research communications
N,N-diethylnicotinamide-κN1)bis(2,4,6-trimethylbenzoato-κO1)cobalt(II)
of diaquabis(aDepartment of Physics, Hacettepe University, 06800 Beytepe, Ankara, Turkey, bDepartment of Chemistry, Kafkas University, 36100 Kars, Turkey, International Scientific Research Centre, Baku State University, 1148 Baku, Azerbaijan, cDepartment of Chemistry, Kafkas University, 36100 Kars, Turkey, and dScientific and Technological Application and Research Center, Aksaray University, 68100, Aksaray, Turkey
*Correspondence e-mail: merzifon@hacettepe.edu.tr
The centrosymmetric molecule in the monomeric title cobalt complex, [Co(C10H11O2)2(C10H14N2O)2(H2O)2], contains two water molecules, two 2,4,6-trimethylbenzoate (TMB) ligands and two diethylnicotinamide (DENA) ligands. All ligands coordinate to the CoII atom in a monodentate fashion. The four O atoms around the CoII atom form a slightly distorted square-planar arrangement, with the distorted octahedral coordination sphere completed by two pyridine N atoms of the DENA ligands. The dihedral angle between the planar carboxylate group and the adjacent benzene ring is 84.2 (4)°, while the benzene and pyridine rings are oriented at a dihedral angle of 38.87 (10)°. The water molecules exhibit both intramolecular (to the non-coordinating carboxylate O atom) and intermolecular (to the amide carbonyl O atom) O—H⋯O hydrogen bonds. The latter lead to the formation of layers parallel to (100), enclosing R44(32) ring motifs. These layers are further linked via weak C—H⋯O hydrogen bonds, resulting in a three-dimensional network. One of the two ethyl groups of the DENA ligand is disordered over two sets of sites with an occupancy ratio of 0.490 (13):0.510 (13).
Keywords: crystal structure; cobalt(II); transition metal complexes of benzoic acid and nicotinamide derivatives.
CCDC reference: 1462884
1. Chemical context
N,N-Diethylnicotinamide (DENA), a nicotinic acid derivative, is an important respiratory stimulant (Bigoli et al., 1972). The of the complex [Co(CH3CO2)2(DENA)2(H2O)2] [(II); Mikelashvili, 1982] is isostructural with the analogous Ni, Mn, Zn and Cd complexes (Sergienko et al., 1980). The structures of some complexes obtained from the reactions of transition metal(II) ions with DENA as ligand, e.g. [Cu2(DENA)2(C6H5COO)4] [(III); Hökelek et al., 1995], [Zn2(C7H5O3)4(DENA)2]·2H2O [(IV); Hökelek & Necefoğlu, 1996], [Mn(DENA)2(NCS)2] [(V); Bigoli et al., 1973a], [Zn(DENA)2(NCS)2(H2O)2] [(VI); Bigoli et al., 1973b] and [Cd(DENA)(SCN)2] [(VII); Bigoli et al., 1972], have been determined previously. In complex (V), DENA is a bidentate ligand, while in complexes (III), (IV), (VI) and (VII), DENA is a monodentate ligand. In complex (III), the benzoate ion acts as a bidentate ligand, whereas in complex (IV), two of the benzoate ions act as monodentate ligands, while the other two are bidentate, bridging the two ZnII atoms.
The structure–function–coordination relationships of arylcarboxylate ions in CoII complexes of benzoic acid derivatives may change depending on the nature and position of the substituted groups on the benzene ring, the nature of the additional ligand molecule or solvent, and the pH conditions and temperature of synthesis (Shnulin et al., 1981; Nadzhafov et al., 1981; Antsyshkina et al., 1980; Adiwidjaja et al., 1978). When pyridine or its derivatives are used instead of water molecules, the resulting structure is completely different (Catterick et al., 1974). In this context, we synthesized a CoII-containing compound with 2,4,6-trimethylbenzoate (TMB) and DENA ligands, namely diaquabis(N,N-diethylnicotinamide-κN1)bis(2,4,6-trimethylbenzoato-κO1)cobalt(II), [Co(DENA)2(TMB)2(H2O)2], and report herein its crystal structure.
