research communications
Synthesis and 4)3
of NaMgFe(MoOaUnité de Recherche, Matériaux Inorganiques, Faculté des Sciences, Université de Monastir, 5019 Monastir, Tunisia
*Correspondence e-mail: mhirimanel@yahoo.fr
The iron molybdate NaMgFe(MoO4)3 {sodium magnesium iron(III) tris[molybdate(VI)]} has been synthesized by the method. This compound is isostructural with α-NaFe2(MoO4)3 and crystallizes in the triclinic P-1. Its structure is built up from [Mg,Fe]2O10 units of edge-sharing [Mg,Fe]O6 octahedra which are linked to each other through the common corners of [MoO4] tetrahedra. The resulting anionic three-dimensional framework leads to the formation of channels along the [101] direction in which the Na+ cations are located.
Keywords: crystal structure; iron molybdate; anionic framework; Na–Fe–Mo–O system.
CCDC reference: 1481125
1. Chemical context
Iron molybdates have been subject to very intensive research as a result of their numerous applications including as catalysts (Tian et al., 2011), multiferroic properties and more recently as a possible positive electrode in rechargeable batteries (Sinyakov et al., 1978; Mączka et al., 2011; Devi & Varadaraju, 2012). In these materials, the anionic framework is constructed from MoO4 tetrahedra linked to the iron coordination polyhedra, leading to a large variety of crystal structures with a high capacity for cationic and anionic substitutions.
Until now, a total of six orthomolybdate compounds have been reported in the Na–Fe–Mo–O system: Na9Fe(MoO4)6 (Savina et al., 2013); NaFe(MoO4)2 (Klevtsova, 1975); α-NaFe2(MoO4)3, β-NaFe2(MoO4)3 and Na3Fe2(MoO4)3 (Muessig et al., 2003); NaFe4(MoO4)5 (Ehrenberg et al., 2006). Their structures are described in terms of three-dimensional networks of isolated [MoO4] tetrahedra and [FeO6] octahedra. The sodium and mixed-valence iron molybdate NaFe2(MoO4)3 exhibits two polymorphs, both crystallizing in the triclinic system. The low-temperature α-phase changes irreversibly at high temperature into a β-phase. In addition to these orthomolybdate compounds, another phase with the formula Na3Fe2Mo5O16 and with layers of Mo3O13 units consisting of [MoO6] octahedra has been synthesized and characterized (Bramnik et al., 2003). In addition, Kozhevnikova & Imekhenova (2009) have investigated the Na2MoO4–MMoO4–Fe2(MoO4)3 system (M = Mg, Mn, Ni, Co) and have attributed the Nasicon-type structure with Rc (Kotova & Kozhevnikova, 2003; Kozhevnikova & Imekhenova, 2009) to the phase of variable composition Na(1−x)M(1−x)Fe(1+x)(MoO4)3. More recently, NaNiFe(MoO4)3 and NaZnFe(MoO4)3 (Mhiri et al., 2015) were found to be isostructural to β-NaFe2(MoO4)3 and to have a good with low activation energy, close to those of Nasicon-type compounds with similar formula such as AZr2(PO4)3 (A = Na, Li). As an extension of the previous work, we report here on the synthesis and characterization by X-ray diffraction of a new compound, NaMgFe(MoO4)3, which is isostructural with α-NaFe2(MoO4)3.
2. Structural commentary
The title NaMgFe(MoO4)3 structure is based on a three-dimensional framework of [Mg,Fe]2O10 units of edge-sharing [Mg,Fe]O6 octahedra, connected to each other through the common corners of [MoO4] tetrahedra. All [Mg,Fe]2O10 units are parallel to [10] (Fig. 1). In this structure, two types of layers (A and B), similar to those observed in α-NaFe2(MoO4)3, are aligned parallel to (110) with the sequence –A–B–B′–A–B–B′– and stacked along [001]. B′ layers are obtained from B by an inversion centre located on the A planes (Fig. 2). The resulting anionic three-dimensional framework leads to the formation of channels along [101] in which the sodium ions are located (Fig. 3).
In the title structure, all atoms are located in general positions. The three crystallographically different molybdenum atoms have a tetrahedral coordination with Mo—O distances between 1.715 (3) and 1.801 (2) Å. The mean distances (Mo1—O = 1.762, Mo2—O = 1.766 and Mo3—O = 1.760 Å) are in good accordance with those usually observed in molybdates (Abrahams et al., 1967; Harrison & Cheetham, 1989; Smit et al., 2006). The [Mg,Fe]—O distances and the cis O—[Mg,Fe]—O angles in the [Mg,Fe]2O10 units range from 2.003 (3) to 2.099 (3) Å and from 81.2 (1) to 177.8 (1)°, respectively. This dispersion reflects a slight distortion of the [Mg,Fe]O6 octahedra. The average distances [Mg,Fe]1—O = 2.059 and [Mg,Fe]2—O = 2.013 Å lie between the values of 1.990 Å observed for six-coordinated Fe3+ in LiFe(MoO4)2 (van der Lee et al. 2008) and 2.072 Å reported for Mg2+ with the same coordination in NaMg3Al(MoO4)5 (Hermanowicz et al., 2006). This result is related to the disordered distribution of Fe3+ and Mg2+ in both sites. Assuming sodium–oxygen distances below 3.13 Å (Donnay & Allmann, 1970), the Na site is surrounded by five oxygen atoms (Fig. 4).
3. Synthesis and crystallization
Crystals of the title compound were grown in a 2Mo2O7 with an atomic ratio Na:Mg:Fe:Mo = 5:1:1:7. Appropriate amounts of the starting reactants NaNO3, Mg(NO3)2·6H2O, Fe(NO3)3·9H2O and (NH4)6Mo7O24·4H2O were dissolved in nitric acid and the resulting solution was evaporated to dryness. The dry residue was then placed in a platinum crucible and slowly heated in air up to 673 K for 24 h to remove H2O and NH3. The mixture was ground in an agate mortar, melted for 2 h at 1123 K and then cooled to room temperature at a rate of 5 K h−1. Crystals without regular shape were separated from the by washing in boiling water.
of sodium dimolybdate Na4. Refinement
Crystal data, data collection and structure . The application of the revealed two sites, labeled M(1) and M(2), statistically occupied by the Fe3+ and Mg2+ ions. This distribution was supported by the M1—O and M2—O distances which are between the classical values for pure Mg—O and Fe—O bonds. Succeeding difference Fourier synthesis led to the positions of all the remaining atoms.
details are summarized in Table 1Supporting information
CCDC reference: 1481125
https://doi.org/10.1107/S205698901600829X/br2259sup1.cif
contains datablocks global, I. DOI:Structure factors: contains datablock I. DOI: https://doi.org/10.1107/S205698901600829X/br2259Isup2.hkl
Data collection: CAD-4 EXPRESS (Enraf–Nonius, 1994); cell
