research communications\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Crystal structure of bis­­(2-amino­anilinium) hydrogen phosphate

CROSSMARK_Color_square_no_text.svg

aDepartment of Physics, Sacred Heart College, Chalakudy, Kerala 680 307, India, and bDepartment of Chemistry, Indian Institute of Technology Madras, Chennai 600 036, India
*Correspondence e-mail: phyjagan@gmail.com

Edited by C. Rizzoli, Universita degli Studi di Parma, Italy (Received 5 March 2016; accepted 18 March 2016; online 22 March 2016)

The asymmetric unit of the title compound, 2C6H9N2+·HPO42−, comprises two 2-amino­anilinium cations and one hydrogen phosphate dianion. In the crystal, the HPO42− dianions are linked by O—H⋯O hydrogen bonds into chains along [100]. The inorganic anionic chains and organic cations are linked by N—H⋯O and N—H⋯N hydrogen bonds, forming a two-dimensional supra­molecular network extending parallel to (001).

1. Chemical context

Inorganic–organic hybrid compounds are of current inter­est due to their fascinating architectures and potential applications in crystal engineering and supra­molecular chemistry (Singh et al., 2011[Singh, U. P., Kashyap, S., Singh, H. J. & Butcher, R. J. (2011). CrystEngComm, 13, 4110-4120.]; Direm et al., 2015[Direm, A., Altomare, A., Moliterni, A. & Benali-Cherif, N. (2015). Acta Cryst. B71, 427-436.]). Among the explored hybrid compounds, organic phosphates formed as a result of the reaction with inorganic oxy acids such as ortho­phospho­ric acid (H3PO4) and organic amines and amides are particularly inter­esting. Organic mono­hydrogen (HPO42−) and di­hydrogen phosphate (H2PO4) compounds provide a class of materials with numerous practical and potential uses in various fields such as biomolecular sciences, catalysis, liquid-crystal-material development, ferroelectrics, non-linear optical and supra­molecular studies (Khan et al., 2009[Khan, M. I., Nome, R. C., Deb, S., McNeely, J. H., Cage, B. & Doedens, R. J. (2009). Cryst. Growth Des. 9, 2848-2852.]; Evans et al., 2008[Evans, I. R., Howard, J. A. K. & Evans, J. S. O. (2008). Cryst. Growth Des. 8, 1635-1639.]; Balamurugan et al., 2010[Balamurugan, P., Jagan, R. & Sivakumar, K. (2010). Acta Cryst. C66, o109-o113.]). Non-covalent inter­actions, such as hydrogen bonding and other weak inter­actions, represent the basic set of tools for the construction of elabor­ate supra­molecular architectures of organic or inorganic–organic compounds. In this respect, the potential of mono­hydrogen and di­hydrogen phosphate anions as useful building blocks has been investigated structurally (Shylaja et al., 2008[Shylaja, S., Mahendra, K. N., Varma, K. B. R., Narasimhamurthy, T. & Rathore, R. S. (2008). Acta Cryst. C64, o361-o363.]; Oueslati et al., 2007[Oueslati, A., Kefi, R., Ben Nasr, C. & Lefebvre, F. (2007). J. Mol. Struct. 871, 49-58.]; Jagan et al., 2015[Jagan, R., Sathya, D. & Sivakumar, K. (2015). Acta Cryst. C71, 374-380.]; Trojette et al., 1998[Trojette, B., Hajem, A. A., Driss, A. & Jouini, T. (1998). Acta Cryst. C54, 1867-1869.]; Soumhi & Jouini, 1995[Soumhi, E. H. & Jouini, T. (1995). Acta Cryst. C51, 1883-1885.]). Here we report the structure and the self-assembled supra­molecular architecture exhibited through the formation of O—H⋯O, N—H⋯O and N—H⋯N hydrogen bonds in bis­(2-amino­anilinium) hydrogen phosphate.