2. Structural commentary
The II atom located on an inversion centre, one TMB ligand, one DENA ligand and one water molecule, with all ligands coordinating to the metal ion in a monodentate fashion (Fig. 1).
of the mononuclear title complex contains one CoThe two carboxylate O atoms (O2 and O2i) of the two symmetry-related TMB anions and the two symmetry-related water O atoms (O4 and O4i) form a slightly distorted square-planar arrangement around the Co1 atom. The slightly distorted octahedral coordination sphere is completed by the two pyridine N atoms (N1 and N1i) of the two symmetry-related DENA ligands in axial positions [symmetry code: (i) 1 − x, 1 − y, −z] (Fig. 1). The Co—O bond lengths for water oxygens atoms are by ca 0.1 Å longer than those involving the benzoate oxygen atoms. The Co—N bond length is the longest in the CoO4N2 octahedron (Table 1). The deviation of the O—Co—O and O—Co—N bond angles from ideal values is minute [range 87.66 (7) to 92.34 (7)° for cis angles; all trans angles are 180° due to symmetry]. The near equalities of the C1—O1 [1.245 (4) Å] and C1—O2 [1.254 (4) Å] bonds in the carboxylate group indicate delocalized bonding arrangements, rather than localized single and double bonds. The dihedral angle between the planar carboxylate group (O1/O2/C1) and the adjacent benzene ring A (C2–C7) is 84.2 (4)°, while the benzene (A) and pyridine rings (B) (N1/C11–C15) are inclined by a dihedral angle of 38.87 (10)°.
|
3. Supramolecular features
Intramolecular O—Hw⋯Oc (w = water, c = non-coordinating carboxylate O atom) hydrogen bonds (Table 2) link the water ligands to the TMB anions (Fig. 1). The other water H atom is involved in intermolecular O—Hw⋯ODENA (ODENA = carbonyl O atom of N,N-diethylnicotinamide) hydrogen bonds (Table 2), leading to the formation of layers parallel to (100) enclosing R44(32) ring motifs (Fig. 2). The layers are further linked into a three-dimensional network structure via weak C—HTMB⋯Oc (TMB = 2,4,6-trimethylbenzoate) and C—HDENA ⋯ ODENA hydrogen bonds (Table 2), enclosing R22(7) ring motifs (Fig. 3).
4. Synthesis and crystallization
The title compound was prepared by the reaction of CoSO4·7H2O (1.41 g, 5 mmol) in H2O (100 ml) and N,N-diethylnicotinamide (1.78 g, 10 mmol) in H2O (10 ml) with sodium 2,4,6-trimethylbenzoate (1.86 g, 10 mmol) in H2O (150 ml). The mixture was filtered and set aside to crystallize at ambient temperature for three weeks, giving pink single crystals.
5. Refinement
Experimental details including crystal data, data collection and . Atoms H1W and H2W (of the water molecule) were located in a difference Fourier map. Their coordinates were refined freely, with Uiso(H) = 1.5Ueq(O). C-bound H atoms were positioned geometrically, with C—H = 0.93, 0.96 and 0.97 Å for aromatic, methyl and methylene H atoms, respectively, and constrained to ride on their parent atoms, with Uiso(H) = k × Ueq(C), where k = 1.5 for methyl H atoms and k = 1.2 for other H atoms. The disordered ethyl group (C19, C20) was refined over two sets of sites with distance restraints and SIMU and DELU restraints (Sheldrick, 2008). The refined occupancy ratio of the two orientations is 0.490 (13):0.510 (13).
are summarized in Table 3Supporting information
CCDC reference: 1462884
https://doi.org/10.1107/S2056989016004059/wm5273sup1.cif
contains datablocks I, global. DOI:Structure factors: contains datablock I. DOI: https://doi.org/10.1107/S2056989016004059/wm5273Isup2.hkl
Data collection: APEX2 (Bruker, 2012); cell
SAINT (Bruker, 2012); data reduction: SAINT (Bruker, 2012); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 for Windows (Farrugia, 2012); software used to prepare material for publication: WinGX (Farrugia, 2012) and PLATON (Spek, 2009).[Co(C10H11O2)2(C10H14N2O)2(H2O)2] | F(000) = 826 |
Mr = 777.80 | Dx = 1.262 Mg m−3 |
Monoclinic, P21/c | Mo Kα radiation, λ = 0.71073 Å |
Hall symbol: -P 2ybc | Cell parameters from 9990 reflections |
a = 12.9646 (4) Å | θ = 2.3–28.4° |
b = 10.8636 (3) Å | µ = 0.47 mm−1 |
c = 15.6297 (5) Å | T = 100 K |
β = 111.596 (3)° | Block, translucent light pink |
V = 2046.79 (12) Å3 | 0.45 × 0.40 × 0.33 mm |
Z = 2 |
Bruker SMART BREEZE CCD diffractometer | 5124 independent reflections |
Radiation source: fine-focus sealed tube | 3701 reflections with I > 2σ(I) |
Graphite monochromator | Rint = 0.041 |
φ and ω scans | θmax = 28.5°, θmin = 1.7° |
Absorption correction: multi-scan (SADABS; Bruker, 2012) | h = −17→16 |
Tmin = 0.754, Tmax = 0.861 | k = −14→14 |
42492 measured reflections | l = −20→20 |
Refinement on F2 | Primary atom site location: structure-invariant direct methods |
Least-squares matrix: full | Secondary atom site location: difference Fourier map |
R[F2 > 2σ(F2)] = 0.063 | Hydrogen site location: inferred from neighbouring sites |
wR(F2) = 0.155 | H atoms treated by a mixture of independent and constrained refinement |
S = 1.07 | w = 1/[σ2(Fo2) + (0.0662P)2 + 1.2728P] where P = (Fo2 + 2Fc2)/3 |
5124 reflections | (Δ/σ)max < 0.001 |
270 parameters | Δρmax = 0.63 e Å−3 |
42 restraints | Δρmin = −0.39 e Å−3 |
Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes. |
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > 2sigma(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger. |
x | y | z | Uiso*/Ueq | Occ. (<1) | |
Co1 | 0.5000 | 0.5000 | 0.0000 | 0.03723 (16) | |
O1 | 0.7500 (2) | 0.6149 (3) | 0.1133 (2) | 0.1140 (12) | |
O2 | 0.64234 (15) | 0.45260 (17) | 0.10503 (11) | 0.0476 (4) | |
O3 | 0.47496 (19) | 0.62630 (18) | 0.39053 (11) | 0.0613 (5) | |
O4 | 0.41728 (17) | 0.35512 (17) | 0.04417 (13) | 0.0495 (5) | |
H1W | 0.358 (6) | 0.358 (7) | 0.004 (5) | 0.201* | |
H2W | 0.440 (6) | 0.290 (6) | 0.057 (5) | 0.201* | |
N1 | 0.45672 (18) | 0.62382 (18) | 0.09231 (13) | 0.0434 (5) | |
N2 | 0.3331 (3) | 0.5092 (3) | 0.30486 (19) | 0.0929 (12) | |
C1 | 0.7318 (3) | 0.5109 (3) | 0.1382 (2) | 0.0589 (8) | |
C2 | 0.8208 (2) | 0.4486 (3) | 0.21743 (19) | 0.0546 (7) | |
C3 | 0.8883 (3) | 0.3599 (3) | 0.2011 (2) | 0.0684 (9) | |
C4 | 0.9635 (3) | 0.2965 (4) | 0.2757 (3) | 0.0784 (10) | |
H4 | 1.0091 | 0.2369 | 0.2654 | 0.094* | |
C5 | 0.9713 (3) | 0.3208 (4) | 0.3649 (2) | 0.0761 (10) | |
C6 | 0.9055 (3) | 0.4105 (4) | 0.3785 (2) | 0.0713 (9) | |
H6 | 0.9109 | 0.4279 | 0.4383 | 0.086* | |
C7 | 0.8310 (3) | 0.4766 (3) | 0.3068 (2) | 0.0621 (8) | |
C8 | 0.7606 (4) | 0.5758 (4) | 0.3247 (3) | 0.0895 (12) | |
H8A | 0.7634 | 0.5690 | 0.3867 | 0.134* | |
H8B | 0.6853 | 0.5668 | 0.2827 | 0.134* | |
H8C | 0.7882 | 0.6550 | 0.3161 | 0.134* | |
C9 | 0.8814 (4) | 0.3334 (5) | 0.1040 (3) | 0.1066 (15) | |
H9A | 0.9321 | 0.2684 | 0.1052 | 0.160* | |
H9B | 0.9005 | 0.4062 | 0.0783 | 0.160* | |
H9C | 0.8072 | 0.3087 | 0.0670 | 0.160* | |
C10 | 1.0488 (4) | 0.2448 (5) | 0.4441 (3) | 0.1131 (16) | |
H10A | 1.1133 | 0.2225 | 0.4313 | 0.170* | |
H10B | 1.0112 | 0.1717 | 0.4513 | 0.170* | |
H10C | 1.0709 | 0.2923 | 0.4998 | 0.170* | |
C11 | 0.4479 (2) | 0.5794 (2) | 0.16908 (15) | 0.0457 (6) | |
H11 | 0.4627 | 0.4964 | 0.1823 | 0.055* | |
C12 | 0.4181 (2) | 0.6499 (2) | 0.22983 (15) | 0.0425 (6) | |
C13 | 0.4001 (3) | 0.7736 (3) | 0.21270 (19) | 0.0602 (8) | |
H13 | 0.3822 | 0.8244 | 0.2531 | 0.072* | |
C14 | 0.4095 (3) | 0.8204 (3) | 0.1337 (2) | 0.0735 (10) | |
H14 | 0.3980 | 0.9038 | 0.1201 | 0.088* | |
C15 | 0.4357 (3) | 0.7430 (3) | 0.07530 (18) | 0.0574 (7) | |
H15 | 0.4390 | 0.7755 | 0.0213 | 0.069* | |
C16 | 0.4100 (3) | 0.5942 (2) | 0.31519 (16) | 0.0501 (7) | |
C17 | 0.3272 (4) | 0.4478 (4) | 0.3879 (3) | 0.1070 (16) | |
H17A | 0.3127 | 0.3608 | 0.3753 | 0.128* | |
H17B | 0.3983 | 0.4558 | 0.4381 | 0.128* | |
C18 | 0.2407 (5) | 0.5002 (6) | 0.4159 (4) | 0.154 (3) | |
H18A | 0.2431 | 0.4618 | 0.4719 | 0.231* | |
H18B | 0.1695 | 0.4862 | 0.3685 | 0.231* | |
H18C | 0.2528 | 0.5871 | 0.4258 | 0.231* | |
C19A | 0.2227 (8) | 0.5259 (10) | 0.2181 (7) | 0.080 (3) | 0.490 (13) |
H19A | 0.1601 | 0.5419 | 0.2364 | 0.096* | 0.490 (13) |
H19B | 0.2294 | 0.5928 | 0.1794 | 0.096* | 0.490 (13) |
C19B | 0.2696 (8) | 0.4402 (8) | 0.2180 (5) | 0.077 (3) | 0.510 (13) |
H19C | 0.2477 | 0.3595 | 0.2318 | 0.093* | 0.510 (13) |
H19D | 0.3135 | 0.4307 | 0.1798 | 0.093* | 0.510 (13) |
C20A | 0.2102 (12) | 0.4038 (11) | 0.1694 (9) | 0.128 (5) | 0.490 (13) |
H20A | 0.1443 | 0.4049 | 0.1148 | 0.192* | 0.490 (13) |
H20B | 0.2047 | 0.3392 | 0.2094 | 0.192* | 0.490 (13) |
H20C | 0.2736 | 0.3896 | 0.1529 | 0.192* | 0.490 (13) |
C20B | 0.1696 (11) | 0.5203 (13) | 0.1714 (9) | 0.134 (5) | 0.510 (13) |
H20D | 0.1236 | 0.4828 | 0.1146 | 0.201* | 0.510 (13) |
H20E | 0.1933 | 0.5999 | 0.1592 | 0.201* | 0.510 (13) |
H20F | 0.1281 | 0.5292 | 0.2109 | 0.201* | 0.510 (13) |
U11 | U22 | U33 | U12 | U13 | U23 | |
Co1 | 0.0546 (3) | 0.0354 (2) | 0.0260 (2) | −0.0004 (2) | 0.0197 (2) | 0.00073 (17) |
O1 | 0.0881 (19) | 0.100 (2) | 0.115 (2) | −0.0333 (16) | −0.0081 (16) | 0.0591 (18) |
O2 | 0.0552 (11) | 0.0477 (10) | 0.0375 (9) | −0.0020 (9) | 0.0143 (8) | 0.0047 (8) |
O3 | 0.1013 (16) | 0.0519 (11) | 0.0305 (9) | −0.0127 (11) | 0.0240 (10) | −0.0057 (8) |
O4 | 0.0709 (13) | 0.0412 (10) | 0.0428 (10) | −0.0004 (9) | 0.0287 (9) | 0.0037 (8) |
N1 | 0.0644 (14) | 0.0388 (11) | 0.0315 (10) | 0.0001 (10) | 0.0231 (10) | 0.0017 (8) |
N2 | 0.121 (3) | 0.122 (3) | 0.0444 (14) | −0.066 (2) | 0.0413 (17) | −0.0121 (15) |
C1 | 0.0588 (18) | 0.0664 (19) | 0.0506 (16) | −0.0066 (15) | 0.0188 (14) | 0.0134 (14) |
C2 | 0.0478 (16) | 0.0628 (17) | 0.0507 (15) | −0.0064 (14) | 0.0154 (13) | 0.0107 (13) |
C3 | 0.0615 (19) | 0.085 (2) | 0.0600 (18) | −0.0051 (18) | 0.0241 (16) | 0.0060 (17) |
C4 | 0.059 (2) | 0.093 (3) | 0.086 (2) | 0.0135 (19) | 0.0313 (19) | 0.016 (2) |
C5 | 0.0547 (19) | 0.100 (3) | 0.067 (2) | 0.0009 (18) | 0.0144 (16) | 0.0269 (19) |
C6 | 0.063 (2) | 0.095 (3) | 0.0503 (17) | −0.0042 (19) | 0.0149 (15) | 0.0123 (17) |
C7 | 0.0588 (18) | 0.072 (2) | 0.0528 (17) | −0.0072 (15) | 0.0173 (14) | 0.0084 (14) |
C8 | 0.108 (3) | 0.088 (3) | 0.074 (2) | 0.013 (2) | 0.036 (2) | 0.002 (2) |
C9 | 0.112 (3) | 0.142 (4) | 0.076 (3) | 0.014 (3) | 0.046 (3) | −0.005 (3) |
C10 | 0.087 (3) | 0.147 (4) | 0.095 (3) | 0.028 (3) | 0.021 (2) | 0.054 (3) |
C11 | 0.0712 (18) | 0.0384 (13) | 0.0309 (11) | −0.0009 (12) | 0.0229 (12) | 0.0006 (9) |
C12 | 0.0573 (15) | 0.0439 (13) | 0.0293 (11) | −0.0054 (11) | 0.0193 (11) | −0.0032 (9) |
C13 | 0.095 (2) | 0.0503 (16) | 0.0467 (14) | 0.0119 (15) | 0.0400 (16) | −0.0028 (12) |
C14 | 0.136 (3) | 0.0410 (15) | 0.0594 (17) | 0.0231 (17) | 0.054 (2) | 0.0102 (13) |
C15 | 0.095 (2) | 0.0469 (15) | 0.0424 (13) | 0.0085 (15) | 0.0403 (15) | 0.0102 (12) |
C16 | 0.0799 (19) | 0.0448 (14) | 0.0334 (12) | −0.0066 (14) | 0.0300 (13) | −0.0068 (10) |
C17 | 0.167 (5) | 0.104 (3) | 0.069 (2) | −0.057 (3) | 0.065 (3) | −0.003 (2) |
C18 | 0.151 (5) | 0.246 (8) | 0.095 (4) | −0.066 (5) | 0.080 (4) | −0.016 (4) |
C19A | 0.077 (7) | 0.100 (7) | 0.077 (6) | −0.026 (6) | 0.043 (5) | −0.015 (5) |
C19B | 0.110 (6) | 0.068 (5) | 0.064 (5) | −0.040 (5) | 0.043 (4) | −0.023 (4) |
C20A | 0.129 (10) | 0.123 (9) | 0.129 (9) | −0.050 (8) | 0.045 (8) | −0.064 (8) |
C20B | 0.110 (9) | 0.165 (13) | 0.097 (9) | −0.019 (7) | 0.004 (7) | −0.011 (8) |
Co1—O2 | 2.0336 (18) | C9—H9C | 0.9600 |
Co1—O2i | 2.0336 (18) | C10—H10A | 0.9600 |
Co1—O4 | 2.1561 (18) | C10—H10B | 0.9600 |
Co1—O4i | 2.1561 (19) | C10—H10C | 0.9600 |
Co1—N1 | 2.1913 (19) | C11—H11 | 0.9300 |
Co1—N1i | 2.1913 (19) | C12—C11 | 1.381 (3) |
O2—C1 | 1.254 (4) | C12—C16 | 1.503 (3) |
O4—H1W | 0.80 (7) | C13—C12 | 1.374 (4) |
O4—H2W | 0.76 (7) | C13—C14 | 1.382 (4) |
N1—C11 | 1.336 (3) | C13—H13 | 0.9300 |
N1—C15 | 1.330 (3) | C14—C15 | 1.372 (4) |
N2—C17 | 1.486 (4) | C14—H14 | 0.9300 |
N2—C19A | 1.579 (11) | C15—H15 | 0.9300 |
N2—C19B | 1.503 (8) | C16—N2 | 1.325 (4) |
C1—O1 | 1.245 (4) | C17—H17A | 0.9700 |
C1—C2 | 1.508 (4) | C17—H17B | 0.9700 |
C2—C7 | 1.387 (4) | C18—C17 | 1.462 (7) |
C3—C2 | 1.387 (5) | C18—H18A | 0.9600 |
C3—C4 | 1.396 (5) | C18—H18B | 0.9600 |
C3—C9 | 1.514 (5) | C18—H18C | 0.9600 |
C4—H4 | 0.9300 | C19A—C20A | 1.508 (13) |
C5—C4 | 1.385 (5) | C19A—H19A | 0.9700 |
C5—C10 | 1.519 (5) | C19A—H19B | 0.9700 |
C6—C5 | 1.363 (5) | C19B—C20B | 1.508 (14) |
C6—H6 | 0.9300 | C19B—H19C | 0.9700 |
C7—C6 | 1.381 (4) | C19B—H19D | 0.9700 |
C7—C8 | 1.504 (5) | C20A—H20A | 0.9600 |
C8—H8A | 0.9600 | C20A—H20B | 0.9600 |
C8—H8B | 0.9600 | C20A—H20C | 0.9600 |
C8—H8C | 0.9600 | C20B—H20D | 0.9600 |
C9—H9A | 0.9600 | C20B—H20E | 0.9600 |
C9—H9B | 0.9600 | C20B—H20F | 0.9600 |
O2i—Co1—O2 | 180.00 (13) | C5—C10—H10A | 109.5 |
O2—Co1—O4 | 88.12 (7) | C5—C10—H10B | 109.5 |
O2i—Co1—O4 | 91.88 (7) | C5—C10—H10C | 109.5 |
O2—Co1—O4i | 91.88 (7) | H10A—C10—H10B | 109.5 |
O2i—Co1—O4i | 88.12 (7) | H10A—C10—H10C | 109.5 |
O2—Co1—N1 | 90.01 (8) | H10B—C10—H10C | 109.5 |
O2i—Co1—N1 | 89.99 (8) | N1—C11—C12 | 123.7 (2) |
O2—Co1—N1i | 89.99 (8) | N1—C11—H11 | 118.1 |
O2i—Co1—N1i | 90.01 (8) | C12—C11—H11 | 118.1 |
O4—Co1—O4i | 180.00 (9) | C11—C12—C16 | 121.1 (2) |
O4—Co1—N1 | 87.66 (7) | C13—C12—C11 | 118.6 (2) |
O4i—Co1—N1 | 92.34 (7) | C13—C12—C16 | 120.3 (2) |
O4—Co1—N1i | 92.34 (7) | C12—C13—C14 | 118.0 (2) |
O4i—Co1—N1i | 87.66 (7) | C12—C13—H13 | 121.0 |
N1—Co1—N1i | 180.00 (7) | C13—C14—H14 | 120.2 |
C1—O2—Co1 | 129.21 (18) | C14—C13—H13 | 121.0 |
Co1—O4—H1W | 99 (5) | C15—C14—C13 | 119.6 (3) |
Co1—O4—H2W | 125 (5) | C15—C14—H14 | 120.2 |
H1W—O4—H2W | 115 (6) | N1—C15—C14 | 123.1 (2) |
C11—N1—Co1 | 119.79 (16) | N1—C15—H15 | 118.5 |
C15—N1—Co1 | 123.32 (16) | C14—C15—H15 | 118.5 |
C15—N1—C11 | 116.9 (2) | O3—C16—N2 | 122.6 (2) |
C16—N2—C17 | 119.0 (3) | O3—C16—C12 | 119.6 (2) |
C16—N2—C19A | 115.4 (4) | N2—C16—C12 | 117.9 (2) |
C16—N2—C19B | 126.5 (3) | N2—C17—H17A | 109.1 |
C17—N2—C19A | 118.7 (4) | N2—C17—H17B | 109.1 |
C17—N2—C19B | 112.2 (4) | C18—C17—N2 | 112.3 (5) |
O1—C1—O2 | 125.6 (3) | C18—C17—H17A | 109.1 |
O1—C1—C2 | 119.2 (3) | C18—C17—H17B | 109.1 |
O2—C1—C2 | 115.1 (2) | H17A—C17—H17B | 107.9 |
C3—C2—C1 | 120.3 (3) | C17—C18—H18A | 109.5 |
C3—C2—C7 | 120.4 (3) | C17—C18—H18B | 109.5 |
C7—C2—C1 | 119.3 (3) | C17—C18—H18C | 109.5 |
C2—C3—C4 | 118.8 (3) | H18A—C18—H18B | 109.5 |
C2—C3—C9 | 120.6 (3) | H18A—C18—H18C | 109.5 |
C4—C3—C9 | 120.6 (4) | H18B—C18—H18C | 109.5 |
C3—C4—H4 | 119.4 | N2—C19A—H19A | 111.1 |
C5—C4—C3 | 121.1 (3) | N2—C19A—H19B | 111.1 |
C5—C4—H4 | 119.4 | C20A—C19A—N2 | 103.1 (10) |
C4—C5—C10 | 119.9 (4) | C20A—C19A—H19A | 111.1 |
C6—C5—C4 | 118.4 (3) | C20A—C19A—H19B | 111.1 |
C6—C5—C10 | 121.7 (4) | H19A—C19A—H19B | 109.1 |
C5—C6—C7 | 122.4 (3) | N2—C19B—C20B | 103.7 (9) |
C5—C6—H6 | 118.8 | N2—C19B—H19C | 111.0 |
C7—C6—H6 | 118.8 | N2—C19B—H19D | 111.0 |
C2—C7—C8 | 120.4 (3) | C20B—C19B—H19C | 111.0 |
C6—C7—C2 | 118.8 (3) | C20B—C19B—H19D | 111.0 |
C6—C7—C8 | 120.8 (3) | H19C—C19B—H19D | 109.0 |
C7—C8—H8A | 109.5 | C19A—C20A—H20A | 109.5 |
C7—C8—H8B | 109.5 | C19A—C20A—H20B | 109.5 |
C7—C8—H8C | 109.5 | C19A—C20A—H20C | 109.5 |
H8A—C8—H8B | 109.5 | H20A—C20A—H20B | 109.5 |
H8A—C8—H8C | 109.5 | H20A—C20A—H20C | 109.5 |
H8B—C8—H8C | 109.5 | H20B—C20A—H20C | 109.5 |
C3—C9—H9A | 109.5 | C19B—C20B—H20D | 109.5 |
C3—C9—H9B | 109.5 | C19B—C20B—H20E | 109.5 |
C3—C9—H9C | 109.5 | C19B—C20B—H20F | 109.5 |
H9A—C9—H9B | 109.5 | H20D—C20B—H20E | 109.5 |
H9A—C9—H9C | 109.5 | H20D—C20B—H20F | 109.5 |
H9B—C9—H9C | 109.5 | H20E—C20B—H20F | 109.5 |
O4—Co1—O2—C1 | −165.8 (2) | C1—C2—C7—C8 | −5.2 (5) |
O4i—Co1—O2—C1 | 14.2 (2) | C3—C2—C7—C6 | −3.2 (5) |
N1—Co1—O2—C1 | −78.1 (2) | C3—C2—C7—C8 | 177.8 (3) |
N1i—Co1—O2—C1 | 101.9 (2) | C4—C3—C2—C1 | −174.6 (3) |
O2—Co1—N1—C11 | −57.7 (2) | C4—C3—C2—C7 | 2.4 (5) |
O2i—Co1—N1—C11 | 122.3 (2) | C9—C3—C2—C1 | 6.1 (5) |
O2—Co1—N1—C15 | 123.9 (2) | C9—C3—C2—C7 | −177.0 (3) |
O2i—Co1—N1—C15 | −56.1 (2) | C2—C3—C4—C5 | 0.0 (5) |
O4—Co1—N1—C11 | 30.5 (2) | C9—C3—C4—C5 | 179.4 (4) |
O4i—Co1—N1—C11 | −149.5 (2) | C6—C5—C4—C3 | −1.5 (6) |
O4—Co1—N1—C15 | −148.0 (2) | C10—C5—C4—C3 | 176.2 (4) |
O4i—Co1—N1—C15 | 32.0 (2) | C7—C6—C5—C4 | 0.7 (5) |
Co1—O2—C1—O1 | 2.1 (5) | C7—C6—C5—C10 | −177.0 (4) |
Co1—O2—C1—C2 | 179.24 (18) | C2—C7—C6—C5 | 1.6 (5) |
Co1—N1—C11—C12 | −178.2 (2) | C8—C7—C6—C5 | −179.4 (3) |
C15—N1—C11—C12 | 0.4 (4) | C13—C12—C11—N1 | −2.4 (4) |
Co1—N1—C15—C14 | −179.5 (3) | C16—C12—C11—N1 | −179.8 (3) |
C11—N1—C15—C14 | 2.0 (5) | C11—C12—C16—O3 | 113.7 (3) |
C16—N2—C17—C18 | 99.5 (5) | C11—C12—C16—N2 | −64.8 (4) |
C19A—N2—C17—C18 | −49.9 (7) | C13—C12—C16—O3 | −63.7 (4) |
C19B—N2—C17—C18 | −96.4 (6) | C13—C12—C16—N2 | 117.9 (4) |
C16—N2—C19A—C20A | 125.7 (6) | C14—C13—C12—C11 | 2.0 (5) |
C17—N2—C19A—C20A | −83.8 (7) | C14—C13—C12—C16 | 179.5 (3) |
C19B—N2—C19A—C20A | 8.4 (7) | C12—C13—C14—C15 | 0.2 (5) |
C16—N2—C19B—C20B | −89.3 (8) | C13—C14—C15—N1 | −2.3 (6) |
C17—N2—C19B—C20B | 108.1 (8) | O3—C16—N2—C17 | −1.6 (6) |
C19A—N2—C19B—C20B | −0.6 (9) | O3—C16—N2—C19A | 148.8 (5) |
O1—C1—C2—C3 | −99.3 (4) | O3—C16—N2—C19B | −163.2 (6) |
O1—C1—C2—C7 | 83.8 (4) | C12—C16—N2—C17 | 176.8 (3) |
O2—C1—C2—C3 | 83.4 (4) | C12—C16—N2—C19A | −32.8 (5) |
O2—C1—C2—C7 | −93.6 (4) | C12—C16—N2—C19B | 15.2 (7) |
C1—C2—C7—C6 | 173.8 (3) |
Symmetry code: (i) −x+1, −y+1, −z. |
D—H···A | D—H | H···A | D···A | D—H···A |
O4—H1W···O1i | 0.80 (6) | 1.87 (6) | 2.634 (3) | 160 (7) |
O4—H2W···O3ii | 0.76 (7) | 2.10 (7) | 2.850 (3) | 170 (7) |
C10—H10A···O1iii | 0.96 | 2.43 | 3.365 (6) | 165 |
C15—H15···O3iv | 0.93 | 2.50 | 3.420 (4) | 172 |
Symmetry codes: (i) −x+1, −y+1, −z; (ii) −x+1, y−1/2, −z+1/2; (iii) −x+2, y−1/2, −z+1/2; (iv) x, −y+3/2, z−1/2. |
Acknowledgements
The authors acknowledge the Aksaray University, Science and Technology Application and Research Center, Aksaray, Turkey, for the use of the Bruker SMART BREEZE CCD diffractometer (purchased under grant No. 2010K120480 of the State of Planning Organization).
References
Adiwidjaja, G., Rossmanith, E. & Küppers, H. (1978). Acta Cryst. B34, 3079–3083. CSD CrossRef CAS IUCr Journals Web of Science Google Scholar
Antsyshkina, A. S., Chiragov, F. M. & Poray-Koshits, M. A. (1980). Koord. Khim. 15, 1098–1103. Google Scholar
Bigoli, F., Braibanti, A., Pellinghelli, M. A. & Tiripicchio, A. (1972). Acta Cryst. B28, 962–966. CSD CrossRef CAS IUCr Journals Web of Science Google Scholar
Bigoli, F., Braibanti, A., Pellinghelli, M. A. & Tiripicchio, A. (1973a). Acta Cryst. B29, 39–43. CSD CrossRef CAS IUCr Journals Web of Science Google Scholar
Bigoli, F., Braibanti, A., Pellinghelli, M. A. & Tiripicchio, A. (1973b). Acta Cryst. B29, 2344–2348. CSD CrossRef CAS IUCr Journals Web of Science Google Scholar
Bruker (2012). APEX2, SAINT and SADABS. Bruker AXS Inc. Madison, Wisconsin, USA. Google Scholar
Catterick (neé Drew), J., Hursthouse, M. B., New, D. B. & Thornton, P. (1974). J. Chem. Soc. Chem. Commun. pp. 843–844. Google Scholar
Farrugia, L. J. (2012). J. Appl. Cryst. 45, 849–854. Web of Science CrossRef CAS IUCr Journals Google Scholar
Hökelek, T. & Necefoğlu, H. (1996). Acta Cryst. C52, 1128–1131. CSD CrossRef Web of Science IUCr Journals Google Scholar
Hökelek, T., Necefoğlu, H. & Balcı, M. (1995). Acta Cryst. C51, 2020–2023. CSD CrossRef Web of Science IUCr Journals Google Scholar
Mikelashvili, Z. A. (1982). Dissertation, Tbilisi State University, Georgia. Google Scholar
Nadzhafov, G. N., Shnulin, A. N. & Mamedov, Kh. S. (1981). Zh. Strukt. Khim. 22, 124–128. CAS Google Scholar
Sergienko, V. S., Shurkina, V. N., Khodashova, T. S., Poray-Koshits, M. A. & Tsintsadze, G. V. (1980). Koord. Khim. 6, 1606–1609. CAS Google Scholar
Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. Web of Science CrossRef CAS IUCr Journals Google Scholar
Shnulin, A. N., Nadzhafov, G. N., Amiraslanov, I. R., Usubaliev, B. T. & Mamedov, Kh. S. (1981). Koord. Khim. 7, 1409–1416. CAS Google Scholar
Spek, A. L. (2009). Acta Cryst. D65, 148–155. Web of Science CrossRef CAS IUCr Journals Google Scholar
This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.