research communications
of bis(2-aminoanilinium) hydrogen phosphate
aDepartment of Physics, Sacred Heart College, Chalakudy, Kerala 680 307, India, and bDepartment of Chemistry, Indian Institute of Technology Madras, Chennai 600 036, India
*Correspondence e-mail: phyjagan@gmail.com
The 6H9N2+·HPO42−, comprises two 2-aminoanilinium cations and one hydrogen phosphate dianion. In the crystal, the HPO42− dianions are linked by O—H⋯O hydrogen bonds into chains along [100]. The inorganic anionic chains and organic cations are linked by N—H⋯O and N—H⋯N hydrogen bonds, forming a two-dimensional supramolecular network extending parallel to (001).
of the title compound, 2CKeywords: crystal structure; 2-aminoanilinium; hydrogen phosphate; supramolecular network; hydrogen bonds.
CCDC reference: 1469440
1. Chemical context
Inorganic–organic hybrid compounds are of current interest due to their fascinating architectures and potential applications in crystal engineering and supramolecular chemistry (Singh et al., 2011; Direm et al., 2015). Among the explored hybrid compounds, organic phosphates formed as a result of the reaction with inorganic oxy acids such as orthophosphoric acid (H3PO4) and organic and are particularly interesting. Organic monohydrogen (HPO42−) and dihydrogen phosphate (H2PO4−) compounds provide a class of materials with numerous practical and potential uses in various fields such as biomolecular sciences, catalysis, liquid-crystal-material development, non-linear optical and supramolecular studies (Khan et al., 2009; Evans et al., 2008; Balamurugan et al., 2010). Non-covalent interactions, such as hydrogen bonding and other weak interactions, represent the basic set of tools for the construction of elaborate supramolecular architectures of organic or inorganic–organic compounds. In this respect, the potential of monohydrogen and dihydrogen phosphate anions as useful building blocks has been investigated structurally (Shylaja et al., 2008; Oueslati et al., 2007; Jagan et al., 2015; Trojette et al., 1998; Soumhi & Jouini, 1995). Here we report the structure and the self-assembled supramolecular architecture exhibited through the formation of O—H⋯O, N—H⋯O and N—H⋯N hydrogen bonds in bis(2-aminoanilinium) hydrogen phosphate.
2. Structural commentary
The ). The existence of the hydrogen phosphate anion is confirmed by the P—O bond distances, and the presence of a relevant density peak at a distance from the oxygen atom O1 confirms the hydroxyl group of the anion. The bond distance P1—O1 = 1.561 (2) Å indicates single-bond character, while the bond distances P1—O2 = 1.504 (2), P1—O3 = 1.504 (2) and P1—O4 = 1.497 (2) Å reveal the resonating P—O bonds of the hydrogen phosphate anion. As expected (Rao et al., 2010; Peng & Zhao, 2010), in both cations the C—N bond [C1—N1 = 1.450 (3), C7—N3 = 1.450 (4) Å] involving the ammonium group is longer than that in the amine group [C6—N2 = 1.384 (4), C12—N4 = 1.383 (4) Å]. The phenyl rings of the o-phenylenediammonium cations are almost perpendicular to one another [dihedral angle 86.53 (2)°].
of the title compound comprises two 2-aminoanilinium cations and one hydrogen phosphate dianion (Fig. 13. Supramolecular features
In the title structure, the hydrogen phosphate anion and 2-aminoanilinium cations possess a number of donor and acceptor sites, which leads to the formation of a variety of hydrogen bonds viz. O—H⋯O, N—H⋯O and N—H⋯N (Table 1). The O1—H1D⋯O2i hydrogen bond [symmetry code: (i) x + 1, y, z] connects adjacent hydrogen phosphate anions, forming anionic chains extending along [100]. The oxygen atom O3 acts as a trifurcated hydrogen-bond acceptor for the donor nitrogen atom N1 at (x, y, z), (−1 + x, y, z) and (1 − x, 1 − y, 2 − z), forming a one-dimensional supramolecular ladder extending along [100] as shown in Fig. 2. In the ladder, centrosymmetrically related anions and cations are interlinked through N3—H3C⋯O3, N3—H3A⋯O3i and N3—H3B⋯O3iv [symmetry code: (iv) −x + 1, −y + 1, −z + 2] hydrogen bonds, forming two types of fused rings of R42(8) graph-set motif. The association of O—H⋯O hydrogen bonds in the anionic chains with the N—H⋯O hydrogen bonds in the ladder forms heteromeric R33(10) hydrogen-bonded motifs. Adjacent ladders are further bridged by N1—H1B⋯O2, N1—H1A⋯O4ii and N1—H1C⋯O4iii [symmetry codes: (ii) −x + 1, −y + 2, −z + 2; (iii) −x, −y + 2, −z + 2] hydrogen bonds, resulting in the formation of a two-dimensional organic–inorganic supramolecular layered network parallel to (001) (Fig. 3). In the (001) network, the bridging cations make rings of R33(10) and R53(12) motifs through the three charge-assisted N—H⋯O and the O1—H1D⋯O2i hydrogen bonds. In addition, the N2—H2A⋯O4iii, N1—H1C⋯O4iii and N4—H4B⋯N2v [symmetry codes: (iii) −x, −y + 2, −z + 2; (v) x, −1 + y, z] hydrogen bonds stabilize the (001) network. In the (Fig. 4), adjacent organic–inorganic layers are separated by a distance equal to the length of the c axis.
4. Database Survey
A CSD database search (ConQuest 1.17; Groom & Allen, 2014) showed 48 entries for hydrogen phosphate salts formed with various amino cations. It is interesting to observe that most of the reported structures of hydrogen phosphate salts are hydrated (33 structures) compared to the reported structures of dihydrogen phosphate and phosphate salts. Most of the hydrogen phosphate structures reported contain alkyl cations (Ilioudis et al., 2002; Mrad et al., 2012; Li et al., 2010), in which the alkyl cations encapsulated between chains of hydrogen phosphate are flexible with respect to the nature of the cations, which may induce a change in physical properties (Baouab & Jouini, 1998). As observed in the title compound, in the of 2-aminoanilinium dihydrogen phosphate (CSD refcode: SAYWAQ; Trojette et al., 1998), the dihydrogen phosphate anions form chains, which are bridged by 2-aminoanilinium cations through N—H⋯O hydrogen bonds, generating a two-dimensional inorganic–organic network. Conversely, in the of 1,2-phenylenediammonium bis(dihydrogen phosphate) (ZAYPAQ; Soumhi & Jouini, 1995), the anions form inorganic sheets interlinked by 1,2-phenylenediammonium cations, thus generating a three-dimensional inorganic–organic framework. This can be attributed to the double protonation of the cations in ZAYPAQ compared to the title compound and SAYWAQ. In the of 2-aminoanilinium perchlorate monohydrate (KAJGUY; Raghavaiah et al., 2005), the 2-aminoanilinium cation, the perchlorate anion and the lattice water molecule assemble into a unique hydrogen-bonded supramolecular framework, forming alternate hydrophobic and hydrophilic zones.
5. Synthesis and crystallization
The title compound was prepared by dissolving in water o-phenylenediamine and orthophosphoric acid in a 2:1 molar ratio. The resulting mixture was stirred continuously for 3 h with constant heating maintained at 333 K. The solution was then cooled, filtered and kept for crystallization without any disturbance. Good diffraction-quality crystals were obtained after one week.
6. Refinement
Crystal data, data collection and structure . The hydrogen atoms associated with the N and O atoms were localized in a difference electron-density map and refined with the N—H and O—H distances constrained to values of 0.90 (2) and 0.85 (1) Å, respectively. All other hydrogen atoms were placed in calculated positions and allowed to ride on their parent atoms, with C—H = 0.93 Å and Uiso(H) = 1.2Ueq(C).
details are summarized in Table 2
|
Supporting information
CCDC reference: 1469440
https://doi.org/10.1107/S2056989016004709/rz5186sup1.cif
contains datablocks I, global. DOI:Structure factors: contains datablock I. DOI: https://doi.org/10.1107/S2056989016004709/rz5186Isup2.hkl
Supporting information file. DOI: https://doi.org/10.1107/S2056989016004709/rz5186Isup3.cml
Data collection: APEX2 (Bruker, 2012); cell
APEX2 and SAINT (Bruker, 2012); data reduction: SAINT and XPREP (Bruker, 2012); program(s) used to solve structure: SHELXS2014 (Sheldrick, 2008); program(s) used to refine structure: SHELXL2014 (Sheldrick, 2015); molecular graphics: ORTEP-3 for Windows (Farrugia, 2012) and Mercury (Macrae et al., 2008); software used to prepare material for publication: PLATON (Spek, 2009).2C6H9N2+·HPO42− | Z = 2 |
Mr = 314.28 | F(000) = 332 |
Triclinic, P1 | Dx = 1.411 Mg m−3 |
a = 4.7613 (7) Å | Mo Kα radiation, λ = 0.71073 Å |
b = 10.8925 (17) Å | Cell parameters from 7191 reflections |
c = 15.054 (2) Å | θ = 2.8–26.1° |
α = 107.263 (3)° | µ = 0.21 mm−1 |
β = 94.060 (3)° | T = 296 K |
γ = 94.549 (3)° | Block, brown |
V = 739.6 (2) Å3 | 0.30 × 0.20 × 0.20 mm |
Bruker Kappa APEXII CCD Diffractometer | 2271 reflections with I > 2σ(I) |
ω and φ scan | Rint = 0.039 |
Absorption correction: multi-scan (SADABS; Bruker, 2012) | θmax = 26.0°, θmin = 2.0° |
Tmin = 0.865, Tmax = 0.902 | h = −5→5 |
16948 measured reflections | k = −13→13 |
2841 independent reflections | l = −18→18 |
Refinement on F2 | 11 restraints |
Least-squares matrix: full | H atoms treated by a mixture of independent and constrained refinement |
R[F2 > 2σ(F2)] = 0.052 | w = 1/[σ2(Fo2) + (0.0318P)2 + 0.8089P] where P = (Fo2 + 2Fc2)/3 |
wR(F2) = 0.119 | (Δ/σ)max < 0.001 |
S = 1.16 | Δρmax = 0.49 e Å−3 |
2841 reflections | Δρmin = −0.34 e Å−3 |
242 parameters |
Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes. |
x | y | z | Uiso*/Ueq | ||
C1 | 0.0716 (5) | 0.9348 (3) | 0.75677 (17) | 0.0294 (6) | |
C2 | 0.2315 (7) | 0.8319 (3) | 0.7246 (2) | 0.0430 (7) | |
H2 | 0.3277 | 0.7991 | 0.7669 | 0.042 (9)* | |
C3 | 0.2477 (8) | 0.7789 (4) | 0.6308 (2) | 0.0589 (10) | |
H3 | 0.3532 | 0.7097 | 0.6090 | 0.068 (11)* | |
C4 | 0.1069 (8) | 0.8290 (4) | 0.5698 (2) | 0.0618 (10) | |
H4 | 0.1203 | 0.7942 | 0.5061 | 0.082 (13)* | |
C5 | −0.0531 (7) | 0.9289 (4) | 0.6000 (2) | 0.0546 (9) | |
H5 | −0.1503 | 0.9597 | 0.5566 | 0.059 (10)* | |
C6 | −0.0730 (6) | 0.9859 (3) | 0.6957 (2) | 0.0375 (7) | |
N1 | 0.0743 (5) | 0.9908 (2) | 0.85708 (15) | 0.0290 (5) | |
H1A | 0.238 (5) | 1.046 (3) | 0.881 (2) | 0.060 (10)* | |
H1B | 0.079 (6) | 0.928 (2) | 0.8862 (19) | 0.039 (8)* | |
H1C | −0.080 (5) | 1.037 (3) | 0.8734 (19) | 0.040 (8)* | |
N2 | −0.2164 (6) | 1.0939 (3) | 0.7268 (2) | 0.0492 (7) | |
H2A | −0.300 (7) | 1.106 (3) | 0.7814 (17) | 0.064 (11)* | |
H2B | −0.337 (7) | 1.100 (4) | 0.680 (2) | 0.071 (12)* | |
C7 | 0.6532 (6) | 0.4711 (3) | 0.79919 (19) | 0.0321 (6) | |
C8 | 0.7961 (7) | 0.5283 (3) | 0.7439 (2) | 0.0493 (8) | |
H8 | 0.9487 | 0.5905 | 0.7699 | 0.049 (9)* | |
C9 | 0.7133 (9) | 0.4933 (4) | 0.6491 (3) | 0.0683 (11) | |
H9 | 0.8085 | 0.5322 | 0.6110 | 0.076 (12)* | |
C10 | 0.4896 (9) | 0.4008 (4) | 0.6120 (3) | 0.0694 (12) | |
H10 | 0.4328 | 0.3768 | 0.5483 | 0.071 (11)* | |
C11 | 0.3490 (8) | 0.3432 (3) | 0.6677 (2) | 0.0551 (9) | |
H11 | 0.1989 | 0.2799 | 0.6410 | 0.061 (11)* | |
C12 | 0.4257 (6) | 0.3773 (3) | 0.7630 (2) | 0.0371 (7) | |
N3 | 0.7285 (5) | 0.5133 (2) | 0.89942 (16) | 0.0321 (5) | |
H3A | 0.895 (5) | 0.564 (3) | 0.917 (2) | 0.052 (10)* | |
H3B | 0.745 (6) | 0.449 (2) | 0.9267 (19) | 0.043 (9)* | |
H3C | 0.588 (5) | 0.558 (3) | 0.926 (2) | 0.046 (9)* | |
N4 | 0.2718 (6) | 0.3266 (3) | 0.8209 (2) | 0.0508 (7) | |
H4A | 0.372 (7) | 0.311 (4) | 0.867 (2) | 0.076 (13)* | |
H4B | 0.135 (6) | 0.266 (3) | 0.790 (2) | 0.065 (11)* | |
O1 | 0.5217 (4) | 0.8037 (2) | 0.92225 (14) | 0.0429 (5) | |
H1D | 0.692 (3) | 0.799 (3) | 0.940 (2) | 0.064 (11)* | |
O2 | 0.0401 (4) | 0.8199 (2) | 0.95819 (16) | 0.0524 (6) | |
O3 | 0.2896 (5) | 0.63962 (19) | 0.98533 (15) | 0.0475 (6) | |
O4 | 0.4165 (4) | 0.86357 (19) | 1.08978 (13) | 0.0407 (5) | |
P1 | 0.31296 (13) | 0.78084 (6) | 0.99259 (5) | 0.02434 (19) |
U11 | U22 | U33 | U12 | U13 | U23 | |
C1 | 0.0285 (14) | 0.0316 (15) | 0.0257 (13) | −0.0056 (11) | 0.0010 (11) | 0.0076 (11) |
C2 | 0.0474 (18) | 0.0450 (18) | 0.0349 (16) | 0.0065 (15) | 0.0069 (14) | 0.0084 (14) |
C3 | 0.067 (2) | 0.059 (2) | 0.045 (2) | 0.0181 (19) | 0.0133 (17) | 0.0015 (17) |
C4 | 0.065 (2) | 0.080 (3) | 0.0335 (19) | 0.011 (2) | 0.0065 (16) | 0.0061 (18) |
C5 | 0.051 (2) | 0.081 (3) | 0.0347 (17) | 0.0056 (19) | −0.0001 (15) | 0.0248 (18) |
C6 | 0.0325 (16) | 0.0440 (17) | 0.0370 (16) | −0.0026 (13) | 0.0014 (12) | 0.0161 (13) |
N1 | 0.0293 (13) | 0.0301 (13) | 0.0267 (12) | 0.0017 (10) | 0.0011 (10) | 0.0080 (10) |
N2 | 0.0471 (17) | 0.0611 (18) | 0.0478 (17) | 0.0145 (14) | 0.0051 (14) | 0.0270 (15) |
C7 | 0.0321 (15) | 0.0303 (15) | 0.0350 (15) | 0.0118 (12) | 0.0032 (12) | 0.0093 (12) |
C8 | 0.0430 (19) | 0.059 (2) | 0.051 (2) | 0.0094 (17) | 0.0126 (15) | 0.0215 (17) |
C9 | 0.069 (3) | 0.100 (3) | 0.053 (2) | 0.029 (2) | 0.025 (2) | 0.039 (2) |
C10 | 0.075 (3) | 0.098 (3) | 0.035 (2) | 0.034 (3) | 0.0019 (19) | 0.015 (2) |
C11 | 0.060 (2) | 0.053 (2) | 0.0439 (19) | 0.0135 (18) | −0.0113 (17) | 0.0038 (16) |
C12 | 0.0409 (17) | 0.0309 (15) | 0.0377 (16) | 0.0121 (13) | −0.0036 (13) | 0.0075 (12) |
N3 | 0.0308 (14) | 0.0290 (13) | 0.0353 (13) | 0.0021 (11) | 0.0013 (10) | 0.0083 (11) |
N4 | 0.0484 (17) | 0.0438 (17) | 0.0583 (19) | −0.0114 (14) | −0.0164 (15) | 0.0215 (15) |
O1 | 0.0187 (10) | 0.0748 (16) | 0.0457 (12) | 0.0028 (10) | 0.0043 (9) | 0.0346 (11) |
O2 | 0.0195 (10) | 0.0860 (18) | 0.0641 (15) | 0.0096 (10) | 0.0061 (9) | 0.0404 (13) |
O3 | 0.0651 (15) | 0.0264 (11) | 0.0524 (13) | 0.0050 (10) | 0.0176 (11) | 0.0115 (9) |
O4 | 0.0401 (11) | 0.0419 (12) | 0.0329 (11) | −0.0036 (9) | 0.0010 (9) | 0.0031 (9) |
P1 | 0.0160 (3) | 0.0270 (4) | 0.0319 (4) | 0.0021 (2) | 0.0026 (2) | 0.0116 (3) |
C1—C6 | 1.380 (4) | C8—C9 | 1.382 (5) |
C1—C2 | 1.391 (4) | C8—H8 | 0.9300 |
C1—N1 | 1.450 (3) | C9—C10 | 1.369 (6) |
C2—C3 | 1.368 (4) | C9—H9 | 0.9300 |
C2—H2 | 0.9300 | C10—C11 | 1.367 (5) |
C3—C4 | 1.363 (5) | C10—H10 | 0.9300 |
C3—H3 | 0.9300 | C11—C12 | 1.385 (4) |
C4—C5 | 1.363 (5) | C11—H11 | 0.9300 |
C4—H4 | 0.9300 | C12—N4 | 1.383 (4) |
C5—C6 | 1.403 (4) | N3—H3A | 0.902 (18) |
C5—H5 | 0.9300 | N3—H3B | 0.913 (18) |
C6—N2 | 1.384 (4) | N3—H3C | 0.906 (18) |
N1—H1A | 0.923 (19) | N4—H4A | 0.880 (19) |
N1—H1B | 0.915 (17) | N4—H4B | 0.885 (19) |
N1—H1C | 0.931 (17) | O1—P1 | 1.561 (2) |
N2—H2A | 0.919 (18) | O1—H1D | 0.846 (10) |
N2—H2B | 0.901 (19) | O2—P1 | 1.504 (2) |
C7—C8 | 1.366 (4) | O3—P1 | 1.504 (2) |
C7—C12 | 1.387 (4) | O4—P1 | 1.497 (2) |
C7—N3 | 1.450 (4) | ||
C6—C1—C2 | 121.3 (3) | C7—C8—H8 | 120.1 |
C6—C1—N1 | 121.2 (2) | C9—C8—H8 | 120.1 |
C2—C1—N1 | 117.5 (2) | C10—C9—C8 | 119.3 (4) |
C3—C2—C1 | 120.2 (3) | C10—C9—H9 | 120.4 |
C3—C2—H2 | 119.9 | C8—C9—H9 | 120.4 |
C1—C2—H2 | 119.9 | C11—C10—C9 | 120.6 (3) |
C4—C3—C2 | 119.0 (3) | C11—C10—H10 | 119.7 |
C4—C3—H3 | 120.5 | C9—C10—H10 | 119.7 |
C2—C3—H3 | 120.5 | C10—C11—C12 | 121.3 (4) |
C5—C4—C3 | 121.6 (3) | C10—C11—H11 | 119.3 |
C5—C4—H4 | 119.2 | C12—C11—H11 | 119.3 |
C3—C4—H4 | 119.2 | N4—C12—C11 | 121.7 (3) |
C4—C5—C6 | 120.8 (3) | N4—C12—C7 | 121.0 (3) |
C4—C5—H5 | 119.6 | C11—C12—C7 | 117.1 (3) |
C6—C5—H5 | 119.6 | C7—N3—H3A | 113 (2) |
C1—C6—N2 | 121.9 (3) | C7—N3—H3B | 116.0 (19) |
C1—C6—C5 | 117.1 (3) | H3A—N3—H3B | 105 (3) |
N2—C6—C5 | 120.8 (3) | C7—N3—H3C | 107 (2) |
C1—N1—H1A | 110 (2) | H3A—N3—H3C | 110 (3) |
C1—N1—H1B | 110.7 (19) | H3B—N3—H3C | 105 (3) |
H1A—N1—H1B | 105 (3) | C12—N4—H4A | 116 (3) |
C1—N1—H1C | 112.3 (18) | C12—N4—H4B | 113 (2) |
H1A—N1—H1C | 109 (3) | H4A—N4—H4B | 116 (4) |
H1B—N1—H1C | 110 (3) | P1—O1—H1D | 113 (2) |
C6—N2—H2A | 118 (2) | O4—P1—O2 | 111.69 (13) |
C6—N2—H2B | 110 (2) | O4—P1—O3 | 111.37 (12) |
H2A—N2—H2B | 112 (3) | O2—P1—O3 | 111.93 (14) |
C8—C7—C12 | 121.9 (3) | O4—P1—O1 | 110.20 (12) |
C8—C7—N3 | 119.8 (3) | O2—P1—O1 | 103.14 (11) |
C12—C7—N3 | 118.2 (3) | O3—P1—O1 | 108.14 (12) |
C7—C8—C9 | 119.8 (4) | ||
C6—C1—C2—C3 | −0.1 (5) | C12—C7—C8—C9 | 0.4 (5) |
N1—C1—C2—C3 | −177.0 (3) | N3—C7—C8—C9 | −176.2 (3) |
C1—C2—C3—C4 | 0.5 (5) | C7—C8—C9—C10 | −0.5 (5) |
C2—C3—C4—C5 | −1.1 (6) | C8—C9—C10—C11 | 0.0 (6) |
C3—C4—C5—C6 | 1.5 (6) | C9—C10—C11—C12 | 0.7 (6) |
C2—C1—C6—N2 | −175.3 (3) | C10—C11—C12—N4 | 175.2 (3) |
N1—C1—C6—N2 | 1.4 (4) | C10—C11—C12—C7 | −0.8 (5) |
C2—C1—C6—C5 | 0.4 (4) | C8—C7—C12—N4 | −175.7 (3) |
N1—C1—C6—C5 | 177.2 (3) | N3—C7—C12—N4 | 0.9 (4) |
C4—C5—C6—C1 | −1.1 (5) | C8—C7—C12—C11 | 0.3 (4) |
C4—C5—C6—N2 | 174.7 (3) | N3—C7—C12—C11 | 176.9 (2) |
D—H···A | D—H | H···A | D···A | D—H···A |
O1—H1D···O2i | 0.85 (1) | 1.65 (1) | 2.470 (3) | 164 (4) |
N3—H3A···O3i | 0.90 (2) | 2.06 (2) | 2.928 (3) | 160 (3) |
N1—H1A···O4ii | 0.92 (2) | 1.81 (2) | 2.720 (3) | 171 (3) |
N1—H1C···O4iii | 0.93 (2) | 2.02 (2) | 2.953 (3) | 179 (3) |
N2—H2A···O4iii | 0.92 (2) | 1.99 (2) | 2.904 (4) | 170 (3) |
N4—H4A···O4iv | 0.88 (2) | 2.45 (3) | 3.188 (4) | 142 (3) |
N3—H3B···O3iv | 0.91 (2) | 1.87 (2) | 2.740 (3) | 159 (3) |
N3—H3C···O3 | 0.91 (2) | 1.87 (2) | 2.778 (3) | 176 (3) |
N1—H1B···O2 | 0.92 (2) | 1.83 (2) | 2.734 (3) | 169 (3) |
N4—H4B···N2v | 0.89 (2) | 2.33 (2) | 3.210 (4) | 172 (3) |
Symmetry codes: (i) x+1, y, z; (ii) −x+1, −y+2, −z+2; (iii) −x, −y+2, −z+2; (iv) −x+1, −y+1, −z+2; (v) x, y−1, z. |
Acknowledgements
The authors thank Dr Babu Varghese and SAIF, IIT Madras, India, for the data collection.
References
Balamurugan, P., Jagan, R. & Sivakumar, K. (2010). Acta Cryst. C66, o109–o113. Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
Baouab, L. & Jouini, A. (1998). J. Solid State Chem. 141, 343–351. Web of Science CSD CrossRef CAS Google Scholar
Bruker (2012). APEX2, SAINT, XPREP and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA. Google Scholar
Direm, A., Altomare, A., Moliterni, A. & Benali-Cherif, N. (2015). Acta Cryst. B71, 427–436. CSD CrossRef IUCr Journals Google Scholar
Farrugia, L. J. (2012). J. Appl. Cryst. 45, 849–854. Web of Science CrossRef CAS IUCr Journals Google Scholar
Groom, C. R. & Allen, F. H. (2014). Angew. Chem. Int. Ed. 53, 662–671. Web of Science CSD CrossRef CAS Google Scholar
Ilioudis, C. A., Georganopoulou, D. G. & Steed, J. W. (2002). CrystEngComm, 4, 26–36. Web of Science CSD CrossRef Google Scholar
Jagan, R., Sathya, D. & Sivakumar, K. (2015). Acta Cryst. C71, 374–380. CSD CrossRef IUCr Journals Google Scholar
Khan, M. I., Nome, R. C., Deb, S., McNeely, J. H., Cage, B. & Doedens, R. J. (2009). Cryst. Growth Des. 9, 2848–2852. CSD CrossRef CAS Google Scholar
Li, X.-M., Feng, S.-S., Wang, F., Ma, Q. & Zhu, M.-L. (2010). Acta Cryst. E66, o239–o240. CSD CrossRef IUCr Journals Google Scholar
Macrae, C. F., Bruno, I. J., Chisholm, J. A., Edgington, P. R., McCabe, P., Pidcock, E., Rodriguez-Monge, L., Taylor, R., van de Streek, J. & Wood, P. A. (2008). J. Appl. Cryst. 41, 466–470. Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
Mrad, M. L., Zeller, M., Hernandez, K. J., Rzaigui, M. & Ben Nasr, C. (2012). Acta Cryst. E68, o3257–o3258. CSD CrossRef IUCr Journals Google Scholar
Oueslati, A., Kefi, R., Ben Nasr, C. & Lefebvre, F. (2007). J. Mol. Struct. 871, 49–58. Web of Science CSD CrossRef CAS Google Scholar
Peng, R. & Zhao, Y. (2010). Acta Cryst. E66, o3235. CSD CrossRef IUCr Journals Google Scholar
Evans, I. R., Howard, J. A. K. & Evans, J. S. O. (2008). Cryst. Growth Des. 8, 1635–1639. Google Scholar
Raghavaiah, P., Supriya, S. & Das, S. K. (2005). CrystEngComm, 7, 167–170. Web of Science CSD CrossRef CAS Google Scholar
Rao, A. S., Tripuramallu, B. K., Ravada, K. & Das, S. K. (2010). Acta Cryst. E66, o1945. CSD CrossRef IUCr Journals Google Scholar
Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. Web of Science CrossRef CAS IUCr Journals Google Scholar
Sheldrick, G. M. (2015). Acta Cryst. C71, 3–8. Web of Science CrossRef IUCr Journals Google Scholar
Shylaja, S., Mahendra, K. N., Varma, K. B. R., Narasimhamurthy, T. & Rathore, R. S. (2008). Acta Cryst. C64, o361–o363. Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
Singh, U. P., Kashyap, S., Singh, H. J. & Butcher, R. J. (2011). CrystEngComm, 13, 4110–4120. Web of Science CSD CrossRef CAS Google Scholar
Soumhi, E. H. & Jouini, T. (1995). Acta Cryst. C51, 1883–1885. CSD CrossRef CAS IUCr Journals Google Scholar
Spek, A. L. (2009). Acta Cryst. D65, 148–155. Web of Science CrossRef CAS IUCr Journals Google Scholar
Trojette, B., Hajem, A. A., Driss, A. & Jouini, T. (1998). Acta Cryst. C54, 1867–1869. Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.