CAD-4 EXPRESS (Enraf–Nonius, 1994); data reduction: XCAD4 (Harms & Wocadlo, 1995); program(s) used to solve structure: SIR92 (Altomare et al., 1993); program(s) used to refine structure: SHELXL2014/7 (Sheldrick, 201); molecular graphics: DIAMOND (Brandenburg & Putz, 1999); software used to prepare material for publication: WinGX publication routines (Farrugia, 2012).FeMgMo3NaO12 | Z = 2 |
Mr = 582.97 | F(000) = 542 |
Triclinic, P1 | Dx = 3.786 Mg m−3 |
a = 6.900 (4) Å | Mo Kα radiation, λ = 0.71073 Å |
b = 6.928 (1) Å | Cell parameters from 25 reflections |
c = 11.055 (1) Å | θ = 9.1–11.4° |
α = 80.24 (1)° | µ = 5.15 mm−1 |
β = 83.55 (2)° | T = 293 K |
γ = 80.22 (3)° | Prism, brown |
V = 511.3 (3) Å3 | 0.28 × 0.14 × 0.07 mm |
Enraf–Nonius TurboCAD-4 diffractometer | Rint = 0.014 |
Radiation source: fine-focus sealed tube | θmax = 30.0°, θmin = 3.0° |
non–profiled ω/2τ scans | h = −9→9 |
Absorption correction: ψ scan (North et al., 1968) | k = −9→9 |
Tmin = 0.478, Tmax = 0.695 | l = −1→15 |
3429 measured reflections | 2 standard reflections every 120 min |
2983 independent reflections | intensity decay: 1.1% |
2850 reflections with I > 2σ(I) |
Refinement on F2 | Primary atom site location: structure-invariant direct methods |
Least-squares matrix: full | Secondary atom site location: difference Fourier map |
R[F2 > 2σ(F2)] = 0.025 | w = 1/[σ2(Fo2) + (0.0308P)2 + 2.3858P] where P = (Fo2 + 2Fc2)/3 |
wR(F2) = 0.068 | (Δ/σ)max = 0.001 |
S = 1.19 | Δρmax = 1.47 e Å−3 |
2983 reflections | Δρmin = −1.60 e Å−3 |
168 parameters | Extinction correction: SHELXL-2014/7 (Sheldrick 2015), Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4 |
4 restraints | Extinction coefficient: 0.0074 (5) |
Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes. |
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > 2sigma(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger. |
x | y | z | Uiso*/Ueq | Occ. (<1) | |
Na | 0.8586 (4) | 0.5914 (4) | 0.8148 (4) | 0.0757 (12) | |
Mg1 | 0.8152 (1) | 0.1703 (1) | 0.50854 (8) | 0.00851 (16) | 0.7558 (7) |
Fe1 | 0.8152 (1) | 0.1703 (1) | 0.50854 (8) | 0.00851 (16) | 0.2442 (7) |
Mg2 | 0.77528 (8) | 0.77491 (8) | 0.11025 (5) | 0.00785 (12) | 0.2442 (7) |
Fe2 | 0.77528 (8) | 0.77491 (8) | 0.11025 (5) | 0.00785 (12) | 0.7558 (7) |
Mo1 | 0.75910 (4) | 0.10066 (4) | 0.85110 (2) | 0.00799 (8) | |
O11 | 0.8166 (4) | 0.8508 (4) | 0.9264 (2) | 0.0125 (5) | |
O12 | 0.9297 (4) | 0.2547 (4) | 0.8737 (3) | 0.0146 (5) | |
O13 | 0.5170 (4) | 0.2053 (4) | 0.8938 (3) | 0.0158 (5) | |
O14 | 0.7784 (5) | 0.0889 (4) | 0.6953 (2) | 0.0185 (5) | |
Mo2 | 0.70522 (4) | 0.28318 (4) | 0.18835 (3) | 0.00950 (8) | |
O21 | 0.4579 (4) | 0.3458 (5) | 0.2289 (3) | 0.0232 (6) | |
O22 | 0.7436 (4) | 0.0675 (4) | 0.1148 (3) | 0.0185 (5) | |
O23 | 0.8372 (4) | 0.2322 (4) | 0.3205 (2) | 0.0173 (5) | |
O24 | 0.8015 (4) | 0.4878 (4) | 0.0918 (2) | 0.0148 (5) | |
Mo3 | 0.27372 (4) | 0.29658 (4) | 0.54507 (2) | 0.00732 (8) | |
O31 | 0.1224 (4) | 0.1328 (4) | 0.5056 (2) | 0.0113 (4) | |
O32 | 0.2458 (5) | 0.2976 (4) | 0.7045 (2) | 0.0194 (5) | |
O33 | 0.5183 (4) | 0.2083 (4) | 0.5042 (3) | 0.0172 (5) | |
O34 | 0.2067 (4) | 0.5383 (4) | 0.4690 (3) | 0.0153 (5) |
U11 | U22 | U33 | U12 | U13 | U23 | |
Na | 0.0293 (12) | 0.0255 (11) | 0.186 (4) | 0.0089 (9) | −0.0496 (18) | −0.0429 (17) |
Mg1 | 0.0079 (4) | 0.0081 (4) | 0.0091 (4) | −0.0007 (3) | −0.0018 (3) | 0.0001 (3) |
Fe1 | 0.0079 (4) | 0.0081 (4) | 0.0091 (4) | −0.0007 (3) | −0.0018 (3) | 0.0001 (3) |
Mg2 | 0.0080 (2) | 0.0073 (2) | 0.0079 (2) | −0.00174 (18) | −0.00177 (18) | 0.00103 (18) |
Fe2 | 0.0080 (2) | 0.0073 (2) | 0.0079 (2) | −0.00174 (18) | −0.00177 (18) | 0.00103 (18) |
Mo1 | 0.00697 (13) | 0.00870 (13) | 0.00770 (13) | −0.00175 (9) | −0.00095 (9) | 0.00122 (9) |
O11 | 0.0163 (12) | 0.0106 (11) | 0.0094 (11) | −0.0013 (9) | −0.0021 (9) | 0.0019 (8) |
O12 | 0.0112 (11) | 0.0152 (12) | 0.0182 (12) | −0.0052 (9) | −0.0040 (9) | 0.0003 (10) |
O13 | 0.0090 (11) | 0.0178 (12) | 0.0194 (13) | −0.0009 (9) | −0.0016 (9) | −0.0005 (10) |
O14 | 0.0258 (14) | 0.0185 (13) | 0.0092 (11) | −0.0021 (11) | −0.0017 (10) | 0.0018 (10) |
Mo2 | 0.01041 (14) | 0.00802 (13) | 0.00985 (13) | −0.00235 (9) | −0.00173 (9) | 0.00076 (9) |
O21 | 0.0133 (12) | 0.0295 (16) | 0.0261 (15) | −0.0028 (11) | −0.0017 (11) | −0.0026 (12) |
O22 | 0.0226 (14) | 0.0110 (12) | 0.0229 (14) | −0.0050 (10) | −0.0032 (11) | −0.0017 (10) |
O23 | 0.0192 (13) | 0.0188 (13) | 0.0125 (12) | −0.0009 (10) | −0.0033 (10) | 0.0005 (10) |
O24 | 0.0203 (13) | 0.0100 (11) | 0.0129 (11) | −0.0016 (9) | 0.0019 (9) | −0.0012 (9) |
Mo3 | 0.00771 (13) | 0.00787 (13) | 0.00674 (13) | −0.00290 (9) | −0.00105 (9) | −0.00015 (9) |
O31 | 0.0093 (10) | 0.0089 (10) | 0.0167 (12) | −0.0027 (8) | −0.0026 (9) | −0.0027 (9) |
O32 | 0.0266 (15) | 0.0239 (14) | 0.0088 (11) | −0.0081 (11) | −0.0019 (10) | −0.0010 (10) |
O33 | 0.0107 (11) | 0.0198 (13) | 0.0212 (13) | −0.0025 (10) | −0.0018 (10) | −0.0025 (10) |
O34 | 0.0189 (13) | 0.0086 (11) | 0.0179 (12) | −0.0027 (9) | −0.0027 (10) | 0.0008 (9) |
Na—O21i | 2.244 (4) | Mg2—O32i | 2.019 (3) |
Na—O12 | 2.296 (4) | Mg2—O12ii | 2.036 (3) |
Na—O11 | 2.308 (4) | Mo1—O14 | 1.727 (3) |
Na—O24ii | 2.604 (4) | Mo1—O13 | 1.751 (3) |
Na—O23ii | 2.772 (5) | Mo1—O12 | 1.780 (3) |
Mg1—O33 | 2.025 (3) | Mo1—O11vii | 1.789 (3) |
Mg1—O23 | 2.044 (3) | Mo2—O21 | 1.715 (3) |
Mg1—O14 | 2.045 (3) | Mo2—O23 | 1.761 (3) |
Mg1—O34i | 2.054 (3) | Mo2—O22 | 1.787 (3) |
Mg1—O31iii | 2.089 (3) | Mo2—O24 | 1.799 (3) |
Mg1—O31iv | 2.099 (3) | Mo3—O33 | 1.731 (3) |
Mg2—O13i | 2.003 (3) | Mo3—O32 | 1.753 (3) |
Mg2—O24 | 2.009 (3) | Mo3—O34 | 1.753 (3) |
Mg2—O22v | 2.010 (3) | Mo3—O31 | 1.801 (2) |
Mg2—O11vi | 2.012 (3) | ||
O21i—Na—O12 | 106.29 (15) | O24—Mg2—O11vi | 90.58 (11) |
O21i—Na—O11 | 92.34 (14) | O22v—Mg2—O11vi | 85.22 (11) |
O12—Na—O11 | 131.5 (2) | O13i—Mg2—O32i | 91.56 (12) |
O21i—Na—O24ii | 169.3 (2) | O24—Mg2—O32i | 90.53 (12) |
O12—Na—O24ii | 71.63 (12) | O22v—Mg2—O32i | 93.77 (12) |
O11—Na—O24ii | 81.96 (12) | O11vi—Mg2—O32i | 175.79 (12) |
O21i—Na—O23ii | 125.19 (19) | O13i—Mg2—O12ii | 176.14 (11) |
O12—Na—O23ii | 115.39 (14) | O24—Mg2—O12ii | 90.70 (12) |
O11—Na—O23ii | 85.84 (12) | O22v—Mg2—O12ii | 91.08 (12) |
O24ii—Na—O23ii | 63.66 (10) | O11vi—Mg2—O12ii | 91.24 (11) |
O33—Mg1—O23 | 88.07 (12) | O32i—Mg2—O12ii | 84.69 (12) |
O33—Mg1—O14 | 88.89 (12) | O14—Mo1—O13 | 108.16 (14) |
O23—Mg1—O14 | 174.80 (12) | O14—Mo1—O12 | 106.87 (14) |
O33—Mg1—O34i | 89.20 (12) | O13—Mo1—O12 | 110.69 (13) |
O23—Mg1—O34i | 93.92 (12) | O14—Mo1—O11vii | 106.05 (13) |
O14—Mg1—O34i | 90.26 (12) | O13—Mo1—O11vii | 111.66 (13) |
O33—Mg1—O31iii | 177.80 (12) | O12—Mo1—O11vii | 113.08 (12) |
O23—Mg1—O31iii | 89.73 (11) | O21—Mo2—O23 | 110.07 (14) |
O14—Mg1—O31iii | 93.30 (12) | O21—Mo2—O22 | 109.36 (15) |
O34i—Mg1—O31iii | 91.09 (11) | O23—Mo2—O22 | 109.03 (13) |
O33—Mg1—O31iv | 98.59 (12) | O21—Mo2—O24 | 110.70 (14) |
O23—Mg1—O31iv | 88.75 (11) | O23—Mo2—O24 | 105.75 (13) |
O14—Mg1—O31iv | 87.53 (11) | O22—Mo2—O24 | 111.86 (13) |
O34i—Mg1—O31iv | 171.86 (11) | O33—Mo3—O32 | 108.10 (14) |
O31iii—Mg1—O31iv | 81.22 (11) | O33—Mo3—O34 | 110.71 (13) |
O13i—Mg2—O24 | 88.40 (12) | O32—Mo3—O34 | 109.21 (14) |
O13i—Mg2—O22v | 90.10 (12) | O33—Mo3—O31 | 108.43 (13) |
O24—Mg2—O22v | 175.47 (12) | O32—Mo3—O31 | 109.96 (13) |
O13i—Mg2—O11vi | 92.52 (11) | O34—Mo3—O31 | 110.40 (12) |
Symmetry codes: (i) −x+1, −y+1, −z+1; (ii) −x+2, −y+1, −z+1; (iii) x+1, y, z; (iv) −x+1, −y, −z+1; (v) x, y+1, z; (vi) x, y, z−1; (vii) x, y−1, z. |
References
Abrahams, S. C. (1967). J. Chem. Phys. 46, 2052–2063. CrossRef CAS Web of Science Google Scholar
Altomare, A., Cascarano, G., Giacovazzo, C. & Guagliardi, A. (1993). J. Appl. Cryst. 26, 343–350. CrossRef Web of Science IUCr Journals Google Scholar
Bramnik, K. G., Muessig, E. & Ehrenberg, H. (2003). J. Solid State Chem. 176, 192–197. Web of Science CrossRef CAS Google Scholar
Brandenburg, K. & Putz, H. (1999). DIAMOND. Crystal Impact GbR, Bonn, Germany. Google Scholar
Devi, M. & Varadaraju, U. V. (2012). Electrochem. Commun. 18, 112–115. CrossRef CAS Google Scholar
Donnay, G. & Allmann, R. (1970). Am. Mineral. 55, 1003–1015. CAS Google Scholar
Ehrenberg, H., Muessig, E., Bramnik, K. G., Kampe, P. & Hansen, T. (2006). Solid State Sci. 8, 813–820. Web of Science CrossRef CAS Google Scholar
Enraf–Nonius (1994). CAD-4 EXPRESS. Enraf–Nonuis, Delft, The Netherlands. Google Scholar
Farrugia, L. J. (2012). J. Appl. Cryst. 45, 849–854. Web of Science CrossRef CAS IUCr Journals Google Scholar
Harms, K. & Wocadlo, S. (1995). XCAD4. University of Marburg, Germany. Google Scholar
Harrison, W. T. A. & Cheetham, A. K. (1989). Acta Cryst. C45, 178–180. CrossRef CAS IUCr Journals Google Scholar
Hermanowicz, K., Mączka, M., Wołcyrz, M., Tomaszewski, P. E., Paściak, M. & Hanuza, J. (2006). J. Solid State Chem. 179, 685–695. Web of Science CrossRef CAS Google Scholar
Klevtsova, R. F. (1975). Dokl. Akad. Nauk SSSR, 221, 1322–1325. Google Scholar
Kotova, I. Yu. & Kozhevnikova, N. M. (2003). Russ. J. Appl. Chem. 76, 1572–1576. Web of Science CrossRef CAS Google Scholar
Kozhevnikova, N. M. & Imekhenova, A. V. (2009). Russ. J. Inorg. Chem. 54, 638–643. CrossRef Google Scholar
Lee, A. van der, Beaurain, M. & Armand, P. (2008). Acta Cryst. C64, i1–i4. Web of Science CrossRef IUCr Journals Google Scholar
Mączka, M., Ptak, M., Luz-Lima, C., Freire, P. T. C., Paraguassu, W., Guerini, S. & Hanuza, J. (2011). J. Solid State Chem. 184, 2812–2817. Google Scholar
Mhiri, M., Badri, A., Lopez, M. L., Pico, C. & Ben Amara, M. (2015). Ionics, 21, 2511–2522. CrossRef CAS Google Scholar
Muessig, E., Bramnik, K. G. & Ehrenberg, H. (2003). Acta Cryst. B59, 611–616. Web of Science CrossRef CAS IUCr Journals Google Scholar
North, A. C. T., Phillips, D. C. & Mathews, F. S. (1968). Acta Cryst. A24, 351–359. CrossRef IUCr Journals Web of Science Google Scholar
Savina, A. A., Solodovnikov, S. F., Basovich, O. M., Solodovnikova, Z. A., Belov, D. A., Pokholok, K. V., Gudkova, I. A. Yu., Stefanovich, S., Lazoryak, B. I. & Khaikina, E. G. (2013). J. Solid State Chem. 205, 149–153. CrossRef CAS Google Scholar
Sheldrick, G. M. (2015). Acta Cryst. C71, 3–8. Web of Science CrossRef IUCr Journals Google Scholar
Sinyakov, E. V., Dudnik, E. F., Stolpakova, T. M. & Orlov, O. L. (1978). Ferroelectrics, 21, 579–581. CrossRef CAS Web of Science Google Scholar
Smit, J. P., Stair, P. C. & Poeppelmeier, K. R. (2006). Chem. Eur. J. 12, 5944–5953. Web of Science CrossRef PubMed CAS Google Scholar
Tian, S. H., Tu, Y. T., Chen, D. S., Chen, X. & Xiong, Y. (2011). Chem. Eng. J. 169, 31–37. CrossRef CAS Google Scholar
This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.