (9)N1—C6—N2107.1 (3)
O9—Sn1—O591.33 (8)N1—C6—C5126.3 (3)
O9—Sn1—O6168.64 (9)N2—C6—C5126.6 (3)
O10—Sn1—O1169.11 (9)N1—C7—H7126.6
O10—Sn1—O292.17 (9)C8—C7—N1106.8 (3)
O10—Sn1—O597.17 (9)C8—C7—H7126.6
O10—Sn1—O687.19 (9)N2—C8—H8126.4
O10—Sn1—O998.87 (10)C7—C8—N2107.2 (3)
C1—O1—Sn1114.71 (19)C7—C8—H8126.4
C2—O2—Sn1115.6 (2)C10—N3—H3125.5
C4—O5—Sn1115.80 (18)C10—N3—C11109.1 (3)
C3—O6—Sn1114.93 (19)C11—N3—H3125.5
Sn1—O9—H9110.0C10—N4—H4125.3
Sn1—O10—H10110.2C10—N4—C12109.4 (3)
O1—C1—C2115.2 (3)C12—N4—H4125.3
O4—C1—O1126.1 (3)H9A—C9—H9B109.5
O4—C1—C2118.7 (3)H9A—C9—H9C109.5
O2—C2—C1114.7 (3)H9B—C9—H9C109.5
O3—C2—O2125.1 (3)C10—C9—H9A109.5
O3—C2—C1120.2 (3)C10—C9—H9B109.5
O6—C3—C4114.9 (3)C10—C9—H9C109.5
O7—C3—O6126.1 (3)N3—C10—N4107.7 (3)
O7—C3—C4119.0 (3)N3—C10—C9125.8 (3)
O5—C4—C3114.6 (2)N4—C10—C9126.5 (3)
O8—C4—O5124.8 (3)N3—C11—H11126.4
O8—C4—C3120.6 (3)C12—C11—N3107.3 (3)
C6—N1—H1125.2C12—C11—H11126.4
C6—N1—C7109.7 (3)N4—C12—H12126.7
C7—N1—H1125.2C11—C12—N4106.6 (3)
C6—N2—H2125.4C11—C12—H12126.7
C6—N2—C8109.2 (3)H11A—O11—H11B110 (3)
Sn1—O1—C1—O4173.7 (3)O7—C3—C4—O82.5 (5)
Sn1—O1—C1—C25.5 (3)N1—C7—C8—N20.2 (4)
Sn1—O2—C2—O3172.4 (2)C6—N1—C7—C80.4 (4)
Sn1—O2—C2—C17.4 (3)C6—N2—C8—C70.0 (4)
Sn1—O5—C4—O8168.6 (3)C7—N1—C6—N20.4 (4)
Sn1—O5—C4—C311.0 (3)C7—N1—C6—C5178.5 (3)
Sn1—O6—C3—O7172.8 (3)C8—N2—C6—N10.2 (4)
Sn1—O6—C3—C46.1 (3)C8—N2—C6—C5178.7 (3)
O1—C1—C2—O21.2 (4)N3—C11—C12—N40.1 (4)
O1—C1—C2—O3178.6 (3)C10—N3—C11—C120.0 (4)
O4—C1—C2—O2179.6 (3)C10—N4—C12—C110.2 (4)
O4—C1—C2—O30.7 (4)C11—N3—C10—N40.1 (4)
O6—C3—C4—O53.2 (4)C11—N3—C10—C9179.0 (3)
O6—C3—C4—O8176.5 (3)C12—N4—C10—N30.2 (4)
O7—C3—C4—O5177.8 (3)C12—N4—C10—C9179.0 (3)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O9—H9···O7i0.862.002.835 (3)163
O10—H10···O4ii0.872.062.909 (3)167
O11—H11A···O100.83 (2)1.95 (2)2.766 (4)169 (5)
O11—H11B···O9iii0.83 (2)2.10 (2)2.914 (4)170 (7)
N1—H1···O3iv0.881.972.793 (4)156
N1—H1···O4iv0.882.503.131 (3)129
N2—H2···O90.881.902.742 (3)160
N3—H3···O110.881.842.713 (4)175
N4—H4···O8v0.881.942.787 (4)161
C5—H5A···O40.982.553.460 (4)155
C7—H7···O2vi0.952.393.327 (4)169
C8—H8···O4ii0.952.583.444 (4)152
C12—H12···O5vii0.952.333.232 (4)159
Symmetry codes: (i) x, y+1, z; (ii) x, y+3/2, z+1/2; (iii) x, y1, z; (iv) x, y+2, z; (v) x+1, y, z+1; (vi) x, y+1/2, z+1/2; (vii) x+1, y+1, z+1.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O9—H9···O7i0.862.002.835 (3)163.1
O10—H10···O4ii0.872.062.909 (3)166.8
O11—H11A···O100.831 (15)1.946 (17)2.766 (4)169 (5)
O11—H11B···O9iii0.827 (16)2.10 (2)2.914 (4)170 (7)
N1—H1···O3iv0.881.972.793 (4)156.1
N1—H1···O4iv0.882.503.131 (3)128.7
N2—H2···O90.881.902.742 (3)160.2
N3—H3···O110.881.842.713 (4)175.3
N4—H4···O8v0.881.942.787 (4)160.5
C5—H5A···O40.982.553.460 (4)154.5
C7—H7···O2vi0.952.393.327 (4)168.9
C8—H8···O4ii0.952.583.444 (4)151.9
C12—H12···O5vii0.952.333.232 (4)158.7
Symmetry codes: (i) x, y+1, z; (ii) x, y+3/2, z+1/2; (iii) x, y1, z; (iv) x, y+2, z; (v) x+1, y, z+1; (vi) x, y+1/2, z+1/2; (vii) x+1, y+1, z+1.

Experimental details

Crystal data
Chemical formula(C4H7N2)2[Sn(C2O4)2(H2O)2]·H2O
Mr512.99
Crystal system, space groupMonoclinic, P21/c
Temperature (K)110
a, b, c (Å)20.1391 (13), 7.0651 (5), 13.4942 (9)
β (°) 106.582 (2)
V3)1840.2 (2)
Z4
Radiation typeGa Kα, λ = 1.34139 Å
µ (mm1)7.83
Crystal size (mm)0.19 × 0.11 × 0.09
Data collection
DiffractometerBruker Venture Metaljet
Absorption correctionMulti-scan
(SADABS; Krause et al., 2015)
Tmin, Tmax0.509, 0.752
No. of measured, independent and
observed [I > 2σ(I)] reflections
42907, 4235, 4110
Rint0.058
(sin θ/λ)max1)0.651
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.040, 0.101, 1.07
No. of reflections4235
No. of parameters265
No. of restraints4
H-atom treatmentH atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å3)1.87, 0.81

Computer programs: APEX2 (Bruker, 2014), SAINT (Bruker, 2014), SHELXT (Sheldrick, 2015a), SHELXL2014 (Sheldrick, 2015b), OLEX2 (Dolomanov et al., 2009) and Mercury (Macrae et al., 2008), OLEX2 (Dolomanov et al., 2009) and publCIF (Westrip, 2010).

 

Acknowledgements

The authors acknowledge the Cheikh Anta Diop University of Dakar (Sénégal), the Canada Foundation for Innovation, Université de Bourgogne and Université de Montréal for financial support.

References

First citationBruker (2014). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationDavies, A. G., Gielen, M., Pannell, K. H. & Tiekink, E. R. T. (2008). In Tin Chemistry, Fundamentals, Frontiers and Applications. Chichester, UK: John Wiley & Sons Ltd.  Google Scholar
First citationDiop, M. B., Diop, L., Plasseraud, L. & Maris, T. (2015). Acta Cryst. E71, 520–522.  CSD CrossRef IUCr Journals Google Scholar
First citationDolomanov, O. V., Bourhis, L. J., Gildea, R. J., Howard, J. A. K. & Puschmann, H. (2009). J. Appl. Cryst. 42, 339–341.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationGueye, N., Diop, L. & Stoeckli-Evans, H. (2014). Acta Cryst. E70, m49–m50.  CSD CrossRef IUCr Journals Google Scholar
First citationKrause, L., Herbst-Irmer, R., Sheldrick, G. M. & Stalke, D. (2015). J. Appl. Cryst. 48, 3–10.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationMacrae, C. F., Bruno, I. J., Chisholm, J. A., Edgington, P. R., McCabe, P., Pidcock, E., Rodriguez-Monge, L., Taylor, R., van de Streek, J. & Wood, P. A. (2008). J. Appl. Cryst. 41, 466–470.  Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
First citationMeneghetti, M. R. & Meneghetti, S. M. P. (2015). Catal. Sci. Technol. 5, 765–771.  Web of Science CrossRef CAS Google Scholar
First citationSarr, M., Diasse-Sarr, A., Diop, L., Plasseraud, L. & Cattey, H. (2015). Acta Cryst. E71, 151–153.  CSD CrossRef IUCr Journals Google Scholar
First citationSheldrick, G. M. (2015a). Acta Cryst. A71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar
First citationSheldrick, G. M. (2015b). Acta Cryst. C71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar
First citationSirajuddin, M., Ali, S., McKee, V., Zaib, S. & Iqbal, J. (2014). RSC Adv. 4, 57505–57521.  Web of Science CSD CrossRef CAS Google Scholar
First citationWestrip, S. P. (2010). J. Appl. Cryst. 43, 920–925.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 72| Part 3| March 2016| Pages 355-357
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds