research communications
Hydrogen-bonding patterns in 5-fluorocytosine–melamine
(4/1)aSchool of Chemistry, Bharathidasan University, Tiruchirappalli 620 024, Tamil Nadu, India, and bDepartment of Chemistry, Clemson University, H. L. Hunter Laboratories, Clemson, SC 29634, USA
*Correspondence e-mail: tommtrichy@yahoo.co.in
The 4H4FN3O·C3H6N6, comprises of two independent 5-fluorocytosine (5FC) molecules (A and B) and one half-molecule of melamine (M). The other half of the melamine molecule is generated by a twofold axis. 5FC molecules A and B are linked through two different homosynthons [R22(8) ring motif]; one is formed via a pair of N—H⋯O hydrogen bonds and the second via a pair of N—H⋯N hydrogen bonds. In addition to this pairing, the O atoms of 5FC molecules A and B interact with the N2 amino group on both sides of the melamine molecule, forming a DDAA array of quadruple hydrogen bonds and generating a supramolecular pattern. The 5FC (molecules A and B) and two melamine molecules interact via N—H⋯O, N—H⋯N and N—H⋯O, N—H⋯N, C—H⋯F hydrogen bonds forming R66(24) and R44(15) ring motifs. The is further strengthened by C—H⋯F, C—F⋯π and π–π stacking interactions.
of the title compound, 4CKeywords: crystal structure; 5-fluorocytosine; melamine; homosynthons; hydrogen bonding.
CCDC reference: 1469709
1. Chemical context
Pyrimidine derivatives are used in the treatment of antiviral, antifungal, antitumor and cardiovascular diseases. 5-Fluorocytosine (5FC), a synthetic antimycotic compound, first synthesized in 1957 and widely used as an antitumor agent as a cytosine derivative (Tassel & Madoff, 1968; Benson & Nahata, 1988; Bennet, 1977; Polak & Scholer, 1980). It is active against fungal infection and was released in the year 1968 (Vermes et al., 2000). It becomes active by deamination of 5FC into 5-fluorouracil by the enzyme cytosine deaminase (CD) and inhibits RNA and DNA synthesis (Larsen et al., 2003; Mullen et al., 1994; Morschhäuser, 2003). Melamine is a triazine derivative. It shows antitumor activity as well as biological activities such as antiangiogenesis and antimicrobial effects. Triazine derivatives are useful synthons in supramolecular chemistry. In particular, aminotriazines have been used for the formation of supramolecular architectures using hydrogen bonds (Russell et al., 1998; MacDonald & Whitesides, 1994; Whitesides et al., 1991). The organic and inorganic salts develop well-defined non-covalent molecular recognition via multiple hydrogen bonds by self assembly of components which contain a complementary array of hydrogen-bonding sites (Desiraju, 1989). The present work is focused on the supramolecular hydrogen-bonding patterns exhibited by the of 5-fluorocytosine with melamine.
2. Structural commentary
The A and B) and half a molecule of melamine (M). The twofold axis of melamine coincides with the crystallographic twofold axis. An ORTEP view of the is shown in Fig. 1. The values for the C—F bond distance in the two molecules [1.3491 (18) in 5FC A and 1.3492 (18) Å in 5FC B and the corresponding internal angles at the carbon-carrying fluorine atom [C2A—N3A—C4A = 119.96 (13) in 5FC A and C2B—N3B—C4B = 119.92 (13)° in 5FC B] agree with those reported in the literature (Louis et al., 1982).
comprises two independent 5-fluorocytosine (5FC) molecules (3. Supramolecular features
Two different homosynthons are assembled via a pair of N—H⋯O and N—H⋯N hydrogen bonds (Table 1) to render a robust R22(8) ring motif. The first type of homosynthon is formed by the interaction of the protonated N1 and O atoms of 5FC molecules A and B through N—H⋯O hydrogen bonds. Another type of homosynthon is formed via the N4-amino and N3-pyrimidine ring nitrogen atoms of the 5FC A and B molecules through a pair of N—H⋯N hydrogen bonds (da Silva et al., 2013; Tutughamiarso et al., 2012). The melamine molecule and 5FC (molecules A and B) are involved in the generation of a quadruple hydrogen-bonded DDAA array having a fused-ring sequence of R33(10), R22(8) and R33(10). The R33(10) motif is formed on both sides via N—H⋯O and N—H⋯N hydrogen bonds. These quadruple arrays are further linked by three large ring motifs: R66(24), R43(16) and R43(14). The R66(24) ring motifs are formed by the interaction of two 5FC A molecules, two 5FC B molecules and two melamine molecules through several N—H⋯O and N—H⋯N hydrogen bonds, generating a hexameric supermolecule. The R43(16) ring motif links the one 5FC A molecule, two 5FC B molecules and one melamine molecule through N—H⋯O, N—H⋯N and C—H⋯F hydrogen bonds, generating a tetrameric supermolecule. Similarly, the R43(14) ring motifs are formed by the interaction of two 5FC A molecules, one 5FC B molecule and one melamine molecule through N—H⋯O, N—H⋯N and C—H⋯F hydrogen bonds, generating another tetrameric supermolecule. The association of these R22(8), DDAA array and R66(24), R43(16) and R43(14) motifs leads to the formation of supramolecular patterns (Fig. 2). The is also stabilized by weak C—H⋯F hydrogen bonds and π–π stacking interactions between 5FC A and B molecules with an interplanar distance of 3.475 (6) Å, centroid-to-centroid distance of 3.6875 (11) Å, and slip angle of 19.52°. The is further strengthened by a C—F⋯π interaction [3.4541 (14) Å] between 5-fluorocytosinium molecule A and the melamine molecule (Fig. 3).
In this A and B form two types of homosynthons (two types of base pairing) while the melamine molecule interacts with them via N—H⋯O and N—H⋯N hydrogen bonds, generating the supramolecular architecture.
5FC molecules4. Database survey
The et al., 1982; Portalone & Colapietro, 2006; Portalone, 2011), polymorphs (Hulme & Tocher, 2006; Tutughamiarso et al., 2009), salts (Perumalla et al., 2013a,b) and co-crystals (Tutughamiarso et al., 2012; Da Silva et al., 2013) have been reported in the literature. From our laboratory, 5-fluorocytosinium salicylate (Prabakaran et al., 2001) and 5-fluorocytosinium 3-hydroxypicolinate (Karthikeyan et al., 2014) have been reported. Various salts, co-crystals and metal complexes of melamine have also been reported (Janczak & Perpétuo, 2001a,b, 2002, 2004; Perpétuo et al., 2005; Zerkowski & Whitesides, 1994; Wang et al., 2007).
of 5-fluorocytosine monohydrate (Louis5. Synthesis and crystallization
Hot aqueous solutions of 5-fluorocytosine (32 mg) and melamine (31 mg) were mixed in a 1:1 molar ratio. The resulting solution was warmed to 353 K using a water bath for half an hour and kept at room temperature for crystallization. After one week, colourless crystals were obtained.
6. details
Crystal data, data collection and structure . The hydrogen atoms of amino (N2, N4, N4A, N4B) groups were located in a difference Fourier map and refined freely. The other hydrogen atoms were positioned geometrically (C—H = 0.95, N—H = 0.88 Å) and were refined using a riding model with Uiso(H) = 1.2Ueq(parent atom).
details are summarized in Table 2
|
Supporting information
CCDC reference: 1469709
https://doi.org/10.1107/S205698901600476X/hg5470sup1.cif
contains datablocks global, I. DOI:Structure factors: contains datablock I. DOI: https://doi.org/10.1107/S205698901600476X/hg5470Isup2.hkl
Supporting information file. DOI: https://doi.org/10.1107/S205698901600476X/hg5470Isup3.cml
Data collection: CrystalClear (Rigaku/MSC, 2008); cell
CrystalClear (Rigaku/MSC, 2008); data reduction: CrystalClear (Rigaku/MSC, 2008); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: PLATON (Spek, 2009), Mercury (Macrae et al., 2008) and POV-RAY (Cason, 2004); software used to prepare material for publication: PLATON (Spek, 2009) and publCIF (Westrip, 2010).4(C4H4FN3O)·C3H6N6 | F(000) = 1320 |
Mr = 642.55 | Dx = 1.634 Mg m−3 |
Monoclinic, C2/c | Mo Kα radiation, λ = 0.71073 Å |
Hall symbol: -C 2yc | Cell parameters from 2564 reflections |
a = 18.343 (4) Å | θ = 2.4–26.0° |
b = 7.9591 (16) Å | µ = 0.14 mm−1 |
c = 19.680 (4) Å | T = 200 K |
β = 114.65 (3)° | Prism, colorless |
V = 2611.3 (11) Å3 | 0.20 × 0.20 × 0.20 mm |
Z = 4 |
Rigaku AFC–8S diffractometer | 2564 independent reflections |
Radiation source: fine focus sealed tube | 2362 reflections with I > 2σ(I) |
Graphite monochromator | Rint = 0.019 |
Detector resolution: 14.6199 pixels mm-1 | θmax = 26.0°, θmin = 2.4° |
ω scans | h = −22→18 |
Absorption correction: multi-scan (CrystalClear; Rigaku/MSC, 2008) | k = −9→9 |
Tmin = 0.972, Tmax = 0.972 | l = −24→24 |
10071 measured reflections |
Refinement on F2 | Primary atom site location: structure-invariant direct methods |
Least-squares matrix: full | Secondary atom site location: difference Fourier map |
R[F2 > 2σ(F2)] = 0.045 | Hydrogen site location: inferred from neighbouring sites |
wR(F2) = 0.123 | H atoms treated by a mixture of independent and constrained refinement |
S = 1.07 | w = 1/[σ2(Fo2) + (0.0741P)2 + 1.8751P] where P = (Fo2 + 2Fc2)/3 |
2564 reflections | (Δ/σ)max < 0.001 |
233 parameters | Δρmax = 0.44 e Å−3 |
0 restraints | Δρmin = −0.34 e Å−3 |
Geometry. Bond distances, angles etc. have been calculated using the rounded fractional coordinates. All su's are estimated from the variances of the (full) variance-covariance matrix. The cell esds are taken into account in the estimation of distances, angles and torsion angles |
Refinement. Refinement on F2 for ALL reflections except those flagged by the user for potential systematic errors. Weighted R-factors wR and all goodnesses of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The observed criterion of F2 > 2sigma(F2) is used only for calculating -R-factor-obs etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R-factors based on ALL data will be even larger. |
x | y | z | Uiso*/Ueq | ||
N1 | 0.50000 | 0.1866 (2) | 0.25000 | 0.0244 (5) | |
N2 | 0.48606 (8) | 0.18336 (19) | 0.12847 (8) | 0.0326 (4) | |
N3 | 0.48592 (8) | −0.07579 (17) | 0.18444 (7) | 0.0342 (4) | |
N4 | 0.50000 | −0.3280 (3) | 0.25000 | 0.0501 (8) | |
C2 | 0.49100 (8) | 0.09524 (18) | 0.18883 (7) | 0.0248 (4) | |
C4 | 0.50000 | −0.1589 (3) | 0.25000 | 0.0300 (6) | |
F5A | 0.32327 (5) | 0.12206 (14) | 0.26116 (5) | 0.0420 (3) | |
O2A | 0.06416 (6) | 0.34719 (15) | 0.03132 (6) | 0.0326 (3) | |
N1A | 0.11896 (8) | 0.17904 (17) | 0.13300 (7) | 0.0315 (4) | |
N3A | 0.19980 (7) | 0.34775 (15) | 0.09362 (7) | 0.0252 (3) | |
N4A | 0.33640 (8) | 0.35220 (17) | 0.16222 (8) | 0.0299 (4) | |
C2A | 0.12590 (8) | 0.29396 (19) | 0.08380 (8) | 0.0253 (4) | |
C4A | 0.26467 (8) | 0.29295 (18) | 0.15183 (8) | 0.0243 (4) | |
C5A | 0.25656 (9) | 0.17587 (19) | 0.20310 (8) | 0.0286 (4) | |
C6A | 0.18349 (9) | 0.1215 (2) | 0.19258 (9) | 0.0332 (5) | |
F5B | 0.21480 (6) | 0.72438 (14) | −0.15032 (5) | 0.0419 (3) | |
O2B | 0.46711 (6) | 0.54980 (13) | 0.09792 (6) | 0.0280 (3) | |
N1B | 0.41539 (7) | 0.70320 (16) | −0.00875 (7) | 0.0278 (3) | |
N3B | 0.33298 (7) | 0.53026 (15) | 0.02705 (7) | 0.0261 (3) | |
N4B | 0.19773 (8) | 0.51382 (18) | −0.04738 (8) | 0.0328 (4) | |
C2B | 0.40666 (8) | 0.59203 (17) | 0.04058 (8) | 0.0240 (4) | |
C4B | 0.26965 (9) | 0.57389 (18) | −0.03540 (8) | 0.0259 (4) | |
C5B | 0.27992 (9) | 0.68402 (19) | −0.08772 (8) | 0.0285 (4) | |
C6B | 0.35239 (9) | 0.74902 (19) | −0.07308 (8) | 0.0298 (4) | |
H2A | 0.4807 (12) | 0.294 (3) | 0.1263 (11) | 0.037 (5)* | |
H2B | 0.4701 (12) | 0.135 (3) | 0.0868 (12) | 0.042 (5)* | |
H4A | 0.5134 (13) | −0.381 (3) | 0.2935 (11) | 0.048 (6)* | |
H4A1 | 0.3799 (13) | 0.308 (3) | 0.1947 (11) | 0.040 (5)* | |
H1A | 0.07100 | 0.14180 | 0.12550 | 0.0380* | |
H4A2 | 0.3380 (13) | 0.418 (3) | 0.1253 (13) | 0.049 (6)* | |
H6A | 0.17710 | 0.04390 | 0.22640 | 0.0400* | |
H1B | 0.46300 | 0.74610 | 0.00150 | 0.0330* | |
H4B1 | 0.1965 (13) | 0.453 (3) | −0.0107 (12) | 0.047 (6)* | |
H4B2 | 0.1569 (13) | 0.543 (3) | −0.0874 (13) | 0.045 (6)* | |
H6B | 0.35960 | 0.82540 | −0.10690 | 0.0360* |
U11 | U22 | U33 | U12 | U13 | U23 | |
N1 | 0.0248 (8) | 0.0253 (8) | 0.0219 (8) | 0.0000 | 0.0085 (7) | 0.0000 |
N2 | 0.0389 (8) | 0.0345 (8) | 0.0244 (7) | −0.0006 (6) | 0.0133 (6) | 0.0007 (5) |
N3 | 0.0418 (8) | 0.0307 (7) | 0.0290 (7) | −0.0010 (5) | 0.0138 (6) | −0.0013 (5) |
N4 | 0.098 (2) | 0.0262 (10) | 0.0346 (11) | 0.0000 | 0.0362 (13) | 0.0000 |
C2 | 0.0196 (6) | 0.0293 (7) | 0.0231 (7) | 0.0011 (5) | 0.0064 (5) | −0.0001 (5) |
C4 | 0.0387 (11) | 0.0260 (10) | 0.0245 (10) | 0.0000 | 0.0124 (9) | 0.0000 |
F5A | 0.0276 (5) | 0.0583 (7) | 0.0320 (5) | 0.0010 (4) | 0.0043 (4) | 0.0153 (4) |
O2A | 0.0229 (5) | 0.0448 (7) | 0.0268 (5) | −0.0027 (4) | 0.0070 (4) | 0.0085 (5) |
N1A | 0.0245 (6) | 0.0405 (7) | 0.0289 (7) | −0.0059 (5) | 0.0106 (5) | 0.0071 (5) |
N3A | 0.0222 (6) | 0.0289 (6) | 0.0244 (6) | −0.0020 (5) | 0.0096 (5) | 0.0018 (5) |
N4A | 0.0216 (6) | 0.0349 (7) | 0.0318 (7) | −0.0005 (5) | 0.0099 (6) | 0.0054 (5) |
C2A | 0.0245 (7) | 0.0299 (7) | 0.0219 (7) | −0.0018 (5) | 0.0101 (6) | −0.0004 (5) |
C4A | 0.0250 (7) | 0.0249 (7) | 0.0239 (7) | −0.0008 (5) | 0.0112 (6) | −0.0031 (5) |
C5A | 0.0261 (7) | 0.0334 (8) | 0.0226 (7) | 0.0005 (6) | 0.0065 (6) | 0.0033 (6) |
C6A | 0.0312 (8) | 0.0387 (8) | 0.0283 (8) | −0.0037 (6) | 0.0111 (6) | 0.0090 (6) |
F5B | 0.0300 (5) | 0.0569 (6) | 0.0302 (5) | −0.0019 (4) | 0.0041 (4) | 0.0115 (4) |
O2B | 0.0250 (5) | 0.0298 (5) | 0.0269 (5) | −0.0040 (4) | 0.0085 (4) | 0.0023 (4) |
N1B | 0.0246 (6) | 0.0310 (6) | 0.0282 (6) | −0.0051 (5) | 0.0114 (5) | 0.0032 (5) |
N3B | 0.0245 (6) | 0.0270 (6) | 0.0279 (6) | −0.0055 (5) | 0.0119 (5) | −0.0003 (5) |
N4B | 0.0258 (7) | 0.0408 (8) | 0.0294 (7) | −0.0066 (5) | 0.0092 (6) | 0.0010 (6) |
C2B | 0.0267 (7) | 0.0226 (6) | 0.0241 (7) | −0.0030 (5) | 0.0119 (6) | −0.0030 (5) |
C4B | 0.0274 (7) | 0.0254 (7) | 0.0259 (7) | −0.0032 (5) | 0.0122 (6) | −0.0045 (5) |
C5B | 0.0267 (7) | 0.0341 (8) | 0.0217 (7) | 0.0007 (6) | 0.0072 (6) | 0.0014 (6) |
C6B | 0.0320 (8) | 0.0328 (8) | 0.0257 (7) | −0.0021 (6) | 0.0130 (6) | 0.0040 (6) |
F5A—C5A | 1.3491 (18) | N4A—C4A | 1.331 (2) |
F5B—C5B | 1.3492 (18) | N1A—H1A | 0.8800 |
O2A—C2A | 1.2462 (19) | N4A—H4A2 | 0.91 (2) |
O2B—C2B | 1.2539 (19) | N4A—H4A1 | 0.86 (2) |
N1—C2 | 1.3563 (16) | N1B—C2B | 1.3714 (19) |
N1—C2i | 1.3563 (16) | N1B—C6B | 1.361 (2) |
N2—C2 | 1.350 (2) | N3B—C4B | 1.338 (2) |
N3—C2 | 1.365 (2) | N3B—C2B | 1.356 (2) |
N3—C4 | 1.3751 (18) | N4B—C4B | 1.329 (2) |
N4—C4 | 1.346 (3) | N1B—H1B | 0.8800 |
N2—H2A | 0.89 (2) | N4B—H4B1 | 0.88 (2) |
N2—H2B | 0.84 (2) | N4B—H4B2 | 0.86 (2) |
N4—H4A | 0.89 (2) | C4A—C5A | 1.426 (2) |
N4—H4Ai | 0.89 (2) | C5A—C6A | 1.340 (3) |
N1A—C2A | 1.376 (2) | C6A—H6A | 0.9500 |
N1A—C6A | 1.352 (2) | C4B—C5B | 1.423 (2) |
N3A—C4A | 1.335 (2) | C5B—C6B | 1.341 (2) |
N3A—C2A | 1.356 (2) | C6B—H6B | 0.9500 |
F5A···C2i | 3.134 (2) | C4B···C4Bix | 3.340 (2) |
F5A···C6Bii | 3.2444 (19) | C5A···C5Bv | 3.541 (2) |
F5A···N4A | 2.7560 (18) | C5B···C6Av | 3.432 (2) |
F5B···N4B | 2.7459 (19) | C5B···C5Av | 3.541 (2) |
F5B···C6Aiii | 3.148 (2) | C5B···C4Bix | 3.500 (2) |
F5A···H4A1 | 2.47 (2) | C6A···F5Bii | 3.148 (2) |
F5A···H6Bii | 2.4300 | C6A···C5Bv | 3.432 (2) |
F5B···H4B2 | 2.42 (2) | C6B···N3Aix | 3.325 (2) |
O2A···N1Biv | 2.7545 (19) | C6B···F5Aiii | 3.2444 (19) |
O2A···N2v | 2.8949 (19) | C6B···N4Bix | 3.442 (2) |
O2B···N4vi | 2.9600 (15) | C2···H4A1 | 2.69 (2) |
O2B···N2 | 2.9689 (19) | C2···H4A1i | 3.03 (2) |
O2B···N4vii | 2.9600 (15) | C2···H4B2v | 2.84 (2) |
O2B···N1Aviii | 2.773 (2) | C2A···H4B1 | 2.96 (2) |
O2A···H1Biv | 1.8800 | C2A···H6Bix | 3.0600 |
O2A···H2Bv | 2.15 (2) | C2A···H1Biv | 2.7700 |
O2B···H4Avii | 2.09 (2) | C2B···H1Aviii | 2.8000 |
O2B···H4A2 | 2.84 (3) | C2B···H4Avii | 2.98 (2) |
O2B···H1Aviii | 1.9000 | C2B···H4A2 | 2.84 (2) |
O2B···H2A | 2.10 (2) | C2B···H2A | 2.90 (2) |
N1···N4A | 3.0664 (18) | C4A···H6Axii | 2.9600 |
N1···N4Ai | 3.0664 (18) | H4A1···C2 | 2.69 (2) |
N1A···O2Biv | 2.773 (2) | H4A1···N1 | 2.23 (2) |
N1B···O2Aviii | 2.7545 (19) | H4A1···N2 | 2.93 (2) |
N2···O2B | 2.9689 (19) | H4A1···N1 | 2.23 (2) |
N2···O2Av | 2.8949 (19) | H4A1···F5A | 2.47 (2) |
N3A···N4B | 3.060 (2) | H4A1···C2i | 3.03 (2) |
N3A···C6Bix | 3.325 (2) | H1A···C2Biv | 2.8000 |
N3B···N4A | 2.992 (2) | H1A···H1Biv | 2.5600 |
N4···O2Bx | 2.9600 (15) | H1A···O2Biv | 1.9000 |
N4···O2Bxi | 2.9600 (15) | H1B···C2Aviii | 2.7700 |
N4A···N1 | 3.0664 (18) | H1B···O2Aviii | 1.8800 |
N4A···N1 | 3.0664 (18) | H1B···H1Aviii | 2.5600 |
N4A···C2 | 3.356 (2) | H4A2···O2B | 2.84 (3) |
N4A···N3B | 2.992 (2) | H4A2···N3B | 2.10 (2) |
N4A···F5A | 2.7560 (18) | H4A2···C2B | 2.84 (2) |
N4B···C4Av | 3.442 (2) | H2A···C2B | 2.90 (2) |
N4B···N3A | 3.060 (2) | H2A···O2B | 2.10 (2) |
N4B···F5B | 2.7459 (19) | H2B···O2Av | 2.15 (2) |
N4B···C6Bix | 3.442 (2) | H4B1···N3A | 2.20 (2) |
N1···H4A1 | 2.23 (2) | H4B1···C2A | 2.96 (2) |
N1···H4A1i | 2.23 (2) | H4B2···F5B | 2.42 (2) |
N2···H4A1 | 2.93 (2) | H4B2···N3v | 2.53 (2) |
N3···H4B2v | 2.53 (2) | H4B2···C2v | 2.84 (2) |
N3A···H6Bix | 2.8700 | H4A···O2Bx | 2.09 (2) |
N3A···H4B1 | 2.20 (2) | H4A···C2Bx | 2.98 (2) |
N3B···H4A2 | 2.10 (2) | H6A···N4Axiii | 2.7700 |
N4A···H6Axii | 2.7700 | H6A···C4Axiii | 2.9600 |
C2···N4A | 3.356 (2) | H6B···F5Aiii | 2.4300 |
C2···F5Ai | 3.134 (2) | H6B···N3Aix | 2.8700 |
C4A···N4Bv | 3.442 (2) | H6B···C2Aix | 3.0600 |
C4B···C5Bix | 3.500 (2) | ||
C2—N1—C2i | 115.16 (14) | N3—C4—N3i | 122.49 (19) |
C2—N3—C4 | 116.06 (14) | N3—C4—N4 | 118.75 (11) |
C2—N2—H2B | 119.3 (16) | O2A—C2A—N1A | 119.37 (15) |
H2A—N2—H2B | 115 (2) | N1A—C2A—N3A | 119.33 (14) |
C2—N2—H2A | 121.7 (13) | O2A—C2A—N3A | 121.30 (14) |
C4—N4—H4A | 118.2 (15) | N3A—C4A—N4A | 119.11 (14) |
H4A—N4—H4Ai | 124 (2) | N3A—C4A—C5A | 120.14 (15) |
C4—N4—H4Ai | 118.2 (15) | N4A—C4A—C5A | 120.73 (14) |
C2A—N1A—C6A | 122.07 (15) | F5A—C5A—C6A | 121.59 (14) |
C2A—N3A—C4A | 119.96 (13) | F5A—C5A—C4A | 118.77 (15) |
C6A—N1A—H1A | 119.00 | C4A—C5A—C6A | 119.64 (15) |
C2A—N1A—H1A | 119.00 | N1A—C6A—C5A | 118.83 (15) |
C4A—N4A—H4A1 | 121.3 (16) | N1A—C6A—H6A | 121.00 |
C4A—N4A—H4A2 | 116.3 (16) | C5A—C6A—H6A | 121.00 |
H4A1—N4A—H4A2 | 120 (2) | O2B—C2B—N3B | 120.96 (14) |
C2B—N1B—C6B | 121.81 (14) | N1B—C2B—N3B | 119.73 (14) |
C2B—N3B—C4B | 119.92 (13) | O2B—C2B—N1B | 119.31 (14) |
C2B—N1B—H1B | 119.00 | N3B—C4B—C5B | 119.89 (16) |
C6B—N1B—H1B | 119.00 | N4B—C4B—C5B | 120.96 (15) |
C4B—N4B—H4B2 | 119.0 (17) | N3B—C4B—N4B | 119.15 (14) |
H4B1—N4B—H4B2 | 126 (2) | C4B—C5B—C6B | 120.04 (14) |
C4B—N4B—H4B1 | 114.6 (16) | F5B—C5B—C4B | 118.25 (15) |
N2—C2—N3 | 119.01 (13) | F5B—C5B—C6B | 121.68 (14) |
N1—C2—N2 | 116.19 (14) | N1B—C6B—C5B | 118.54 (14) |
N1—C2—N3 | 124.81 (13) | N1B—C6B—H6B | 121.00 |
N3i—C4—N4 | 118.75 (11) | C5B—C6B—H6B | 121.00 |
C2i—N1—C2—N2 | −176.73 (13) | C4B—N3B—C2B—O2B | −178.38 (14) |
C2i—N1—C2—N3 | 3.98 (19) | C2B—N3B—C4B—N4B | −179.21 (14) |
C4—N3—C2—N1 | −7.5 (2) | C2B—N3B—C4B—C5B | 0.5 (2) |
C4—N3—C2—N2 | 173.24 (13) | C4B—N3B—C2B—N1B | 2.1 (2) |
C2—N3—C4—N4 | −176.55 (11) | N3A—C4A—C5A—F5A | 179.63 (13) |
C2—N3—C4—N3i | 3.45 (18) | N3A—C4A—C5A—C6A | −0.1 (2) |
C6A—N1A—C2A—O2A | −177.48 (15) | N4A—C4A—C5A—F5A | −2.1 (2) |
C6A—N1A—C2A—N3A | 2.2 (2) | N4A—C4A—C5A—C6A | 178.19 (15) |
C2A—N1A—C6A—C5A | −1.3 (2) | F5A—C5A—C6A—N1A | −179.48 (14) |
C4A—N3A—C2A—O2A | 177.67 (14) | C4A—C5A—C6A—N1A | 0.3 (2) |
C4A—N3A—C2A—N1A | −2.0 (2) | N3B—C4B—C5B—F5B | 179.56 (14) |
C2A—N3A—C4A—N4A | −177.35 (14) | N3B—C4B—C5B—C6B | −2.6 (2) |
C2A—N3A—C4A—C5A | 1.0 (2) | N4B—C4B—C5B—F5B | −0.8 (2) |
C6B—N1B—C2B—N3B | −2.7 (2) | N4B—C4B—C5B—C6B | 177.13 (15) |
C2B—N1B—C6B—C5B | 0.6 (2) | F5B—C5B—C6B—N1B | 179.78 (14) |
C6B—N1B—C2B—O2B | 177.75 (14) | C4B—C5B—C6B—N1B | 2.0 (2) |
Symmetry codes: (i) −x+1, y, −z+1/2; (ii) x, −y+1, z+1/2; (iii) x, −y+1, z−1/2; (iv) x−1/2, y−1/2, z; (v) −x+1/2, −y+1/2, −z; (vi) x, y+1, z; (vii) −x+1, y+1, −z+1/2; (viii) x+1/2, y+1/2, z; (ix) −x+1/2, −y+3/2, −z; (x) −x+1, y−1, −z+1/2; (xi) x, y−1, z; (xii) −x+1/2, y+1/2, −z+1/2; (xiii) −x+1/2, y−1/2, −z+1/2. |
D—H···A | D—H | H···A | D···A | D—H···A |
N4A—H4A1···F5A | 0.86 (2) | 2.47 (2) | 2.7560 (18) | 100.0 (18) |
N4A—H4A1···N1 | 0.86 (2) | 2.23 (2) | 3.0664 (18) | 164 (2) |
N1A—H1A···O2Biv | 0.88 | 1.90 | 2.773 (2) | 173 |
N1B—H1B···O2Aviii | 0.88 | 1.88 | 2.7545 (19) | 175 |
N4A—H4A2···N3B | 0.91 (2) | 2.10 (2) | 2.992 (2) | 169 (2) |
N2—H2A···O2B | 0.89 (2) | 2.10 (2) | 2.9689 (19) | 167.6 (18) |
N2—H2B···O2Av | 0.84 (2) | 2.15 (2) | 2.8949 (19) | 149 (2) |
N4B—H4B1···N3A | 0.88 (2) | 2.20 (2) | 3.060 (2) | 169 (2) |
N4B—H4B2···F5B | 0.86 (2) | 2.42 (2) | 2.7459 (19) | 103 (2) |
N4B—H4B2···N3v | 0.86 (2) | 2.53 (2) | 3.360 (2) | 162 (2) |
N4—H4A···O2Bx | 0.89 (2) | 2.09 (2) | 2.9600 (15) | 165 (2) |
C6B—H6B···F5Aiii | 0.95 | 2.43 | 3.2444 (19) | 143 |
Symmetry codes: (iii) x, −y+1, z−1/2; (iv) x−1/2, y−1/2, z; (v) −x+1/2, −y+1/2, −z; (viii) x+1/2, y+1/2, z; (x) −x+1, y−1, −z+1/2. |
Acknowledgements
MM thanks the UGC–BSR, India, for the award of an RFSMS. PTM thanks the UGC–BSR faculty fellowship for a one-time grant.
References
Bennet, J. E. (1977). Ann. Intern. Med. 86, 319–21. CAS PubMed Google Scholar
Benson, J. M. & Nahata, M. C. (1988). Clin. Pharm. 7, 424–438. CAS PubMed Web of Science Google Scholar
Cason, C. J. (2004). POV-RAY for Windows. Persistence of Vision, Raytracer Pvt Ltd, Victoria, Australia. URL: https://www.povray.org. Google Scholar
Desiraju, G. R. (1989). Crystal Engineering. The Design of Organic Solids. Amsterdam: Elsevier. Google Scholar
Hulme, A. T. & Tocher, D. A. (2006). Cryst. Growth Des. 6, 481–487. Web of Science CSD CrossRef CAS Google Scholar
Janczak, J. & Perpétuo, G. J. (2001a). Acta Cryst. C57, 1431–1433. CrossRef CAS IUCr Journals Google Scholar
Janczak, J. & Perpétuo, G. J. (2001b). Acta Cryst. C57, 1120–1122. Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
Janczak, J. & Perpétuo, G. J. (2002). Acta Cryst. C58, o339–o341. Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
Janczak, J. & Perpétuo, G. J. (2004). Acta Cryst. C60, o211–o214. Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
Karthikeyan, A., Thomas Muthiah, P. & Perdih, F. (2014). Acta Cryst. E70, 328–330. CSD CrossRef IUCr Journals Google Scholar
Larsen, R. A., Kauffman, C. A., Pappas, P. G., Sobel, J. D. & Dismukes, W. E. (2003). In Essentials of Clinical Mycology, 2nd ed., pp. 57–60. Oxford University Press. UK. Google Scholar
Louis, T., Low, J. N. & Tollin, P. (1982). Cryst. Struct. Commun. 11, 1059–1064. CAS Google Scholar
MacDonald, J. C. & Whitesides, G. M. (1994). Chem. Rev. 94, 2383–2420. CrossRef CAS Web of Science Google Scholar
Macrae, C. F., Bruno, I. J., Chisholm, J. A., Edgington, P. R., McCabe, P., Pidcock, E., Rodriguez-Monge, L., Taylor, R., van de Streek, J. & Wood, P. A. (2008). J. Appl. Cryst. 41, 466–470. Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
Morschhäuser, J. (2003). Pharm. Unserer Zeit, 32, 124–128. PubMed Google Scholar
Mullen, C. A., Coale, M. M., Lowe, R. & Blaese, R. M. (1994). Cancer Res. 54, 1503–1506. CAS PubMed Google Scholar
Perpétuo, G. J., Ribeiro, M. A. & Janczak, J. (2005). Acta Cryst. E61, o1818–o1820. Web of Science CSD CrossRef IUCr Journals Google Scholar
Perumalla, S. R., Pedireddi, V. R. & Sun, C. C. (2013a). Cryst. Growth Des. 13, 429–432. CrossRef CAS Google Scholar
Perumalla, S. R., Pedireddi, V. R. & Sun, C. C. (2013b). Mol. Pharm. 10, 2462–2466. CrossRef CAS PubMed Google Scholar
Polak, A. & Scholer, H. J. (1980). Rev. Inst. Pasteur Lyon. 13, 233–244. CAS Google Scholar
Portalone, G. (2011). Chem. Cent. J. 5, 51. CrossRef PubMed Google Scholar
Portalone, G. & Colapietro, M. (2006). Acta Cryst. E62, o1049–o1051. Web of Science CSD CrossRef IUCr Journals Google Scholar
Prabakaran, P., Murugesan, S., Muthiah, P. T., Bocelli, G. & Righi, L. (2001). Acta Cryst. E57, o933–o936. Web of Science CSD CrossRef IUCr Journals Google Scholar
Rigaku/MSC (2008). CrystalClear. Rigaku Americas Corporation, The Woodlands, Texas, USA. Google Scholar
Russell, K. C., Lehn, J. M., Kyritsakas, N., DeCian, A. & Fischer, J. (1998). New J. Chem. 22, 123–128. CrossRef CAS Google Scholar
Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. Web of Science CrossRef CAS IUCr Journals Google Scholar
Silva, C. C. P. da, de Oliveira, R., Tenorio, J. C., Honorato, S., Ayala, A. P. & Ellena, J. (2013). Cryst. Growth Des. 13, 4315–4322. Google Scholar
Spek, A. L. (2009). Acta Cryst. D65, 148–155. Web of Science CrossRef CAS IUCr Journals Google Scholar
Tassel, D. & Madoff, A. (1968). J. Am. Med. Assoc. 206, 830–832. CrossRef CAS Google Scholar
Tutughamiarso, M., Bolte, M. & Egert, E. (2009). Acta Cryst. C65, o574–o578. Web of Science CSD CrossRef IUCr Journals Google Scholar
Tutughamiarso, M., Wagner, G. & Egert, E. (2012). Acta Cryst. B68, 431–443. Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
Vermes, A., Guchelaar, H. J. & Dankert, J. (2000). J. Antimicrob. Chemother. 46, 171–179. Web of Science CrossRef PubMed CAS Google Scholar
Wang, G., Wu, W. & Zhuang, L. (2007). Acta Cryst. E63, m2552–m2553. Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
Westrip, S. P. (2010). J. Appl. Cryst. 43, 920–925. Web of Science CrossRef CAS IUCr Journals Google Scholar
Whitesides, G. M., Mathias, J. P. & Seto, C. T. (1991). Science, 254, 1312–1319. CrossRef PubMed CAS Web of Science Google Scholar
Zerkowski, J. A. & Whitesides, G. M. (1994). J. Am. Chem. Soc. 116, 4298–4304. CSD CrossRef CAS Web of Science Google Scholar
This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.