[Scheme 1]

2. Structural commentary

The asymmetric unit of the title compound comprises two 2-amino­anilinium cations and one hydrogen phosphate dianion (Fig. 1[link]). The existence of the hydrogen phosphate anion is confirmed by the P—O bond distances, and the presence of a relevant density peak at a distance from the oxygen atom O1 confirms the hydroxyl group of the anion. The bond distance P1—O1 = 1.561 (2) Å indicates single-bond character, while the bond distances P1—O2 = 1.504 (2), P1—O3 = 1.504 (2) and P1—O4 = 1.497 (2) Å reveal the resonating P—O bonds of the hydrogen phosphate anion. As expected (Rao et al., 2010[Rao, A. S., Tripuramallu, B. K., Ravada, K. & Das, S. K. (2010). Acta Cryst. E66, o1945.]; Peng & Zhao, 2010[Peng, R. & Zhao, Y. (2010). Acta Cryst. E66, o3235.]), in both cations the C—N bond [C1—N1 = 1.450 (3), C7—N3 = 1.450 (4) Å] involving the ammonium group is longer than that in the amine group [C6—N2 = 1.384 (4), C12—N4 = 1.383 (4) Å]. The phenyl rings of the o-phenyl­enedi­ammonium cations are almost perpendicular to one another [dihedral angle 86.53 (2)°].

[Figure 1]
Figure 1
The asymmetric unit of the title compound with displacement ellipsoid drawn at the 40% probability level. The dashed lines represent hydrogen bonds.

3. Supra­molecular features

In the title structure, the hydrogen phosphate anion and 2-amino­anilinium cations possess a number of donor and acceptor sites, which leads to the formation of a variety of hydrogen bonds viz. O—H⋯O, N—H⋯O and N—H⋯N (Table 1[link]). The O1—H1D⋯O2i hydrogen bond [symmetry code: (i) x + 1, y, z] connects adjacent hydrogen phosphate anions, forming anionic chains extending along [100]. The oxygen atom O3 acts as a trifurcated hydrogen-bond acceptor for the donor nitro­gen atom N1 at (x, y, z), (−1 + x, y, z) and (1 − x, 1 − y, 2 − z), forming a one-dimensional supra­molecular ladder extending along [100] as shown in Fig. 2[link]. In the ladder, centrosymmetrically related anions and cations are inter­linked through N3—H3C⋯O3, N3—H3A⋯O3i and N3—H3B⋯O3iv [symmetry code: (iv) −x + 1, −y + 1, −z + 2] hydrogen bonds, forming two types of fused rings of R42(8) graph-set motif. The association of O—H⋯O hydrogen bonds in the anionic chains with the N—H⋯O hydrogen bonds in the ladder forms heteromeric R33(10) hydrogen-bonded motifs. Adjacent ladders are further bridged by N1—H1B⋯O2, N1—H1A⋯O4ii and N1—H1C⋯O4iii [symmetry codes: (ii) −x + 1, −y + 2, −z + 2; (iii) −x, −y + 2, −z + 2] hydrogen bonds, resulting in the formation of a two-dimensional organic–inorganic supra­molecular layered network parallel to (001) (Fig. 3[link]). In the (001) network, the bridging cations make rings of R33(10) and R53(12) motifs through the three charge-assisted N—H⋯O and the O1—H1D⋯O2i hydrogen bonds. In addition, the N2—H2A⋯O4iii, N1—H1C⋯O4iii and N4—H4B⋯N2v [symmetry codes: (iii) −x, −y + 2, −z + 2; (v) x, −1 + y, z] hydrogen bonds stabilize the (001) network. In the crystal structure (Fig. 4[link]), adjacent organic–inorganic layers are separated by a distance equal to the length of the c axis.

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
O1—H1D⋯O2i 0.85 (1) 1.65 (1) 2.470 (3) 164 (4)
N3—H3A⋯O3i 0.90 (2) 2.06 (2) 2.928 (3) 160 (3)
N1—H1A⋯O4ii 0.92 (2) 1.81 (2) 2.720 (3) 171 (3)
N1—H1C⋯O4iii 0.93 (2) 2.02 (2) 2.953 (3) 179 (3)
N2—H2A⋯O4iii 0.92 (2) 1.99 (2) 2.904 (4) 170 (3)
N4—H4A⋯O4iv 0.88 (2) 2.45 (3) 3.188 (4) 142 (3)
N3—H3B⋯O3iv 0.91 (2) 1.87 (2) 2.740 (3) 159 (3)
N3—H3C⋯O3 0.91 (2) 1.87 (2) 2.778 (3) 176 (3)
N1—H1B⋯O2 0.92 (2) 1.83 (2) 2.734 (3) 169 (3)
N4—H4B⋯N2v 0.89 (2) 2.33 (2) 3.210 (4) 172 (3)
Symmetry codes: (i) x+1, y, z; (ii) -x+1, -y+2, -z+2; (iii) -x, -y+2, -z+2; (iv) -x+1, -y+1, -z+2; (v) x, y-1, z.
[Figure 2]
Figure 2
Partial packing diagram of the title compound showing the formation of an organic–inorganic supra­molecular ladder through N—H⋯O and O—H⋯O hydrogen bonds extending along [100]. The formation of rings with R42(8) and R33(10) graph-set motifs is also shown. Hydrogen atoms not involved in hydrogen bonding are omitted for clarity.
[Figure 3]
Figure 3
Crystal packing of the title compound showing (a) the formation through hydrogen bonds (dashed lines) of an organic–inorganic supra­molecular sheet extending parallel to (001) and (b) the (001) network in which red represents the [100] ladder, bridged by the cations (represented in green) through N—H⋯O hydrogen bonds.
[Figure 4]
Figure 4
Packing of the title compound, viewed down the a axis, showing the arrangement of the (001) two-dimensional supra­molecular networks stacked along the c axis. Dashed lines indicate hydrogen bonds.

4. Database Survey

A CSD database search (ConQuest 1.17; Groom & Allen, 2014[Groom, C. R. & Allen, F. H. (2014). Angew. Chem. Int. Ed. 53, 662-671.]) showed 48 entries for hydrogen phosphate salts formed with various amino cations. It is inter­esting to observe that most of the reported structures of hydrogen phosphate salts are hydrated (33 structures) compared to the reported structures of di­hydrogen phosphate and phosphate salts. Most of the hydrogen phosphate structures reported contain alkyl cations (Ilioudis et al., 2002[Ilioudis, C. A., Georganopoulou, D. G. & Steed, J. W. (2002). CrystEngComm, 4, 26-36.]; Mrad et al., 2012[Mrad, M. L., Zeller, M., Hernandez, K. J., Rzaigui, M. & Ben Nasr, C. (2012). Acta Cryst. E68, o3257-o3258.]; Li et al., 2010[Li, X.-M., Feng, S.-S., Wang, F., Ma, Q. & Zhu, M.-L. (2010). Acta Cryst. E66, o239-o240.]), in which the alkyl cations encapsulated between chains of hydrogen phosphate are flexible with respect to the nature of the cations, which may induce a change in physical properties (Baouab & Jouini, 1998[Baouab, L. & Jouini, A. (1998). J. Solid State Chem. 141, 343-351.]). As observed in the title compound, in the crystal structure of 2-amino­anilinium di­hydrogen phosphate (CSD refcode: SAYWAQ; Trojette et al., 1998[Trojette, B., Hajem, A. A., Driss, A. & Jouini, T. (1998). Acta Cryst. C54, 1867-1869.]), the di­hydrogen phosphate anions form chains, which are bridged by 2-amino­anilinium cations through N—H⋯O hydrogen bonds, generating a two-dimensional inorganic–organic network. Conversely, in the crystal structure of 1,2-phenyl­enedi­ammonium bis­(di­hydrogen phosphate) (ZAYPAQ; Soumhi & Jouini, 1995[Soumhi, E. H. & Jouini, T. (1995). Acta Cryst. C51, 1883-1885.]), the anions form inorganic sheets inter­linked by 1,2-phenyl­enedi­ammonium cations, thus generating a three-dimensional inorganic–organic framework. This can be attributed to the double protonation of the cations in ZAYPAQ compared to the title compound and SAYWAQ. In the crystal structure of 2-amino­anilinium perchlorate monohydrate (KAJGUY; Raghavaiah et al., 2005[Raghavaiah, P., Supriya, S. & Das, S. K. (2005). CrystEngComm, 7, 167-170.]), the 2-amino­anilinium cation, the perchlorate anion and the lattice water mol­ecule assemble into a unique hydrogen-bonded supra­molecular framework, forming alternate hydro­phobic and hydro­philic zones.

5. Synthesis and crystallization

The title compound was prepared by dissolving in water o-phenyl­enedi­amine and ortho­phospho­ric acid in a 2:1 molar ratio. The resulting mixture was stirred continuously for 3 h with constant heating maintained at 333 K. The solution was then cooled, filtered and kept for crystallization without any disturbance. Good diffraction-quality crystals were obtained after one week.

6. Refinement

Crystal data, data collection and structure refinement details are summarized in Table 2[link]. The hydrogen atoms associated with the N and O atoms were localized in a difference electron-density map and refined with the N—H and O—H distances constrained to values of 0.90 (2) and 0.85 (1) Å, respectively. All other hydrogen atoms were placed in calculated positions and allowed to ride on their parent atoms, with C—H = 0.93 Å and Uiso(H) = 1.2Ueq(C).

Table 2
Experimental details

Crystal data
Chemical formula 2C6H9N2+·HPO42−
Mr 314.28
Crystal system, space group Triclinic, P[\overline{1}]
Temperature (K) 296
a, b, c (Å) 4.7613 (7), 10.8925 (17), 15.054 (2)
α, β, γ (°) 107.263 (3), 94.060 (3), 94.549 (3)
V3) 739.6 (2)
Z 2
Radiation type Mo Kα
μ (mm−1) 0.21
Crystal size (mm) 0.30 × 0.20 × 0.20
 
Data collection
Diffractometer Bruker Kappa APEXII CCD Diffractometer
Absorption correction Multi-scan (SADABS; Bruker, 2012[Bruker (2012). APEX2, SAINT, XPREP and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.])
Tmin, Tmax 0.865, 0.902
No. of measured, independent and observed [I > 2σ(I)] reflections 16948, 2841, 2271
Rint 0.039
(sin θ/λ)max−1) 0.617
 
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.052, 0.119, 1.16
No. of reflections 2841
No. of parameters 242
No. of restraints 11
H-atom treatment H atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å−3) 0.49, −0.34
Computer programs: APEX2, SAINT and XPREP (Bruker, 2012[Bruker (2012). APEX2, SAINT, XPREP and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]), SHELXS2014 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]), SHELXL2014 (Sheldrick, 2015[Sheldrick, G. M. (2015). Acta Cryst. C71, 3-8.]), ORTEP-3 for Windows (Farrugia, 2012[Farrugia, L. J. (2012). J. Appl. Cryst. 45, 849-854.]), Mercury (Macrae et al., 2008[Macrae, C. F., Bruno, I. J., Chisholm, J. A., Edgington, P. R., McCabe, P., Pidcock, E., Rodriguez-Monge, L., Taylor, R., van de Streek, J. & Wood, P. A. (2008). J. Appl. Cryst. 41, 466-470.]) and PLATON (Spek, 2009[Spek, A. L. (2009). Acta Cryst. D65, 148-155.]).

Supporting information


Computing details top

Data collection: APEX2 (Bruker, 2012); cell refinement: APEX2 and SAINT (Bruker, 2012); data reduction: SAINT and XPREP (Bruker, 2012); program(s) used to solve structure: SHELXS2014 (Sheldrick, 2008); program(s) used to refine structure: SHELXL2014 (Sheldrick, 2015); molecular graphics: ORTEP-3 for Windows (Farrugia, 2012) and Mercury (Macrae et al., 2008); software used to prepare material for publication: PLATON (Spek, 2009).

Bis(2-aminoanilinium) hydrogen phosphate top
Crystal data top
2C6H9N2+·HPO42Z = 2
Mr = 314.28F(000) = 332
Triclinic, P1Dx = 1.411 Mg m3
a = 4.7613 (7) ÅMo Kα radiation, λ = 0.71073 Å
b = 10.8925 (17) ÅCell parameters from 7191 reflections
c = 15.054 (2) Åθ = 2.8–26.1°
α = 107.263 (3)°µ = 0.21 mm1
β = 94.060 (3)°T = 296 K
γ = 94.549 (3)°Block, brown
V = 739.6 (2) Å30.30 × 0.20 × 0.20 mm
Data collection top
Bruker Kappa APEXII CCD Diffractometer2271 reflections with I > 2σ(I)
ω and φ scanRint = 0.039
Absorption correction: multi-scan
(SADABS; Bruker, 2012)
θmax = 26.0°, θmin = 2.0°
Tmin = 0.865, Tmax = 0.902h = 55
16948 measured reflectionsk = 1313
2841 independent reflectionsl = 1818
Refinement top
Refinement on F211 restraints
Least-squares matrix: fullH atoms treated by a mixture of independent and constrained refinement
R[F2 > 2σ(F2)] = 0.052 w = 1/[σ2(Fo2) + (0.0318P)2 + 0.8089P]
where P = (Fo2 + 2Fc2)/3
wR(F2) = 0.119(Δ/σ)max < 0.001
S = 1.16Δρmax = 0.49 e Å3
2841 reflectionsΔρmin = 0.34 e Å3
242 parameters
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
C10.0716 (5)0.9348 (3)0.75677 (17)0.0294 (6)
C20.2315 (7)0.8319 (3)0.7246 (2)0.0430 (7)
H20.32770.79910.76690.042 (9)*
C30.2477 (8)0.7789 (4)0.6308 (2)0.0589 (10)
H30.35320.70970.60900.068 (11)*
C40.1069 (8)0.8290 (4)0.5698 (2)0.0618 (10)
H40.12030.79420.50610.082 (13)*
C50.0531 (7)0.9289 (4)0.6000 (2)0.0546 (9)
H50.15030.95970.55660.059 (10)*
C60.0730 (6)0.9859 (3)0.6957 (2)0.0375 (7)
N10.0743 (5)0.9908 (2)0.85708 (15)0.0290 (5)
H1A0.238 (5)1.046 (3)0.881 (2)0.060 (10)*
H1B0.079 (6)0.928 (2)0.8862 (19)0.039 (8)*
H1C0.080 (5)1.037 (3)0.8734 (19)0.040 (8)*
N20.2164 (6)1.0939 (3)0.7268 (2)0.0492 (7)
H2A0.300 (7)1.106 (3)0.7814 (17)0.064 (11)*
H2B0.337 (7)1.100 (4)0.680 (2)0.071 (12)*
C70.6532 (6)0.4711 (3)0.79919 (19)0.0321 (6)
C80.7961 (7)0.5283 (3)0.7439 (2)0.0493 (8)
H80.94870.59050.76990.049 (9)*
C90.7133 (9)0.4933 (4)0.6491 (3)0.0683 (11)
H90.80850.53220.61100.076 (12)*
C100.4896 (9)0.4008 (4)0.6120 (3)0.0694 (12)
H100.43280.37680.54830.071 (11)*
C110.3490 (8)0.3432 (3)0.6677 (2)0.0551 (9)
H110.19890.27990.64100.061 (11)*
C120.4257 (6)0.3773 (3)0.7630 (2)0.0371 (7)
N30.7285 (5)0.5133 (2)0.89942 (16)0.0321 (5)
H3A0.895 (5)0.564 (3)0.917 (2)0.052 (10)*
H3B0.745 (6)0.449 (2)0.9267 (19)0.043 (9)*
H3C0.588 (5)0.558 (3)0.926 (2)0.046 (9)*
N40.2718 (6)0.3266 (3)0.8209 (2)0.0508 (7)
H4A0.372 (7)0.311 (4)0.867 (2)0.076 (13)*
H4B0.135 (6)0.266 (3)0.790 (2)0.065 (11)*
O10.5217 (4)0.8037 (2)0.92225 (14)0.0429 (5)
H1D0.692 (3)0.799 (3)0.940 (2)0.064 (11)*
O20.0401 (4)0.8199 (2)0.95819 (16)0.0524 (6)
O30.2896 (5)0.63962 (19)0.98533 (15)0.0475 (6)
O40.4165 (4)0.86357 (19)1.08978 (13)0.0407 (5)
P10.31296 (13)0.78084 (6)0.99259 (5)0.02434 (19)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
C10.0285 (14)0.0316 (15)0.0257 (13)0.0056 (11)0.0010 (11)0.0076 (11)
C20.0474 (18)0.0450 (18)0.0349 (16)0.0065 (15)0.0069 (14)0.0084 (14)
C30.067 (2)0.059 (2)0.045 (2)0.0181 (19)0.0133 (17)0.0015 (17)
C40.065 (2)0.080 (3)0.0335 (19)0.011 (2)0.0065 (16)0.0061 (18)
C50.051 (2)0.081 (3)0.0347 (17)0.0056 (19)0.0001 (15)0.0248 (18)
C60.0325 (16)0.0440 (17)0.0370 (16)0.0026 (13)0.0014 (12)0.0161 (13)
N10.0293 (13)0.0301 (13)0.0267 (12)0.0017 (10)0.0011 (10)0.0080 (10)
N20.0471 (17)0.0611 (18)0.0478 (17)0.0145 (14)0.0051 (14)0.0270 (15)
C70.0321 (15)0.0303 (15)0.0350 (15)0.0118 (12)0.0032 (12)0.0093 (12)
C80.0430 (19)0.059 (2)0.051 (2)0.0094 (17)0.0126 (15)0.0215 (17)
C90.069 (3)0.100 (3)0.053 (2)0.029 (2)0.025 (2)0.039 (2)
C100.075 (3)0.098 (3)0.035 (2)0.034 (3)0.0019 (19)0.015 (2)
C110.060 (2)0.053 (2)0.0439 (19)0.0135 (18)0.0113 (17)0.0038 (16)
C120.0409 (17)0.0309 (15)0.0377 (16)0.0121 (13)0.0036 (13)0.0075 (12)
N30.0308 (14)0.0290 (13)0.0353 (13)0.0021 (11)0.0013 (10)0.0083 (11)
N40.0484 (17)0.0438 (17)0.0583 (19)0.0114 (14)0.0164 (15)0.0215 (15)
O10.0187 (10)0.0748 (16)0.0457 (12)0.0028 (10)0.0043 (9)0.0346 (11)
O20.0195 (10)0.0860 (18)0.0641 (15)0.0096 (10)0.0061 (9)0.0404 (13)
O30.0651 (15)0.0264 (11)0.0524 (13)0.0050 (10)0.0176 (11)0.0115 (9)
O40.0401 (11)0.0419 (12)0.0329 (11)0.0036 (9)0.0010 (9)0.0031 (9)
P10.0160 (3)0.0270 (4)0.0319 (4)0.0021 (2)0.0026 (2)0.0116 (3)
Geometric parameters (Å, º) top
C1—C61.380 (4)C8—C91.382 (5)
C1—C21.391 (4)C8—H80.9300
C1—N11.450 (3)C9—C101.369 (6)
C2—C31.368 (4)C9—H90.9300
C2—H20.9300C10—C111.367 (5)
C3—C41.363 (5)C10—H100.9300
C3—H30.9300C11—C121.385 (4)
C4—C51.363 (5)C11—H110.9300
C4—H40.9300C12—N41.383 (4)
C5—C61.403 (4)N3—H3A0.902 (18)
C5—H50.9300N3—H3B0.913 (18)
C6—N21.384 (4)N3—H3C0.906 (18)
N1—H1A0.923 (19)N4—H4A0.880 (19)
N1—H1B0.915 (17)N4—H4B0.885 (19)
N1—H1C0.931 (17)O1—P11.561 (2)
N2—H2A0.919 (18)O1—H1D0.846 (10)
N2—H2B0.901 (19)O2—P11.504 (2)
C7—C81.366 (4)O3—P11.504 (2)
C7—C121.387 (4)O4—P11.497 (2)
C7—N31.450 (4)
C6—C1—C2121.3 (3)C7—C8—H8120.1
C6—C1—N1121.2 (2)C9—C8—H8120.1
C2—C1—N1117.5 (2)C10—C9—C8119.3 (4)
C3—C2—C1120.2 (3)C10—C9—H9120.4
C3—C2—H2119.9C8—C9—H9120.4
C1—C2—H2119.9C11—C10—C9120.6 (3)
C4—C3—C2119.0 (3)C11—C10—H10119.7
C4—C3—H3120.5C9—C10—H10119.7
C2—C3—H3120.5C10—C11—C12121.3 (4)
C5—C4—C3121.6 (3)C10—C11—H11119.3
C5—C4—H4119.2C12—C11—H11119.3
C3—C4—H4119.2N4—C12—C11121.7 (3)
C4—C5—C6120.8 (3)N4—C12—C7121.0 (3)
C4—C5—H5119.6C11—C12—C7117.1 (3)
C6—C5—H5119.6C7—N3—H3A113 (2)
C1—C6—N2121.9 (3)C7—N3—H3B116.0 (19)
C1—C6—C5117.1 (3)H3A—N3—H3B105 (3)
N2—C6—C5120.8 (3)C7—N3—H3C107 (2)
C1—N1—H1A110 (2)H3A—N3—H3C110 (3)
C1—N1—H1B110.7 (19)H3B—N3—H3C105 (3)
H1A—N1—H1B105 (3)C12—N4—H4A116 (3)
C1—N1—H1C112.3 (18)C12—N4—H4B113 (2)
H1A—N1—H1C109 (3)H4A—N4—H4B116 (4)
H1B—N1—H1C110 (3)P1—O1—H1D113 (2)
C6—N2—H2A118 (2)O4—P1—O2111.69 (13)
C6—N2—H2B110 (2)O4—P1—O3111.37 (12)
H2A—N2—H2B112 (3)O2—P1—O3111.93 (14)
C8—C7—C12121.9 (3)O4—P1—O1110.20 (12)
C8—C7—N3119.8 (3)O2—P1—O1103.14 (11)
C12—C7—N3118.2 (3)O3—P1—O1108.14 (12)
C7—C8—C9119.8 (4)
C6—C1—C2—C30.1 (5)C12—C7—C8—C90.4 (5)
N1—C1—C2—C3177.0 (3)N3—C7—C8—C9176.2 (3)
C1—C2—C3—C40.5 (5)C7—C8—C9—C100.5 (5)
C2—C3—C4—C51.1 (6)C8—C9—C10—C110.0 (6)
C3—C4—C5—C61.5 (6)C9—C10—C11—C120.7 (6)
C2—C1—C6—N2175.3 (3)C10—C11—C12—N4175.2 (3)
N1—C1—C6—N21.4 (4)C10—C11—C12—C70.8 (5)
C2—C1—C6—C50.4 (4)C8—C7—C12—N4175.7 (3)
N1—C1—C6—C5177.2 (3)N3—C7—C12—N40.9 (4)
C4—C5—C6—C11.1 (5)C8—C7—C12—C110.3 (4)
C4—C5—C6—N2174.7 (3)N3—C7—C12—C11176.9 (2)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O1—H1D···O2i0.85 (1)1.65 (1)2.470 (3)164 (4)
N3—H3A···O3i0.90 (2)2.06 (2)2.928 (3)160 (3)
N1—H1A···O4ii0.92 (2)1.81 (2)2.720 (3)171 (3)
N1—H1C···O4iii0.93 (2)2.02 (2)2.953 (3)179 (3)
N2—H2A···O4iii0.92 (2)1.99 (2)2.904 (4)170 (3)
N4—H4A···O4iv0.88 (2)2.45 (3)3.188 (4)142 (3)
N3—H3B···O3iv0.91 (2)1.87 (2)2.740 (3)159 (3)
N3—H3C···O30.91 (2)1.87 (2)2.778 (3)176 (3)
N1—H1B···O20.92 (2)1.83 (2)2.734 (3)169 (3)
N4—H4B···N2v0.89 (2)2.33 (2)3.210 (4)172 (3)
Symmetry codes: (i) x+1, y, z; (ii) x+1, y+2, z+2; (iii) x, y+2, z+2; (iv) x+1, y+1, z+2; (v) x, y1, z.
 

Acknowledgements

The authors thank Dr Babu Varghese and SAIF, IIT Madras, India, for the data collection.

References

First citationBalamurugan, P., Jagan, R. & Sivakumar, K. (2010). Acta Cryst. C66, o109–o113.  Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
First citationBaouab, L. & Jouini, A. (1998). J. Solid State Chem. 141, 343–351.  Web of Science CSD CrossRef CAS Google Scholar
First citationBruker (2012). APEX2, SAINT, XPREP and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationDirem, A., Altomare, A., Moliterni, A. & Benali-Cherif, N. (2015). Acta Cryst. B71, 427–436.  CSD CrossRef IUCr Journals Google Scholar
First citationFarrugia, L. J. (2012). J. Appl. Cryst. 45, 849–854.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationGroom, C. R. & Allen, F. H. (2014). Angew. Chem. Int. Ed. 53, 662–671.  Web of Science CSD CrossRef CAS Google Scholar
First citationIlioudis, C. A., Georganopoulou, D. G. & Steed, J. W. (2002). CrystEngComm, 4, 26–36.  Web of Science CSD CrossRef Google Scholar
First citationJagan, R., Sathya, D. & Sivakumar, K. (2015). Acta Cryst. C71, 374–380.  CSD CrossRef IUCr Journals Google Scholar
First citationKhan, M. I., Nome, R. C., Deb, S., McNeely, J. H., Cage, B. & Doedens, R. J. (2009). Cryst. Growth Des. 9, 2848–2852.  CSD CrossRef CAS Google Scholar
First citationLi, X.-M., Feng, S.-S., Wang, F., Ma, Q. & Zhu, M.-L. (2010). Acta Cryst. E66, o239–o240.  CSD CrossRef IUCr Journals Google Scholar
First citationMacrae, C. F., Bruno, I. J., Chisholm, J. A., Edgington, P. R., McCabe, P., Pidcock, E., Rodriguez-Monge, L., Taylor, R., van de Streek, J. & Wood, P. A. (2008). J. Appl. Cryst. 41, 466–470.  Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
First citationMrad, M. L., Zeller, M., Hernandez, K. J., Rzaigui, M. & Ben Nasr, C. (2012). Acta Cryst. E68, o3257–o3258.  CSD CrossRef IUCr Journals Google Scholar
First citationOueslati, A., Kefi, R., Ben Nasr, C. & Lefebvre, F. (2007). J. Mol. Struct. 871, 49–58.  Web of Science CSD CrossRef CAS Google Scholar
First citationPeng, R. & Zhao, Y. (2010). Acta Cryst. E66, o3235.  CSD CrossRef IUCr Journals Google Scholar
First citationEvans, I. R., Howard, J. A. K. & Evans, J. S. O. (2008). Cryst. Growth Des. 8, 1635–1639.  Google Scholar
First citationRaghavaiah, P., Supriya, S. & Das, S. K. (2005). CrystEngComm, 7, 167–170.  Web of Science CSD CrossRef CAS Google Scholar
First citationRao, A. S., Tripuramallu, B. K., Ravada, K. & Das, S. K. (2010). Acta Cryst. E66, o1945.  CSD CrossRef IUCr Journals Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSheldrick, G. M. (2015). Acta Cryst. C71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar
First citationShylaja, S., Mahendra, K. N., Varma, K. B. R., Narasimhamurthy, T. & Rathore, R. S. (2008). Acta Cryst. C64, o361–o363.  Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
First citationSingh, U. P., Kashyap, S., Singh, H. J. & Butcher, R. J. (2011). CrystEngComm, 13, 4110–4120.  Web of Science CSD CrossRef CAS Google Scholar
First citationSoumhi, E. H. & Jouini, T. (1995). Acta Cryst. C51, 1883–1885.  CSD CrossRef CAS IUCr Journals Google Scholar
First citationSpek, A. L. (2009). Acta Cryst. D65, 148–155.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationTrojette, B., Hajem, A. A., Driss, A. & Jouini, T. (1998). Acta Cryst. C54, 1867–1869.  Web of Science CSD CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds