research communications\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Hydrogen-bonding patterns in 5-fluoro­cytosine–melamine co-crystal (4/1)

CROSSMARK_Color_square_no_text.svg

aSchool of Chemistry, Bharathidasan University, Tiruchirappalli 620 024, Tamil Nadu, India, and bDepartment of Chemistry, Clemson University, H. L. Hunter Laboratories, Clemson, SC 29634, USA
*Correspondence e-mail: tommtrichy@yahoo.co.in

Edited by P. C. Healy, Griffith University, Australia (Received 1 March 2016; accepted 21 March 2016; online 31 March 2016)

The asymmetric unit of the title compound, 4C4H4FN3O·C3H6N6, comprises of two independent 5-fluoro­cytosine (5FC) mol­ecules (A and B) and one half-mol­ecule of melamine (M). The other half of the melamine mol­ecule is generated by a twofold axis. 5FC mol­ecules A and B are linked through two different homosynthons [R22(8) ring motif]; one is formed via a pair of N—H⋯O hydrogen bonds and the second via a pair of N—H⋯N hydrogen bonds. In addition to this pairing, the O atoms of 5FC mol­ecules A and B inter­act with the N2 amino group on both sides of the melamine mol­ecule, forming a DDAA array of quadruple hydrogen bonds and generating a supra­molecular pattern. The 5FC (mol­ecules A and B) and two melamine mol­ecules inter­act via N—H⋯O, N—H⋯N and N—H⋯O, N—H⋯N, C—H⋯F hydrogen bonds forming R66(24) and R44(15) ring motifs. The crystal structure is further strengthened by C—H⋯F, C—F⋯π and ππ stacking inter­actions.

1. Chemical context

Pyrimidine derivatives are used in the treatment of anti­viral, anti­fungal, anti­tumor and cardiovascular diseases. 5-Fluoro­cytosine (5FC), a synthetic anti­mycotic compound, first synthesized in 1957 and widely used as an anti­tumor agent as a cytosine derivative (Tassel & Madoff, 1968[Tassel, D. & Madoff, A. (1968). J. Am. Med. Assoc. 206, 830-832.]; Benson & Nahata, 1988[Benson, J. M. & Nahata, M. C. (1988). Clin. Pharm. 7, 424-438.]; Bennet, 1977[Bennet, J. E. (1977). Ann. Intern. Med. 86, 319-21.]; Polak & Scholer, 1980[Polak, A. & Scholer, H. J. (1980). Rev. Inst. Pasteur Lyon. 13, 233-244.]). It is active against fungal infection and was released in the year 1968 (Vermes et al., 2000[Vermes, A., Guchelaar, H. J. & Dankert, J. (2000). J. Antimicrob. Chemother. 46, 171-179.]). It becomes active by deamination of 5FC into 5-fluoro­uracil by the enzyme cytosine deaminase (CD) and inhibits RNA and DNA synthesis (Larsen et al., 2003[Larsen, R. A., Kauffman, C. A., Pappas, P. G., Sobel, J. D. & Dismukes, W. E. (2003). In Essentials of Clinical Mycology, 2nd ed., pp. 57-60. Oxford University Press. UK.]; Mullen et al., 1994[Mullen, C. A., Coale, M. M., Lowe, R. & Blaese, R. M. (1994). Cancer Res. 54, 1503-1506.]; Morschhäuser, 2003[Morschhäuser, J. (2003). Pharm. Unserer Zeit, 32, 124-128.]). Melamine is a triazine derivative. It shows anti­tumor activity as well as biological activities such as anti­angiogenesis and anti­microbial effects. Triazine derivatives are useful synthons in supra­molecular chemistry. In particular, amino­triazines have been used for the formation of supra­molecular architectures using hydrogen bonds (Russell et al., 1998[Russell, K. C., Lehn, J. M., Kyritsakas, N., DeCian, A. & Fischer, J. (1998). New J. Chem. 22, 123-128.]; MacDonald & Whitesides, 1994[MacDonald, J. C. & Whitesides, G. M. (1994). Chem. Rev. 94, 2383-2420.]; Whitesides et al., 1991[Whitesides, G. M., Mathias, J. P. & Seto, C. T. (1991). Science, 254, 1312-1319.]). The organic and inorganic salts develop well-defined non-covalent mol­ecular recognition via multiple hydrogen bonds by self assembly of components which contain a complementary array of hydrogen-bonding sites (Desiraju, 1989[Desiraju, G. R. (1989). Crystal Engineering. The Design of Organic Solids. Amsterdam: Elsevier.]). The present work is focused on the supra­molecular hydrogen-bonding patterns exhibited by the co-crystal of 5-fluoro­cytosine with melamine.

[Scheme 1]

2. Structural commentary

The asymmetric unit comprises two independent 5-fluoro­cytosine (5FC) mol­ecules (A and B) and half a mol­ecule of melamine (M). The twofold axis of melamine coincides with the crystallographic twofold axis. An ORTEP view of the crystal structure is shown in Fig. 1[link]. The values for the C—F bond distance in the two molecules [1.3491 (18) in 5FC A and 1.3492 (18) Å in 5FC B and the corresponding internal angles at the carbon-carrying fluorine atom [C2A—N3A—C4A = 119.96 (13) in 5FC A and C2B—N3B—C4B = 119.92 (13)° in 5FC B] agree with those reported in the literature (Louis et al., 1982[Louis, T., Low, J. N. & Tollin, P. (1982). Cryst. Struct. Commun. 11, 1059-1064.]).

[Figure 1]
Figure 1
The asymmetric unit of the title compound, showing 30% probability displacement ellipsoids. Dashed lines indicate hydrogen bonds. Atoms with the suffix a are generated by the symmetry operation 1 − x, y, {\script{1\over 2}} − z.

3. Supra­molecular features

Two different homosynthons are assembled via a pair of N—H⋯O and N—H⋯N hydrogen bonds (Table 1[link]) to render a robust R22(8) ring motif. The first type of homosynthon is formed by the inter­action of the protonated N1 and O atoms of 5FC mol­ecules A and B through N—H⋯O hydrogen bonds. Another type of homosynthon is formed via the N4-amino and N3-pyrimidine ring nitro­gen atoms of the 5FC A and B mol­ecules through a pair of N—H⋯N hydrogen bonds (da Silva et al., 2013[Silva, C. C. P. da, de Oliveira, R., Tenorio, J. C., Honorato, S., Ayala, A. P. & Ellena, J. (2013). Cryst. Growth Des. 13, 4315-4322.]; Tutughamiarso et al., 2012[Tutughamiarso, M., Wagner, G. & Egert, E. (2012). Acta Cryst. B68, 431-443.]). The melamine mol­ecule and 5FC (mol­ecules A and B) are involved in the generation of a quadruple hydrogen-bonded DDAA array having a fused-ring sequence of R33(10), R22(8) and R33(10). The R33(10) motif is formed on both sides via N—H⋯O and N—H⋯N hydrogen bonds. These quadruple arrays are further linked by three large ring motifs: R66(24), R43(16) and R43(14). The R66(24) ring motifs are formed by the inter­action of two 5FC A mol­ecules, two 5FC B mol­ecules and two melamine mol­ecules through several N—H⋯O and N—H⋯N hydrogen bonds, generating a hexa­meric supermolecule. The R43(16) ring motif links the one 5FC A mol­ecule, two 5FC B mol­ecules and one melamine mol­ecule through N—H⋯O, N—H⋯N and C—H⋯F hydrogen bonds, generating a tetra­meric supermolecule. Similarly, the R43(14) ring motifs are formed by the inter­action of two 5FC A mol­ecules, one 5FC B mol­ecule and one melamine mol­ecule through N—H⋯O, N—H⋯N and C—H⋯F hydrogen bonds, generating another tetra­meric supermolecule. The association of these R22(8), DDAA array and R66(24), R43(16) and R43(14) motifs leads to the formation of supra­molecular patterns (Fig. 2[link]). The crystal structure is also stabilized by weak C—H⋯F hydrogen bonds and ππ stacking inter­actions between 5FC A and B mol­ecules with an inter­planar distance of 3.475 (6) Å, centroid-to-centroid distance of 3.6875 (11) Å, and slip angle of 19.52°. The crystal structure is further strengthened by a C—F⋯π inter­action [3.4541 (14) Å] between 5-fluoro­cytosinium mol­ecule A and the melamine mol­ecule (Fig. 3[link]).

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
N4A—H4A1⋯F5A 0.86 (2) 2.47 (2) 2.7560 (18) 100.0 (18)
N4A—H4A1⋯N1 0.86 (2) 2.23 (2) 3.0664 (18) 164 (2)
N1A—H1A⋯O2Bii 0.88 1.90 2.773 (2) 173
N1B—H1B⋯O2Aiii 0.88 1.88 2.7545 (19) 175
N4A—H4A2⋯N3B 0.91 (2) 2.10 (2) 2.992 (2) 169 (2)
N2—H2A⋯O2B 0.89 (2) 2.10 (2) 2.9689 (19) 167.6 (18)
N2—H2B⋯O2Aiv 0.84 (2) 2.15 (2) 2.8949 (19) 149 (2)
N4B—H4B1⋯N3A 0.88 (2) 2.20 (2) 3.060 (2) 169 (2)
N4B—H4B2⋯F5B 0.86 (2) 2.42 (2) 2.7459 (19) 103 (2)
N4B—H4B2⋯N3iv 0.86 (2) 2.53 (2) 3.360 (2) 162 (2)
N4—H4A⋯O2Bv 0.89 (2) 2.09 (2) 2.9600 (15) 165 (2)
C6B—H6B⋯F5Avi 0.95 2.43 3.2444 (19) 143
Symmetry codes: (ii) [x-{\script{1\over 2}}, y-{\script{1\over 2}}, z]; (iii) [x+{\script{1\over 2}}, y+{\script{1\over 2}}, z]; (iv) [-x+{\script{1\over 2}}, -y+{\script{1\over 2}}, -z]; (v) [-x+1, y-1, -z+{\script{1\over 2}}]; (vi) [x, -y+1, z-{\script{1\over 2}}].
[Figure 2]
Figure 2
A view of the supra­molecular pattern involving two synthons formed by N—H⋯O hydrogen bonds. 5FC A mol­ecules are shown in green, 5FC B mol­ecules in blue and melamine in red. Blue dashed lines indicate hydrogen bonds. Symmetry codes are given in Table 1[link].
[Figure 3]
Figure 3
A view of C—F⋯π and aromatic ππ stacking inter­actions (dashed lines) between 5FC mol­ecules A and B and melamine.

In this co-crystal, 5FC mol­ecules A and B form two types of homosynthons (two types of base pairing) while the melamine mol­ecule inter­acts with them via N—H⋯O and N—H⋯N hydrogen bonds, generating the supra­molecular architecture.

4. Database survey

The crystal structure of 5-fluoro­cytosine monohydrate (Louis et al., 1982[Louis, T., Low, J. N. & Tollin, P. (1982). Cryst. Struct. Commun. 11, 1059-1064.]; Portalone & Colapietro, 2006[Portalone, G. & Colapietro, M. (2006). Acta Cryst. E62, o1049-o1051.]; Portalone, 2011[Portalone, G. (2011). Chem. Cent. J. 5, 51.]), polymorphs (Hulme & Tocher, 2006[Hulme, A. T. & Tocher, D. A. (2006). Cryst. Growth Des. 6, 481-487.]; Tutughamiarso et al., 2009[Tutughamiarso, M., Bolte, M. & Egert, E. (2009). Acta Cryst. C65, o574-o578.]), salts (Perumalla et al., 2013a[Perumalla, S. R., Pedireddi, V. R. & Sun, C. C. (2013a). Cryst. Growth Des. 13, 429-432.],b[Perumalla, S. R., Pedireddi, V. R. & Sun, C. C. (2013b). Mol. Pharm. 10, 2462-2466.]) and co-crystals (Tutughamiarso et al., 2012[Tutughamiarso, M., Wagner, G. & Egert, E. (2012). Acta Cryst. B68, 431-443.]; Da Silva et al., 2013[Silva, C. C. P. da, de Oliveira, R., Tenorio, J. C., Honorato, S., Ayala, A. P. & Ellena, J. (2013). Cryst. Growth Des. 13, 4315-4322.]) have been reported in the literature. From our laboratory, 5-fluoro­cytosinium salicylate (Prabakaran et al., 2001[Prabakaran, P., Murugesan, S., Muthiah, P. T., Bocelli, G. & Righi, L. (2001). Acta Cryst. E57, o933-o936.]) and 5-fluoro­cytosinium 3-hy­droxy­picolinate (Karthikeyan et al., 2014[Karthikeyan, A., Thomas Muthiah, P. & Perdih, F. (2014). Acta Cryst. E70, 328-330.]) have been reported. Various salts, co-crystals and metal complexes of melamine have also been reported (Janczak & Perpétuo, 2001a[Janczak, J. & Perpétuo, G. J. (2001a). Acta Cryst. C57, 1431-1433.],b[Janczak, J. & Perpétuo, G. J. (2001b). Acta Cryst. C57, 1120-1122.], 2002[Janczak, J. & Perpétuo, G. J. (2002). Acta Cryst. C58, o339-o341.], 2004[Janczak, J. & Perpétuo, G. J. (2004). Acta Cryst. C60, o211-o214.]; Perpétuo et al., 2005[Perpétuo, G. J., Ribeiro, M. A. & Janczak, J. (2005). Acta Cryst. E61, o1818-o1820.]; Zerkowski & Whitesides, 1994[Zerkowski, J. A. & Whitesides, G. M. (1994). J. Am. Chem. Soc. 116, 4298-4304.]; Wang et al., 2007[Wang, G., Wu, W. & Zhuang, L. (2007). Acta Cryst. E63, m2552-m2553.]).

5. Synthesis and crystallization

Hot aqueous solutions of 5-fluoro­cytosine (32 mg) and melamine (31 mg) were mixed in a 1:1 molar ratio. The resulting solution was warmed to 353 K using a water bath for half an hour and kept at room temperature for crystallization. After one week, colourless crystals were obtained.

6. Refinement details

Crystal data, data collection and structure refinement details are summarized in Table 2[link]. The hydrogen atoms of amino (N2, N4, N4A, N4B) groups were located in a difference Fourier map and refined freely. The other hydrogen atoms were positioned geometrically (C—H = 0.95, N—H = 0.88 Å) and were refined using a riding model with Uiso(H) = 1.2Ueq(parent atom).

Table 2
Experimental details

Crystal data
Chemical formula 4C4H4FN3O·C3H6N6
Mr 642.55
Crystal system, space group Monoclinic, C2/c
Temperature (K) 200
a, b, c (Å) 18.343 (4), 7.9591 (16), 19.680 (4)
β (°) 114.65 (3)
V3) 2611.3 (11)
Z 4
Radiation type Mo Kα
μ (mm−1) 0.14
Crystal size (mm) 0.20 × 0.20 × 0.20
 
Data collection
Diffractometer Rigaku AFC–8S
Absorption correction Multi-scan (CrystalClear; Rigaku/MSC, 2008[Rigaku/MSC (2008). CrystalClear. Rigaku Americas Corporation, The Woodlands, Texas, USA.])
Tmin, Tmax 0.972, 0.972
No. of measured, independent and observed [I > 2σ(I)] reflections 10071, 2564, 2362
Rint 0.019
(sin θ/λ)max−1) 0.617
 
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.045, 0.123, 1.07
No. of reflections 2564
No. of parameters 233
H-atom treatment H atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å−3) 0.44, −0.34
Computer programs: CrystalClear (Rigaku/MSC, 2008[Rigaku/MSC (2008). CrystalClear. Rigaku Americas Corporation, The Woodlands, Texas, USA.]), SHELXS97 and SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]), PLATON (Spek, 2009[Spek, A. L. (2009). Acta Cryst. D65, 148-155.]), Mercury (Macrae et al., 2008[Macrae, C. F., Bruno, I. J., Chisholm, J. A., Edgington, P. R., McCabe, P., Pidcock, E., Rodriguez-Monge, L., Taylor, R., van de Streek, J. & Wood, P. A. (2008). J. Appl. Cryst. 41, 466-470.]), POV-RAY (Cason, 2004[Cason, C. J. (2004). POV-RAY for Windows. Persistence of Vision, Raytracer Pvt Ltd, Victoria, Australia. URL: https://www.povray.org.]) and publCIF (Westrip, 2010[Westrip, S. P. (2010). J. Appl. Cryst. 43, 920-925.]).

Supporting information


Computing details top

Data collection: CrystalClear (Rigaku/MSC, 2008); cell refinement: CrystalClear (Rigaku/MSC, 2008); data reduction: CrystalClear (Rigaku/MSC, 2008); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: PLATON (Spek, 2009), Mercury (Macrae et al., 2008) and POV-RAY (Cason, 2004); software used to prepare material for publication: PLATON (Spek, 2009) and publCIF (Westrip, 2010).

4-Amino-5-fluoro-1,2-dihydropyrimidin-2-one–1,3,5-triazine-2,4,6-triamine (4/1) top
Crystal data top
4(C4H4FN3O)·C3H6N6F(000) = 1320
Mr = 642.55Dx = 1.634 Mg m3
Monoclinic, C2/cMo Kα radiation, λ = 0.71073 Å
Hall symbol: -C 2ycCell parameters from 2564 reflections
a = 18.343 (4) Åθ = 2.4–26.0°
b = 7.9591 (16) ŵ = 0.14 mm1
c = 19.680 (4) ÅT = 200 K
β = 114.65 (3)°Prism, colorless
V = 2611.3 (11) Å30.20 × 0.20 × 0.20 mm
Z = 4
Data collection top
Rigaku AFC–8S
diffractometer
2564 independent reflections
Radiation source: fine focus sealed tube2362 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.019
Detector resolution: 14.6199 pixels mm-1θmax = 26.0°, θmin = 2.4°
ω scansh = 2218
Absorption correction: multi-scan
(CrystalClear; Rigaku/MSC, 2008)
k = 99
Tmin = 0.972, Tmax = 0.972l = 2424
10071 measured reflections
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.045Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.123H atoms treated by a mixture of independent and constrained refinement
S = 1.07 w = 1/[σ2(Fo2) + (0.0741P)2 + 1.8751P]
where P = (Fo2 + 2Fc2)/3
2564 reflections(Δ/σ)max < 0.001
233 parametersΔρmax = 0.44 e Å3
0 restraintsΔρmin = 0.34 e Å3
Special details top

Geometry. Bond distances, angles etc. have been calculated using the rounded fractional coordinates. All su's are estimated from the variances of the (full) variance-covariance matrix. The cell esds are taken into account in the estimation of distances, angles and torsion angles

Refinement. Refinement on F2 for ALL reflections except those flagged by the user for potential systematic errors. Weighted R-factors wR and all goodnesses of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The observed criterion of F2 > 2sigma(F2) is used only for calculating -R-factor-obs etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R-factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
N10.500000.1866 (2)0.250000.0244 (5)
N20.48606 (8)0.18336 (19)0.12847 (8)0.0326 (4)
N30.48592 (8)0.07579 (17)0.18444 (7)0.0342 (4)
N40.500000.3280 (3)0.250000.0501 (8)
C20.49100 (8)0.09524 (18)0.18883 (7)0.0248 (4)
C40.500000.1589 (3)0.250000.0300 (6)
F5A0.32327 (5)0.12206 (14)0.26116 (5)0.0420 (3)
O2A0.06416 (6)0.34719 (15)0.03132 (6)0.0326 (3)
N1A0.11896 (8)0.17904 (17)0.13300 (7)0.0315 (4)
N3A0.19980 (7)0.34775 (15)0.09362 (7)0.0252 (3)
N4A0.33640 (8)0.35220 (17)0.16222 (8)0.0299 (4)
C2A0.12590 (8)0.29396 (19)0.08380 (8)0.0253 (4)
C4A0.26467 (8)0.29295 (18)0.15183 (8)0.0243 (4)
C5A0.25656 (9)0.17587 (19)0.20310 (8)0.0286 (4)
C6A0.18349 (9)0.1215 (2)0.19258 (9)0.0332 (5)
F5B0.21480 (6)0.72438 (14)0.15032 (5)0.0419 (3)
O2B0.46711 (6)0.54980 (13)0.09792 (6)0.0280 (3)
N1B0.41539 (7)0.70320 (16)0.00875 (7)0.0278 (3)
N3B0.33298 (7)0.53026 (15)0.02705 (7)0.0261 (3)
N4B0.19773 (8)0.51382 (18)0.04738 (8)0.0328 (4)
C2B0.40666 (8)0.59203 (17)0.04058 (8)0.0240 (4)
C4B0.26965 (9)0.57389 (18)0.03540 (8)0.0259 (4)
C5B0.27992 (9)0.68402 (19)0.08772 (8)0.0285 (4)
C6B0.35239 (9)0.74902 (19)0.07308 (8)0.0298 (4)
H2A0.4807 (12)0.294 (3)0.1263 (11)0.037 (5)*
H2B0.4701 (12)0.135 (3)0.0868 (12)0.042 (5)*
H4A0.5134 (13)0.381 (3)0.2935 (11)0.048 (6)*
H4A10.3799 (13)0.308 (3)0.1947 (11)0.040 (5)*
H1A0.071000.141800.125500.0380*
H4A20.3380 (13)0.418 (3)0.1253 (13)0.049 (6)*
H6A0.177100.043900.226400.0400*
H1B0.463000.746100.001500.0330*
H4B10.1965 (13)0.453 (3)0.0107 (12)0.047 (6)*
H4B20.1569 (13)0.543 (3)0.0874 (13)0.045 (6)*
H6B0.359600.825400.106900.0360*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
N10.0248 (8)0.0253 (8)0.0219 (8)0.00000.0085 (7)0.0000
N20.0389 (8)0.0345 (8)0.0244 (7)0.0006 (6)0.0133 (6)0.0007 (5)
N30.0418 (8)0.0307 (7)0.0290 (7)0.0010 (5)0.0138 (6)0.0013 (5)
N40.098 (2)0.0262 (10)0.0346 (11)0.00000.0362 (13)0.0000
C20.0196 (6)0.0293 (7)0.0231 (7)0.0011 (5)0.0064 (5)0.0001 (5)
C40.0387 (11)0.0260 (10)0.0245 (10)0.00000.0124 (9)0.0000
F5A0.0276 (5)0.0583 (7)0.0320 (5)0.0010 (4)0.0043 (4)0.0153 (4)
O2A0.0229 (5)0.0448 (7)0.0268 (5)0.0027 (4)0.0070 (4)0.0085 (5)
N1A0.0245 (6)0.0405 (7)0.0289 (7)0.0059 (5)0.0106 (5)0.0071 (5)
N3A0.0222 (6)0.0289 (6)0.0244 (6)0.0020 (5)0.0096 (5)0.0018 (5)
N4A0.0216 (6)0.0349 (7)0.0318 (7)0.0005 (5)0.0099 (6)0.0054 (5)
C2A0.0245 (7)0.0299 (7)0.0219 (7)0.0018 (5)0.0101 (6)0.0004 (5)
C4A0.0250 (7)0.0249 (7)0.0239 (7)0.0008 (5)0.0112 (6)0.0031 (5)
C5A0.0261 (7)0.0334 (8)0.0226 (7)0.0005 (6)0.0065 (6)0.0033 (6)
C6A0.0312 (8)0.0387 (8)0.0283 (8)0.0037 (6)0.0111 (6)0.0090 (6)
F5B0.0300 (5)0.0569 (6)0.0302 (5)0.0019 (4)0.0041 (4)0.0115 (4)
O2B0.0250 (5)0.0298 (5)0.0269 (5)0.0040 (4)0.0085 (4)0.0023 (4)
N1B0.0246 (6)0.0310 (6)0.0282 (6)0.0051 (5)0.0114 (5)0.0032 (5)
N3B0.0245 (6)0.0270 (6)0.0279 (6)0.0055 (5)0.0119 (5)0.0003 (5)
N4B0.0258 (7)0.0408 (8)0.0294 (7)0.0066 (5)0.0092 (6)0.0010 (6)
C2B0.0267 (7)0.0226 (6)0.0241 (7)0.0030 (5)0.0119 (6)0.0030 (5)
C4B0.0274 (7)0.0254 (7)0.0259 (7)0.0032 (5)0.0122 (6)0.0045 (5)
C5B0.0267 (7)0.0341 (8)0.0217 (7)0.0007 (6)0.0072 (6)0.0014 (6)
C6B0.0320 (8)0.0328 (8)0.0257 (7)0.0021 (6)0.0130 (6)0.0040 (6)
Geometric parameters (Å, º) top
F5A—C5A1.3491 (18)N4A—C4A1.331 (2)
F5B—C5B1.3492 (18)N1A—H1A0.8800
O2A—C2A1.2462 (19)N4A—H4A20.91 (2)
O2B—C2B1.2539 (19)N4A—H4A10.86 (2)
N1—C21.3563 (16)N1B—C2B1.3714 (19)
N1—C2i1.3563 (16)N1B—C6B1.361 (2)
N2—C21.350 (2)N3B—C4B1.338 (2)
N3—C21.365 (2)N3B—C2B1.356 (2)
N3—C41.3751 (18)N4B—C4B1.329 (2)
N4—C41.346 (3)N1B—H1B0.8800
N2—H2A0.89 (2)N4B—H4B10.88 (2)
N2—H2B0.84 (2)N4B—H4B20.86 (2)
N4—H4A0.89 (2)C4A—C5A1.426 (2)
N4—H4Ai0.89 (2)C5A—C6A1.340 (3)
N1A—C2A1.376 (2)C6A—H6A0.9500
N1A—C6A1.352 (2)C4B—C5B1.423 (2)
N3A—C4A1.335 (2)C5B—C6B1.341 (2)
N3A—C2A1.356 (2)C6B—H6B0.9500
F5A···C2i3.134 (2)C4B···C4Bix3.340 (2)
F5A···C6Bii3.2444 (19)C5A···C5Bv3.541 (2)
F5A···N4A2.7560 (18)C5B···C6Av3.432 (2)
F5B···N4B2.7459 (19)C5B···C5Av3.541 (2)
F5B···C6Aiii3.148 (2)C5B···C4Bix3.500 (2)
F5A···H4A12.47 (2)C6A···F5Bii3.148 (2)
F5A···H6Bii2.4300C6A···C5Bv3.432 (2)
F5B···H4B22.42 (2)C6B···N3Aix3.325 (2)
O2A···N1Biv2.7545 (19)C6B···F5Aiii3.2444 (19)
O2A···N2v2.8949 (19)C6B···N4Bix3.442 (2)
O2B···N4vi2.9600 (15)C2···H4A12.69 (2)
O2B···N22.9689 (19)C2···H4A1i3.03 (2)
O2B···N4vii2.9600 (15)C2···H4B2v2.84 (2)
O2B···N1Aviii2.773 (2)C2A···H4B12.96 (2)
O2A···H1Biv1.8800C2A···H6Bix3.0600
O2A···H2Bv2.15 (2)C2A···H1Biv2.7700
O2B···H4Avii2.09 (2)C2B···H1Aviii2.8000
O2B···H4A22.84 (3)C2B···H4Avii2.98 (2)
O2B···H1Aviii1.9000C2B···H4A22.84 (2)
O2B···H2A2.10 (2)C2B···H2A2.90 (2)
N1···N4A3.0664 (18)C4A···H6Axii2.9600
N1···N4Ai3.0664 (18)H4A1···C22.69 (2)
N1A···O2Biv2.773 (2)H4A1···N12.23 (2)
N1B···O2Aviii2.7545 (19)H4A1···N22.93 (2)
N2···O2B2.9689 (19)H4A1···N12.23 (2)
N2···O2Av2.8949 (19)H4A1···F5A2.47 (2)
N3A···N4B3.060 (2)H4A1···C2i3.03 (2)
N3A···C6Bix3.325 (2)H1A···C2Biv2.8000
N3B···N4A2.992 (2)H1A···H1Biv2.5600
N4···O2Bx2.9600 (15)H1A···O2Biv1.9000
N4···O2Bxi2.9600 (15)H1B···C2Aviii2.7700
N4A···N13.0664 (18)H1B···O2Aviii1.8800
N4A···N13.0664 (18)H1B···H1Aviii2.5600
N4A···C23.356 (2)H4A2···O2B2.84 (3)
N4A···N3B2.992 (2)H4A2···N3B2.10 (2)
N4A···F5A2.7560 (18)H4A2···C2B2.84 (2)
N4B···C4Av3.442 (2)H2A···C2B2.90 (2)
N4B···N3A3.060 (2)H2A···O2B2.10 (2)
N4B···F5B2.7459 (19)H2B···O2Av2.15 (2)
N4B···C6Bix3.442 (2)H4B1···N3A2.20 (2)
N1···H4A12.23 (2)H4B1···C2A2.96 (2)
N1···H4A1i2.23 (2)H4B2···F5B2.42 (2)
N2···H4A12.93 (2)H4B2···N3v2.53 (2)
N3···H4B2v2.53 (2)H4B2···C2v2.84 (2)
N3A···H6Bix2.8700H4A···O2Bx2.09 (2)
N3A···H4B12.20 (2)H4A···C2Bx2.98 (2)
N3B···H4A22.10 (2)H6A···N4Axiii2.7700
N4A···H6Axii2.7700H6A···C4Axiii2.9600
C2···N4A3.356 (2)H6B···F5Aiii2.4300
C2···F5Ai3.134 (2)H6B···N3Aix2.8700
C4A···N4Bv3.442 (2)H6B···C2Aix3.0600
C4B···C5Bix3.500 (2)
C2—N1—C2i115.16 (14)N3—C4—N3i122.49 (19)
C2—N3—C4116.06 (14)N3—C4—N4118.75 (11)
C2—N2—H2B119.3 (16)O2A—C2A—N1A119.37 (15)
H2A—N2—H2B115 (2)N1A—C2A—N3A119.33 (14)
C2—N2—H2A121.7 (13)O2A—C2A—N3A121.30 (14)
C4—N4—H4A118.2 (15)N3A—C4A—N4A119.11 (14)
H4A—N4—H4Ai124 (2)N3A—C4A—C5A120.14 (15)
C4—N4—H4Ai118.2 (15)N4A—C4A—C5A120.73 (14)
C2A—N1A—C6A122.07 (15)F5A—C5A—C6A121.59 (14)
C2A—N3A—C4A119.96 (13)F5A—C5A—C4A118.77 (15)
C6A—N1A—H1A119.00C4A—C5A—C6A119.64 (15)
C2A—N1A—H1A119.00N1A—C6A—C5A118.83 (15)
C4A—N4A—H4A1121.3 (16)N1A—C6A—H6A121.00
C4A—N4A—H4A2116.3 (16)C5A—C6A—H6A121.00
H4A1—N4A—H4A2120 (2)O2B—C2B—N3B120.96 (14)
C2B—N1B—C6B121.81 (14)N1B—C2B—N3B119.73 (14)
C2B—N3B—C4B119.92 (13)O2B—C2B—N1B119.31 (14)
C2B—N1B—H1B119.00N3B—C4B—C5B119.89 (16)
C6B—N1B—H1B119.00N4B—C4B—C5B120.96 (15)
C4B—N4B—H4B2119.0 (17)N3B—C4B—N4B119.15 (14)
H4B1—N4B—H4B2126 (2)C4B—C5B—C6B120.04 (14)
C4B—N4B—H4B1114.6 (16)F5B—C5B—C4B118.25 (15)
N2—C2—N3119.01 (13)F5B—C5B—C6B121.68 (14)
N1—C2—N2116.19 (14)N1B—C6B—C5B118.54 (14)
N1—C2—N3124.81 (13)N1B—C6B—H6B121.00
N3i—C4—N4118.75 (11)C5B—C6B—H6B121.00
C2i—N1—C2—N2176.73 (13)C4B—N3B—C2B—O2B178.38 (14)
C2i—N1—C2—N33.98 (19)C2B—N3B—C4B—N4B179.21 (14)
C4—N3—C2—N17.5 (2)C2B—N3B—C4B—C5B0.5 (2)
C4—N3—C2—N2173.24 (13)C4B—N3B—C2B—N1B2.1 (2)
C2—N3—C4—N4176.55 (11)N3A—C4A—C5A—F5A179.63 (13)
C2—N3—C4—N3i3.45 (18)N3A—C4A—C5A—C6A0.1 (2)
C6A—N1A—C2A—O2A177.48 (15)N4A—C4A—C5A—F5A2.1 (2)
C6A—N1A—C2A—N3A2.2 (2)N4A—C4A—C5A—C6A178.19 (15)
C2A—N1A—C6A—C5A1.3 (2)F5A—C5A—C6A—N1A179.48 (14)
C4A—N3A—C2A—O2A177.67 (14)C4A—C5A—C6A—N1A0.3 (2)
C4A—N3A—C2A—N1A2.0 (2)N3B—C4B—C5B—F5B179.56 (14)
C2A—N3A—C4A—N4A177.35 (14)N3B—C4B—C5B—C6B2.6 (2)
C2A—N3A—C4A—C5A1.0 (2)N4B—C4B—C5B—F5B0.8 (2)
C6B—N1B—C2B—N3B2.7 (2)N4B—C4B—C5B—C6B177.13 (15)
C2B—N1B—C6B—C5B0.6 (2)F5B—C5B—C6B—N1B179.78 (14)
C6B—N1B—C2B—O2B177.75 (14)C4B—C5B—C6B—N1B2.0 (2)
Symmetry codes: (i) x+1, y, z+1/2; (ii) x, y+1, z+1/2; (iii) x, y+1, z1/2; (iv) x1/2, y1/2, z; (v) x+1/2, y+1/2, z; (vi) x, y+1, z; (vii) x+1, y+1, z+1/2; (viii) x+1/2, y+1/2, z; (ix) x+1/2, y+3/2, z; (x) x+1, y1, z+1/2; (xi) x, y1, z; (xii) x+1/2, y+1/2, z+1/2; (xiii) x+1/2, y1/2, z+1/2.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N4A—H4A1···F5A0.86 (2)2.47 (2)2.7560 (18)100.0 (18)
N4A—H4A1···N10.86 (2)2.23 (2)3.0664 (18)164 (2)
N1A—H1A···O2Biv0.881.902.773 (2)173
N1B—H1B···O2Aviii0.881.882.7545 (19)175
N4A—H4A2···N3B0.91 (2)2.10 (2)2.992 (2)169 (2)
N2—H2A···O2B0.89 (2)2.10 (2)2.9689 (19)167.6 (18)
N2—H2B···O2Av0.84 (2)2.15 (2)2.8949 (19)149 (2)
N4B—H4B1···N3A0.88 (2)2.20 (2)3.060 (2)169 (2)
N4B—H4B2···F5B0.86 (2)2.42 (2)2.7459 (19)103 (2)
N4B—H4B2···N3v0.86 (2)2.53 (2)3.360 (2)162 (2)
N4—H4A···O2Bx0.89 (2)2.09 (2)2.9600 (15)165 (2)
C6B—H6B···F5Aiii0.952.433.2444 (19)143
Symmetry codes: (iii) x, y+1, z1/2; (iv) x1/2, y1/2, z; (v) x+1/2, y+1/2, z; (viii) x+1/2, y+1/2, z; (x) x+1, y1, z+1/2.
 

Acknowledgements

MM thanks the UGC–BSR, India, for the award of an RFSMS. PTM thanks the UGC–BSR faculty fellowship for a one-time grant.

References

First citationBennet, J. E. (1977). Ann. Intern. Med. 86, 319–21.  CAS PubMed Google Scholar
First citationBenson, J. M. & Nahata, M. C. (1988). Clin. Pharm. 7, 424–438.  CAS PubMed Web of Science Google Scholar
First citationCason, C. J. (2004). POV-RAY for Windows. Persistence of Vision, Raytracer Pvt Ltd, Victoria, Australia. URL: https://www.povray.orgGoogle Scholar
First citationDesiraju, G. R. (1989). Crystal Engineering. The Design of Organic Solids. Amsterdam: Elsevier.  Google Scholar
First citationHulme, A. T. & Tocher, D. A. (2006). Cryst. Growth Des. 6, 481–487.  Web of Science CSD CrossRef CAS Google Scholar
First citationJanczak, J. & Perpétuo, G. J. (2001a). Acta Cryst. C57, 1431–1433.  CrossRef CAS IUCr Journals Google Scholar
First citationJanczak, J. & Perpétuo, G. J. (2001b). Acta Cryst. C57, 1120–1122.  Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
First citationJanczak, J. & Perpétuo, G. J. (2002). Acta Cryst. C58, o339–o341.  Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
First citationJanczak, J. & Perpétuo, G. J. (2004). Acta Cryst. C60, o211–o214.  Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
First citationKarthikeyan, A., Thomas Muthiah, P. & Perdih, F. (2014). Acta Cryst. E70, 328–330.  CSD CrossRef IUCr Journals Google Scholar
First citationLarsen, R. A., Kauffman, C. A., Pappas, P. G., Sobel, J. D. & Dismukes, W. E. (2003). In Essentials of Clinical Mycology, 2nd ed., pp. 57–60. Oxford University Press. UK.  Google Scholar
First citationLouis, T., Low, J. N. & Tollin, P. (1982). Cryst. Struct. Commun. 11, 1059–1064.  CAS Google Scholar
First citationMacDonald, J. C. & Whitesides, G. M. (1994). Chem. Rev. 94, 2383–2420.  CrossRef CAS Web of Science Google Scholar
First citationMacrae, C. F., Bruno, I. J., Chisholm, J. A., Edgington, P. R., McCabe, P., Pidcock, E., Rodriguez-Monge, L., Taylor, R., van de Streek, J. & Wood, P. A. (2008). J. Appl. Cryst. 41, 466–470.  Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
First citationMorschhäuser, J. (2003). Pharm. Unserer Zeit, 32, 124–128.  PubMed Google Scholar
First citationMullen, C. A., Coale, M. M., Lowe, R. & Blaese, R. M. (1994). Cancer Res. 54, 1503–1506.  CAS PubMed Google Scholar
First citationPerpétuo, G. J., Ribeiro, M. A. & Janczak, J. (2005). Acta Cryst. E61, o1818–o1820.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationPerumalla, S. R., Pedireddi, V. R. & Sun, C. C. (2013a). Cryst. Growth Des. 13, 429–432.  CrossRef CAS Google Scholar
First citationPerumalla, S. R., Pedireddi, V. R. & Sun, C. C. (2013b). Mol. Pharm. 10, 2462–2466.  CrossRef CAS PubMed Google Scholar
First citationPolak, A. & Scholer, H. J. (1980). Rev. Inst. Pasteur Lyon. 13, 233–244.  CAS Google Scholar
First citationPortalone, G. (2011). Chem. Cent. J. 5, 51.  CrossRef PubMed Google Scholar
First citationPortalone, G. & Colapietro, M. (2006). Acta Cryst. E62, o1049–o1051.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationPrabakaran, P., Murugesan, S., Muthiah, P. T., Bocelli, G. & Righi, L. (2001). Acta Cryst. E57, o933–o936.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationRigaku/MSC (2008). CrystalClear. Rigaku Americas Corporation, The Woodlands, Texas, USA.  Google Scholar
First citationRussell, K. C., Lehn, J. M., Kyritsakas, N., DeCian, A. & Fischer, J. (1998). New J. Chem. 22, 123–128.  CrossRef CAS Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSilva, C. C. P. da, de Oliveira, R., Tenorio, J. C., Honorato, S., Ayala, A. P. & Ellena, J. (2013). Cryst. Growth Des. 13, 4315–4322.  Google Scholar
First citationSpek, A. L. (2009). Acta Cryst. D65, 148–155.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationTassel, D. & Madoff, A. (1968). J. Am. Med. Assoc. 206, 830–832.  CrossRef CAS Google Scholar
First citationTutughamiarso, M., Bolte, M. & Egert, E. (2009). Acta Cryst. C65, o574–o578.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationTutughamiarso, M., Wagner, G. & Egert, E. (2012). Acta Cryst. B68, 431–443.  Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
First citationVermes, A., Guchelaar, H. J. & Dankert, J. (2000). J. Antimicrob. Chemother. 46, 171–179.  Web of Science CrossRef PubMed CAS Google Scholar
First citationWang, G., Wu, W. & Zhuang, L. (2007). Acta Cryst. E63, m2552–m2553.  Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
First citationWestrip, S. P. (2010). J. Appl. Cryst. 43, 920–925.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationWhitesides, G. M., Mathias, J. P. & Seto, C. T. (1991). Science, 254, 1312–1319.  CrossRef PubMed CAS Web of Science Google Scholar
First citationZerkowski, J. A. & Whitesides, G. M. (1994). J. Am. Chem. Soc. 116, 4298–4304.  CSD CrossRef CAS Web of Science Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds