research communications\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Crystal structure of di­aqua­bis­­(N,N-di­ethyl­nicotinamide-κN1)bis­­(2,4,6-tri­methyl­benzoato-κO1)cobalt(II)

CROSSMARK_Color_square_no_text.svg

aDepartment of Physics, Hacettepe University, 06800 Beytepe, Ankara, Turkey, bDepartment of Chemistry, Kafkas University, 36100 Kars, Turkey, International Scientific Research Centre, Baku State University, 1148 Baku, Azerbaijan, cDepartment of Chemistry, Kafkas University, 36100 Kars, Turkey, and dScientific and Technological Application and Research Center, Aksaray University, 68100, Aksaray, Turkey
*Correspondence e-mail: merzifon@hacettepe.edu.tr

Edited by M. Weil, Vienna University of Technology, Austria (Received 9 February 2016; accepted 10 March 2016; online 15 March 2016)

The centrosymmetric mol­ecule in the monomeric title cobalt complex, [Co(C10H11O2)2(C10H14N2O)2(H2O)2], contains two water mol­ecules, two 2,4,6-tri­methyl­benzoate (TMB) ligands and two di­ethyl­nicotinamide (DENA) ligands. All ligands coordinate to the CoII atom in a monodentate fashion. The four O atoms around the CoII atom form a slightly distorted square-planar arrangement, with the distorted octa­hedral coordination sphere completed by two pyridine N atoms of the DENA ligands. The dihedral angle between the planar carboxyl­ate group and the adjacent benzene ring is 84.2 (4)°, while the benzene and pyridine rings are oriented at a dihedral angle of 38.87 (10)°. The water mol­ecules exhibit both intra­molecular (to the non-coordinating carboxyl­ate O atom) and inter­molecular (to the amide carbonyl O atom) O—H⋯O hydrogen bonds. The latter lead to the formation of layers parallel to (100), enclosing R44(32) ring motifs. These layers are further linked via weak C—H⋯O hydrogen bonds, resulting in a three-dimensional network. One of the two ethyl groups of the DENA ligand is disordered over two sets of sites with an occupancy ratio of 0.490 (13):0.510 (13).

1. Chemical context

N,N-Di­ethyl­nicotinamide (DENA), a nicotinic acid derivative, is an important respiratory stimulant (Bigoli et al., 1972[Bigoli, F., Braibanti, A., Pellinghelli, M. A. & Tiripicchio, A. (1972). Acta Cryst. B28, 962-966.]). The crystal structure of the complex [Co(CH3CO2)2(DENA)2(H2O)2] [(II); Mikelashvili, 1982[Mikelashvili, Z. A. (1982). Dissertation, Tbilisi State University, Georgia.]] is isostructural with the analogous Ni, Mn, Zn and Cd complexes (Sergienko et al., 1980[Sergienko, V. S., Shurkina, V. N., Khodashova, T. S., Poray-Koshits, M. A. & Tsintsadze, G. V. (1980). Koord. Khim. 6, 1606-1609.]). The structures of some complexes obtained from the reactions of transition metal(II) ions with DENA as ligand, e.g. [Cu2(DENA)2(C6H5COO)4] [(III); Hökelek et al., 1995[Hökelek, T., Necefoğlu, H. & Balcı, M. (1995). Acta Cryst. C51, 2020-2023.]], [Zn2(C7H5O3)4(DENA)2]·2H2O [(IV); Hökelek & Necefoğlu, 1996[Hökelek, T. & Necefoğlu, H. (1996). Acta Cryst. C52, 1128-1131.]], [Mn(DENA)2(NCS)2] [(V); Bigoli et al., 1973a[Bigoli, F., Braibanti, A., Pellinghelli, M. A. & Tiripicchio, A. (1973a). Acta Cryst. B29, 39-43.]], [Zn(DENA)2(NCS)2(H2O)2] [(VI); Bigoli et al., 1973b[Bigoli, F., Braibanti, A., Pellinghelli, M. A. & Tiripicchio, A. (1973b). Acta Cryst. B29, 2344-2348.]] and [Cd(DENA)(SCN)2] [(VII); Bigoli et al., 1972[Bigoli, F., Braibanti, A., Pellinghelli, M. A. & Tiripicchio, A. (1972). Acta Cryst. B28, 962-966.]], have been determined previously. In complex (V), DENA is a bidentate ligand, while in complexes (III), (IV), (VI) and (VII), DENA is a monodentate ligand. In complex (III), the benzoate ion acts as a bidentate ligand, whereas in complex (IV), two of the benzoate ions act as monodentate ligands, while the other two are bidentate, bridging the two ZnII atoms.

The structure–function–coordination relationships of aryl­carboxyl­ate ions in CoII complexes of benzoic acid derivatives may change depending on the nature and position of the substituted groups on the benzene ring, the nature of the additional ligand mol­ecule or solvent, and the pH conditions and temperature of synthesis (Shnulin et al., 1981[Shnulin, A. N., Nadzhafov, G. N., Amiraslanov, I. R., Usubaliev, B. T. & Mamedov, Kh. S. (1981). Koord. Khim. 7, 1409-1416.]; Nadzhafov et al., 1981[Nadzhafov, G. N., Shnulin, A. N. & Mamedov, Kh. S. (1981). Zh. Strukt. Khim. 22, 124-128.]; Antsyshkina et al., 1980[Antsyshkina, A. S., Chiragov, F. M. & Poray-Koshits, M. A. (1980). Koord. Khim. 15, 1098-1103.]; Adiwidjaja et al., 1978[Adiwidjaja, G., Rossmanith, E. & Küppers, H. (1978). Acta Cryst. B34, 3079-3083.]). When pyridine or its derivatives are used instead of water mol­ecules, the resulting structure is completely different (Catterick et al., 1974[Catterick (neé Drew), J., Hursthouse, M. B., New, D. B. & Thornton, P. (1974). J. Chem. Soc. Chem. Commun. pp. 843-844.]). In this context, we synthesized a CoII-containing compound with 2,4,6-tri­methyl­benzoate (TMB) and DENA ligands, namely di­aqua­bis­(N,N-di­ethyl­nico­tin­amide-κN1)bis­(2,4,6-tri­methyl­benzoato-κO1)cobalt(II), [Co(DENA)2(TMB)2(H2O)2], and report herein its crystal structure.

[Scheme 1]

2. Structural commentary

The asymmetric unit of the mononuclear title complex contains one CoII atom located on an inversion centre, one TMB ligand, one DENA ligand and one water mol­ecule, with all ligands coordinating to the metal ion in a monodentate fashion (Fig. 1[link]).

[Figure 1]
Figure 1
The mol­ecular structure of the title complex with the atom-numbering scheme for the asymmetric unit. Unlabelled atoms are generated by symmetry code (1 − x, 1 − y, −z). Displacement ellipsoids are drawn at the 40% probability level. Intra­molecular O—H⋯O hydrogen bonds are shown as dashed lines.

The two carboxyl­ate O atoms (O2 and O2i) of the two symmetry-related TMB anions and the two symmetry-related water O atoms (O4 and O4i) form a slightly distorted square-planar arrangement around the Co1 atom. The slightly distorted octa­hedral coordination sphere is completed by the two pyridine N atoms (N1 and N1i) of the two symmetry-related DENA ligands in axial positions [symmetry code: (i) 1 − x, 1 − y, −z] (Fig. 1[link]). The Co—O bond lengths for water oxygens atoms are by ca 0.1 Å longer than those involving the benzoate oxygen atoms. The Co—N bond length is the longest in the CoO4N2 octa­hedron (Table 1[link]). The deviation of the O—Co—O and O—Co—N bond angles from ideal values is minute [range 87.66 (7) to 92.34 (7)° for cis angles; all trans angles are 180° due to symmetry]. The near equalities of the C1—O1 [1.245 (4) Å] and C1—O2 [1.254 (4) Å] bonds in the carboxyl­ate group indicate delocalized bonding arrangements, rather than localized single and double bonds. The dihedral angle between the planar carboxyl­ate group (O1/O2/C1) and the adjacent benzene ring A (C2–C7) is 84.2 (4)°, while the benzene (A) and pyridine rings (B) (N1/C11–C15) are inclined by a dihedral angle of 38.87 (10)°.

Table 1
Selected bond lengths (Å)

Co1—O2 2.0336 (18) Co1—N1 2.1913 (19)
Co1—O4 2.1561 (18)    

3. Supra­molecular features

Intra­molecular O—Hw⋯Oc (w = water, c = non-coordinating carboxyl­ate O atom) hydrogen bonds (Table 2[link]) link the water ligands to the TMB anions (Fig. 1[link]). The other water H atom is involved in inter­molecular O—Hw⋯ODENA (ODENA = carbonyl O atom of N,N-di­ethyl­nicotinamide) hydrogen bonds (Table 2[link]), leading to the formation of layers parallel to (100) enclosing R44(32) ring motifs (Fig. 2[link]). The layers are further linked into a three-dimensional network structure via weak C—HTMB⋯Oc (TMB = 2,4,6-tri­methyl­benzoate) and C—HDENA ⋯ ODENA hydrogen bonds (Table 2[link]), enclosing R22(7) ring motifs (Fig. 3[link]).

Table 2
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
O4—H1W⋯O1i 0.80 (6) 1.87 (6) 2.634 (3) 160 (7)
O4—H2W⋯O3ii 0.76 (7) 2.10 (7) 2.850 (3) 170 (7)
C10—H10A⋯O1iii 0.96 2.43 3.365 (6) 165
C15—H15⋯O3iv 0.93 2.50 3.420 (4) 172
Symmetry codes: (i) -x+1, -y+1, -z; (ii) [-x+1, y-{\script{1\over 2}}, -z+{\script{1\over 2}}]; (iii) [-x+2, y-{\script{1\over 2}}, -z+{\script{1\over 2}}]; (iv) [x, -y+{\script{3\over 2}}, z-{\script{1\over 2}}].
[Figure 2]
Figure 2
Part of the crystal structure viewed approximately down [100]. Intra- and inter­molecular O—H⋯O hydrogen bonds, shown as dashed lines, enclose R44(32) ring motifs. Only one part of the disordered group and only H atoms involved in hydrogen bonding have been included for clarity.
[Figure 3]
Figure 3
A partial view of the crystal packing of the title compound. The O—Hw⋯Oc, O—Hw⋯ODENA, C—HTMB⋯Oc and C—HDENA⋯ODENA (w = water, c = carboxyl­ate, DENA = N,N-di­ethyl­nicotinamide and TMB = 2,4,6-tri­methyl­benzoate) hydrogen bonds, enclosing R22(7) and R44(32) ring motifs, are shown as dashed lines (see Table 2[link]). Only one part of the disordered group and only H atoms involved in hydrogen bonding have been included for clarity.

4. Synthesis and crystallization

The title compound was prepared by the reaction of CoSO4·7H2O (1.41 g, 5 mmol) in H2O (100 ml) and N,N-di­ethyl­nicotinamide (1.78 g, 10 mmol) in H2O (10 ml) with sodium 2,4,6-tri­methyl­benzoate (1.86 g, 10 mmol) in H2O (150 ml). The mixture was filtered and set aside to crystallize at ambient temperature for three weeks, giving pink single crystals.

5. Refinement

Experimental details including crystal data, data collection and refinement are summarized in Table 3[link]. Atoms H1W and H2W (of the water molecule) were located in a difference Fourier map. Their coordinates were refined freely, with Uiso(H) = 1.5Ueq(O). C-bound H atoms were positioned geometrically, with C—H = 0.93, 0.96 and 0.97 Å for aromatic, methyl and methyl­ene H atoms, respectively, and constrained to ride on their parent atoms, with Uiso(H) = k × Ueq(C), where k = 1.5 for methyl H atoms and k = 1.2 for other H atoms. The disordered ethyl group (C19, C20) was refined over two sets of sites with distance restraints and SIMU and DELU restraints (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]). The refined occupancy ratio of the two orientations is 0.490 (13):0.510 (13).

Table 3
Experimental details

Crystal data
Chemical formula [Co(C10H11O2)2(C10H14N2O)2(H2O)2]
Mr 777.80
Crystal system, space group Monoclinic, P21/c
Temperature (K) 100
a, b, c (Å) 12.9646 (4), 10.8636 (3), 15.6297 (5)
β (°) 111.596 (3)
V3) 2046.79 (12)
Z 2
Radiation type Mo Kα
μ (mm−1) 0.47
Crystal size (mm) 0.45 × 0.40 × 0.33
 
Data collection
Diffractometer Bruker SMART BREEZE CCD
Absorption correction Multi-scan (SADABS; Bruker, 2012[Bruker (2012). APEX2, SAINT and SADABS. Bruker AXS Inc. Madison, Wisconsin, USA.])
Tmin, Tmax 0.754, 0.861
No. of measured, independent and observed [I > 2σ(I)] reflections 42492, 5124, 3701
Rint 0.041
(sin θ/λ)max−1) 0.670
 
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.063, 0.155, 1.07
No. of reflections 5124
No. of parameters 270
No. of restraints 42
H-atom treatment H atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å−3) 0.63, −0.39
Computer programs: APEX2 and SAINT (Bruker, 2012[Bruker (2012). APEX2, SAINT and SADABS. Bruker AXS Inc. Madison, Wisconsin, USA.]), SHELXS97 and SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]), ORTEP-3 for Windows (Farrugia, 2012[Farrugia, L. J. (2012). J. Appl. Cryst. 45, 849-854.]), WinGX (Farrugia, 2012[Farrugia, L. J. (2012). J. Appl. Cryst. 45, 849-854.]) and PLATON (Spek, 2009[Spek, A. L. (2009). Acta Cryst. D65, 148-155.]).

Supporting information


Computing details top

Data collection: APEX2 (Bruker, 2012); cell refinement: SAINT (Bruker, 2012); data reduction: SAINT (Bruker, 2012); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 for Windows (Farrugia, 2012); software used to prepare material for publication: WinGX (Farrugia, 2012) and PLATON (Spek, 2009).

Diaquabis(N,N-diethylnicotinamide-κN1)bis(2,4,6-trimethylbenzoato-κO1)cobalt(II) top
Crystal data top
[Co(C10H11O2)2(C10H14N2O)2(H2O)2]F(000) = 826
Mr = 777.80Dx = 1.262 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ybcCell parameters from 9990 reflections
a = 12.9646 (4) Åθ = 2.3–28.4°
b = 10.8636 (3) ŵ = 0.47 mm1
c = 15.6297 (5) ÅT = 100 K
β = 111.596 (3)°Block, translucent light pink
V = 2046.79 (12) Å30.45 × 0.40 × 0.33 mm
Z = 2
Data collection top
Bruker SMART BREEZE CCD
diffractometer
5124 independent reflections
Radiation source: fine-focus sealed tube3701 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.041
φ and ω scansθmax = 28.5°, θmin = 1.7°
Absorption correction: multi-scan
(SADABS; Bruker, 2012)
h = 1716
Tmin = 0.754, Tmax = 0.861k = 1414
42492 measured reflectionsl = 2020
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.063Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.155H atoms treated by a mixture of independent and constrained refinement
S = 1.07 w = 1/[σ2(Fo2) + (0.0662P)2 + 1.2728P]
where P = (Fo2 + 2Fc2)/3
5124 reflections(Δ/σ)max < 0.001
270 parametersΔρmax = 0.63 e Å3
42 restraintsΔρmin = 0.39 e Å3
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > 2sigma(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/UeqOcc. (<1)
Co10.50000.50000.00000.03723 (16)
O10.7500 (2)0.6149 (3)0.1133 (2)0.1140 (12)
O20.64234 (15)0.45260 (17)0.10503 (11)0.0476 (4)
O30.47496 (19)0.62630 (18)0.39053 (11)0.0613 (5)
O40.41728 (17)0.35512 (17)0.04417 (13)0.0495 (5)
H1W0.358 (6)0.358 (7)0.004 (5)0.201*
H2W0.440 (6)0.290 (6)0.057 (5)0.201*
N10.45672 (18)0.62382 (18)0.09231 (13)0.0434 (5)
N20.3331 (3)0.5092 (3)0.30486 (19)0.0929 (12)
C10.7318 (3)0.5109 (3)0.1382 (2)0.0589 (8)
C20.8208 (2)0.4486 (3)0.21743 (19)0.0546 (7)
C30.8883 (3)0.3599 (3)0.2011 (2)0.0684 (9)
C40.9635 (3)0.2965 (4)0.2757 (3)0.0784 (10)
H41.00910.23690.26540.094*
C50.9713 (3)0.3208 (4)0.3649 (2)0.0761 (10)
C60.9055 (3)0.4105 (4)0.3785 (2)0.0713 (9)
H60.91090.42790.43830.086*
C70.8310 (3)0.4766 (3)0.3068 (2)0.0621 (8)
C80.7606 (4)0.5758 (4)0.3247 (3)0.0895 (12)
H8A0.76340.56900.38670.134*
H8B0.68530.56680.28270.134*
H8C0.78820.65500.31610.134*
C90.8814 (4)0.3334 (5)0.1040 (3)0.1066 (15)
H9A0.93210.26840.10520.160*
H9B0.90050.40620.07830.160*
H9C0.80720.30870.06700.160*
C101.0488 (4)0.2448 (5)0.4441 (3)0.1131 (16)
H10A1.11330.22250.43130.170*
H10B1.01120.17170.45130.170*
H10C1.07090.29230.49980.170*
C110.4479 (2)0.5794 (2)0.16908 (15)0.0457 (6)
H110.46270.49640.18230.055*
C120.4181 (2)0.6499 (2)0.22983 (15)0.0425 (6)
C130.4001 (3)0.7736 (3)0.21270 (19)0.0602 (8)
H130.38220.82440.25310.072*
C140.4095 (3)0.8204 (3)0.1337 (2)0.0735 (10)
H140.39800.90380.12010.088*
C150.4357 (3)0.7430 (3)0.07530 (18)0.0574 (7)
H150.43900.77550.02130.069*
C160.4100 (3)0.5942 (2)0.31519 (16)0.0501 (7)
C170.3272 (4)0.4478 (4)0.3879 (3)0.1070 (16)
H17A0.31270.36080.37530.128*
H17B0.39830.45580.43810.128*
C180.2407 (5)0.5002 (6)0.4159 (4)0.154 (3)
H18A0.24310.46180.47190.231*
H18B0.16950.48620.36850.231*
H18C0.25280.58710.42580.231*
C19A0.2227 (8)0.5259 (10)0.2181 (7)0.080 (3)0.490 (13)
H19A0.16010.54190.23640.096*0.490 (13)
H19B0.22940.59280.17940.096*0.490 (13)
C19B0.2696 (8)0.4402 (8)0.2180 (5)0.077 (3)0.510 (13)
H19C0.24770.35950.23180.093*0.510 (13)
H19D0.31350.43070.17980.093*0.510 (13)
C20A0.2102 (12)0.4038 (11)0.1694 (9)0.128 (5)0.490 (13)
H20A0.14430.40490.11480.192*0.490 (13)
H20B0.20470.33920.20940.192*0.490 (13)
H20C0.27360.38960.15290.192*0.490 (13)
C20B0.1696 (11)0.5203 (13)0.1714 (9)0.134 (5)0.510 (13)
H20D0.12360.48280.11460.201*0.510 (13)
H20E0.19330.59990.15920.201*0.510 (13)
H20F0.12810.52920.21090.201*0.510 (13)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Co10.0546 (3)0.0354 (2)0.0260 (2)0.0004 (2)0.0197 (2)0.00073 (17)
O10.0881 (19)0.100 (2)0.115 (2)0.0333 (16)0.0081 (16)0.0591 (18)
O20.0552 (11)0.0477 (10)0.0375 (9)0.0020 (9)0.0143 (8)0.0047 (8)
O30.1013 (16)0.0519 (11)0.0305 (9)0.0127 (11)0.0240 (10)0.0057 (8)
O40.0709 (13)0.0412 (10)0.0428 (10)0.0004 (9)0.0287 (9)0.0037 (8)
N10.0644 (14)0.0388 (11)0.0315 (10)0.0001 (10)0.0231 (10)0.0017 (8)
N20.121 (3)0.122 (3)0.0444 (14)0.066 (2)0.0413 (17)0.0121 (15)
C10.0588 (18)0.0664 (19)0.0506 (16)0.0066 (15)0.0188 (14)0.0134 (14)
C20.0478 (16)0.0628 (17)0.0507 (15)0.0064 (14)0.0154 (13)0.0107 (13)
C30.0615 (19)0.085 (2)0.0600 (18)0.0051 (18)0.0241 (16)0.0060 (17)
C40.059 (2)0.093 (3)0.086 (2)0.0135 (19)0.0313 (19)0.016 (2)
C50.0547 (19)0.100 (3)0.067 (2)0.0009 (18)0.0144 (16)0.0269 (19)
C60.063 (2)0.095 (3)0.0503 (17)0.0042 (19)0.0149 (15)0.0123 (17)
C70.0588 (18)0.072 (2)0.0528 (17)0.0072 (15)0.0173 (14)0.0084 (14)
C80.108 (3)0.088 (3)0.074 (2)0.013 (2)0.036 (2)0.002 (2)
C90.112 (3)0.142 (4)0.076 (3)0.014 (3)0.046 (3)0.005 (3)
C100.087 (3)0.147 (4)0.095 (3)0.028 (3)0.021 (2)0.054 (3)
C110.0712 (18)0.0384 (13)0.0309 (11)0.0009 (12)0.0229 (12)0.0006 (9)
C120.0573 (15)0.0439 (13)0.0293 (11)0.0054 (11)0.0193 (11)0.0032 (9)
C130.095 (2)0.0503 (16)0.0467 (14)0.0119 (15)0.0400 (16)0.0028 (12)
C140.136 (3)0.0410 (15)0.0594 (17)0.0231 (17)0.054 (2)0.0102 (13)
C150.095 (2)0.0469 (15)0.0424 (13)0.0085 (15)0.0403 (15)0.0102 (12)
C160.0799 (19)0.0448 (14)0.0334 (12)0.0066 (14)0.0300 (13)0.0068 (10)
C170.167 (5)0.104 (3)0.069 (2)0.057 (3)0.065 (3)0.003 (2)
C180.151 (5)0.246 (8)0.095 (4)0.066 (5)0.080 (4)0.016 (4)
C19A0.077 (7)0.100 (7)0.077 (6)0.026 (6)0.043 (5)0.015 (5)
C19B0.110 (6)0.068 (5)0.064 (5)0.040 (5)0.043 (4)0.023 (4)
C20A0.129 (10)0.123 (9)0.129 (9)0.050 (8)0.045 (8)0.064 (8)
C20B0.110 (9)0.165 (13)0.097 (9)0.019 (7)0.004 (7)0.011 (8)
Geometric parameters (Å, º) top
Co1—O22.0336 (18)C9—H9C0.9600
Co1—O2i2.0336 (18)C10—H10A0.9600
Co1—O42.1561 (18)C10—H10B0.9600
Co1—O4i2.1561 (19)C10—H10C0.9600
Co1—N12.1913 (19)C11—H110.9300
Co1—N1i2.1913 (19)C12—C111.381 (3)
O2—C11.254 (4)C12—C161.503 (3)
O4—H1W0.80 (7)C13—C121.374 (4)
O4—H2W0.76 (7)C13—C141.382 (4)
N1—C111.336 (3)C13—H130.9300
N1—C151.330 (3)C14—C151.372 (4)
N2—C171.486 (4)C14—H140.9300
N2—C19A1.579 (11)C15—H150.9300
N2—C19B1.503 (8)C16—N21.325 (4)
C1—O11.245 (4)C17—H17A0.9700
C1—C21.508 (4)C17—H17B0.9700
C2—C71.387 (4)C18—C171.462 (7)
C3—C21.387 (5)C18—H18A0.9600
C3—C41.396 (5)C18—H18B0.9600
C3—C91.514 (5)C18—H18C0.9600
C4—H40.9300C19A—C20A1.508 (13)
C5—C41.385 (5)C19A—H19A0.9700
C5—C101.519 (5)C19A—H19B0.9700
C6—C51.363 (5)C19B—C20B1.508 (14)
C6—H60.9300C19B—H19C0.9700
C7—C61.381 (4)C19B—H19D0.9700
C7—C81.504 (5)C20A—H20A0.9600
C8—H8A0.9600C20A—H20B0.9600
C8—H8B0.9600C20A—H20C0.9600
C8—H8C0.9600C20B—H20D0.9600
C9—H9A0.9600C20B—H20E0.9600
C9—H9B0.9600C20B—H20F0.9600
O2i—Co1—O2180.00 (13)C5—C10—H10A109.5
O2—Co1—O488.12 (7)C5—C10—H10B109.5
O2i—Co1—O491.88 (7)C5—C10—H10C109.5
O2—Co1—O4i91.88 (7)H10A—C10—H10B109.5
O2i—Co1—O4i88.12 (7)H10A—C10—H10C109.5
O2—Co1—N190.01 (8)H10B—C10—H10C109.5
O2i—Co1—N189.99 (8)N1—C11—C12123.7 (2)
O2—Co1—N1i89.99 (8)N1—C11—H11118.1
O2i—Co1—N1i90.01 (8)C12—C11—H11118.1
O4—Co1—O4i180.00 (9)C11—C12—C16121.1 (2)
O4—Co1—N187.66 (7)C13—C12—C11118.6 (2)
O4i—Co1—N192.34 (7)C13—C12—C16120.3 (2)
O4—Co1—N1i92.34 (7)C12—C13—C14118.0 (2)
O4i—Co1—N1i87.66 (7)C12—C13—H13121.0
N1—Co1—N1i180.00 (7)C13—C14—H14120.2
C1—O2—Co1129.21 (18)C14—C13—H13121.0
Co1—O4—H1W99 (5)C15—C14—C13119.6 (3)
Co1—O4—H2W125 (5)C15—C14—H14120.2
H1W—O4—H2W115 (6)N1—C15—C14123.1 (2)
C11—N1—Co1119.79 (16)N1—C15—H15118.5
C15—N1—Co1123.32 (16)C14—C15—H15118.5
C15—N1—C11116.9 (2)O3—C16—N2122.6 (2)
C16—N2—C17119.0 (3)O3—C16—C12119.6 (2)
C16—N2—C19A115.4 (4)N2—C16—C12117.9 (2)
C16—N2—C19B126.5 (3)N2—C17—H17A109.1
C17—N2—C19A118.7 (4)N2—C17—H17B109.1
C17—N2—C19B112.2 (4)C18—C17—N2112.3 (5)
O1—C1—O2125.6 (3)C18—C17—H17A109.1
O1—C1—C2119.2 (3)C18—C17—H17B109.1
O2—C1—C2115.1 (2)H17A—C17—H17B107.9
C3—C2—C1120.3 (3)C17—C18—H18A109.5
C3—C2—C7120.4 (3)C17—C18—H18B109.5
C7—C2—C1119.3 (3)C17—C18—H18C109.5
C2—C3—C4118.8 (3)H18A—C18—H18B109.5
C2—C3—C9120.6 (3)H18A—C18—H18C109.5
C4—C3—C9120.6 (4)H18B—C18—H18C109.5
C3—C4—H4119.4N2—C19A—H19A111.1
C5—C4—C3121.1 (3)N2—C19A—H19B111.1
C5—C4—H4119.4C20A—C19A—N2103.1 (10)
C4—C5—C10119.9 (4)C20A—C19A—H19A111.1
C6—C5—C4118.4 (3)C20A—C19A—H19B111.1
C6—C5—C10121.7 (4)H19A—C19A—H19B109.1
C5—C6—C7122.4 (3)N2—C19B—C20B103.7 (9)
C5—C6—H6118.8N2—C19B—H19C111.0
C7—C6—H6118.8N2—C19B—H19D111.0
C2—C7—C8120.4 (3)C20B—C19B—H19C111.0
C6—C7—C2118.8 (3)C20B—C19B—H19D111.0
C6—C7—C8120.8 (3)H19C—C19B—H19D109.0
C7—C8—H8A109.5C19A—C20A—H20A109.5
C7—C8—H8B109.5C19A—C20A—H20B109.5
C7—C8—H8C109.5C19A—C20A—H20C109.5
H8A—C8—H8B109.5H20A—C20A—H20B109.5
H8A—C8—H8C109.5H20A—C20A—H20C109.5
H8B—C8—H8C109.5H20B—C20A—H20C109.5
C3—C9—H9A109.5C19B—C20B—H20D109.5
C3—C9—H9B109.5C19B—C20B—H20E109.5
C3—C9—H9C109.5C19B—C20B—H20F109.5
H9A—C9—H9B109.5H20D—C20B—H20E109.5
H9A—C9—H9C109.5H20D—C20B—H20F109.5
H9B—C9—H9C109.5H20E—C20B—H20F109.5
O4—Co1—O2—C1165.8 (2)C1—C2—C7—C85.2 (5)
O4i—Co1—O2—C114.2 (2)C3—C2—C7—C63.2 (5)
N1—Co1—O2—C178.1 (2)C3—C2—C7—C8177.8 (3)
N1i—Co1—O2—C1101.9 (2)C4—C3—C2—C1174.6 (3)
O2—Co1—N1—C1157.7 (2)C4—C3—C2—C72.4 (5)
O2i—Co1—N1—C11122.3 (2)C9—C3—C2—C16.1 (5)
O2—Co1—N1—C15123.9 (2)C9—C3—C2—C7177.0 (3)
O2i—Co1—N1—C1556.1 (2)C2—C3—C4—C50.0 (5)
O4—Co1—N1—C1130.5 (2)C9—C3—C4—C5179.4 (4)
O4i—Co1—N1—C11149.5 (2)C6—C5—C4—C31.5 (6)
O4—Co1—N1—C15148.0 (2)C10—C5—C4—C3176.2 (4)
O4i—Co1—N1—C1532.0 (2)C7—C6—C5—C40.7 (5)
Co1—O2—C1—O12.1 (5)C7—C6—C5—C10177.0 (4)
Co1—O2—C1—C2179.24 (18)C2—C7—C6—C51.6 (5)
Co1—N1—C11—C12178.2 (2)C8—C7—C6—C5179.4 (3)
C15—N1—C11—C120.4 (4)C13—C12—C11—N12.4 (4)
Co1—N1—C15—C14179.5 (3)C16—C12—C11—N1179.8 (3)
C11—N1—C15—C142.0 (5)C11—C12—C16—O3113.7 (3)
C16—N2—C17—C1899.5 (5)C11—C12—C16—N264.8 (4)
C19A—N2—C17—C1849.9 (7)C13—C12—C16—O363.7 (4)
C19B—N2—C17—C1896.4 (6)C13—C12—C16—N2117.9 (4)
C16—N2—C19A—C20A125.7 (6)C14—C13—C12—C112.0 (5)
C17—N2—C19A—C20A83.8 (7)C14—C13—C12—C16179.5 (3)
C19B—N2—C19A—C20A8.4 (7)C12—C13—C14—C150.2 (5)
C16—N2—C19B—C20B89.3 (8)C13—C14—C15—N12.3 (6)
C17—N2—C19B—C20B108.1 (8)O3—C16—N2—C171.6 (6)
C19A—N2—C19B—C20B0.6 (9)O3—C16—N2—C19A148.8 (5)
O1—C1—C2—C399.3 (4)O3—C16—N2—C19B163.2 (6)
O1—C1—C2—C783.8 (4)C12—C16—N2—C17176.8 (3)
O2—C1—C2—C383.4 (4)C12—C16—N2—C19A32.8 (5)
O2—C1—C2—C793.6 (4)C12—C16—N2—C19B15.2 (7)
C1—C2—C7—C6173.8 (3)
Symmetry code: (i) x+1, y+1, z.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O4—H1W···O1i0.80 (6)1.87 (6)2.634 (3)160 (7)
O4—H2W···O3ii0.76 (7)2.10 (7)2.850 (3)170 (7)
C10—H10A···O1iii0.962.433.365 (6)165
C15—H15···O3iv0.932.503.420 (4)172
Symmetry codes: (i) x+1, y+1, z; (ii) x+1, y1/2, z+1/2; (iii) x+2, y1/2, z+1/2; (iv) x, y+3/2, z1/2.
 

Acknowledgements

The authors acknowledge the Aksaray University, Science and Technology Application and Research Center, Aksaray, Turkey, for the use of the Bruker SMART BREEZE CCD diffractometer (purchased under grant No. 2010K120480 of the State of Planning Organization).

References

First citationAdiwidjaja, G., Rossmanith, E. & Küppers, H. (1978). Acta Cryst. B34, 3079–3083.  CSD CrossRef CAS IUCr Journals Web of Science Google Scholar
First citationAntsyshkina, A. S., Chiragov, F. M. & Poray-Koshits, M. A. (1980). Koord. Khim. 15, 1098–1103.  Google Scholar
First citationBigoli, F., Braibanti, A., Pellinghelli, M. A. & Tiripicchio, A. (1972). Acta Cryst. B28, 962–966.  CSD CrossRef CAS IUCr Journals Web of Science Google Scholar
First citationBigoli, F., Braibanti, A., Pellinghelli, M. A. & Tiripicchio, A. (1973a). Acta Cryst. B29, 39–43.  CSD CrossRef CAS IUCr Journals Web of Science Google Scholar
First citationBigoli, F., Braibanti, A., Pellinghelli, M. A. & Tiripicchio, A. (1973b). Acta Cryst. B29, 2344–2348.  CSD CrossRef CAS IUCr Journals Web of Science Google Scholar
First citationBruker (2012). APEX2, SAINT and SADABS. Bruker AXS Inc. Madison, Wisconsin, USA.  Google Scholar
First citationCatterick (neé Drew), J., Hursthouse, M. B., New, D. B. & Thornton, P. (1974). J. Chem. Soc. Chem. Commun. pp. 843–844.  Google Scholar
First citationFarrugia, L. J. (2012). J. Appl. Cryst. 45, 849–854.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationHökelek, T. & Necefoğlu, H. (1996). Acta Cryst. C52, 1128–1131.  CSD CrossRef Web of Science IUCr Journals Google Scholar
First citationHökelek, T., Necefoğlu, H. & Balcı, M. (1995). Acta Cryst. C51, 2020–2023.  CSD CrossRef Web of Science IUCr Journals Google Scholar
First citationMikelashvili, Z. A. (1982). Dissertation, Tbilisi State University, Georgia.  Google Scholar
First citationNadzhafov, G. N., Shnulin, A. N. & Mamedov, Kh. S. (1981). Zh. Strukt. Khim. 22, 124–128.  CAS Google Scholar
First citationSergienko, V. S., Shurkina, V. N., Khodashova, T. S., Poray-Koshits, M. A. & Tsintsadze, G. V. (1980). Koord. Khim. 6, 1606–1609.  CAS Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationShnulin, A. N., Nadzhafov, G. N., Amiraslanov, I. R., Usubaliev, B. T. & Mamedov, Kh. S. (1981). Koord. Khim. 7, 1409–1416.  CAS Google Scholar
First citationSpek, A. L. (2009). Acta Cryst. D65, 148–155.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds