research communications
μ-2-(diisopropylphosphoryl)propan-2-olato-κ3O1,O2:O1]bis[chloridooxidovanadium(IV)]
of bis[aInstitute of Applied Synthetic Chemistry, Vienna University of Technology, Getreidemarkt 9/163-OC, 1060 Vienna, Austria, and bInstitute of Chemical Technologies and Analytics, Vienna University of Technology, Getreidemarkt 9, A-1060 Vienna, Austria
*Correspondence e-mail: matthias.weil@tuwien.ac.at
The dinuclear molecule of the title complex, [VOCl{μ-OC(Me)2P(iPr)2-κ2O}]2 or [V2(C9H20O2P)2Cl2O2], which was obtained due to an unexpected oxidation reaction, is centrosymmetric, with the inversion centre located in the middle of the central V2O2 core. These core O atoms arise from the symmetry-related 2-(diisopropylphosphoryl)propan-2-olate dianions. The VIV atom is additionally bonded to one terminal Cl ligand, the second O atom of the dianion and double bonded to a vanadyl O atom, leading to an overall distorted square-pyramidal VO4Cl with the vanadyl O atom as the apex. An intramolecular C—H⋯Cl contact helps to establish the molecular configuration. In the crystal, molecules are stacked in rows parallel to [001] and are linked by C—H⋯Cl contacts to form chains running in the same direction.
Keywords: crystal structure; binuclear centrosymmetric complex; vanadium; square-pyramidal coordination geometry.
CCDC reference: 1477727
1. Chemical context
Tridentate pincer ligands play an important role in coordination chemistry and have found various applications, for example in the fields of catalysis, synthetic chemistry or molecular recognition (Szabo & Wendt, 2014). Whereas a plethora of second- and third-row transition metal complexes with pincer ligands of various types (e.g. PNP- or PCP-coordinating) has been reported in recent years, investigations with respect to first-row transition metals are scarce (Murugesan & Kirchner, 2016). During a current project to prepare the first vanadium pincer complexes (Mastalir et al., 2016), we also attempted to synthesize a vanadium(III) PCP-complex according to the reaction scheme presented in Fig. 1. However, during the course of crystallization using a diffusion method in the presence of traces of water and/or oxygen, a variety of side-reactions took place. Those included oxidation of vanadium(III) to vanadium(IV) and of phosphorus, cleavage of the P—N bond and the formation of a P—C bond. As a result, the vanadium(IV) title complex [VOCl{μ-OC(Me)2P(iPr)2-κ2O}]2, (1), was obtained instead. Its is reported in this communication.
2. Structural commentary
The dinuclear molecular complex of (1) is centrosymmetric, containing a rhombic V2O2 core [V—O—V angle 105.36 (8)°, O—V—O angle 74.64 (7)°]. The VIV atom adopts a distorted square-pyramidal geometry with atoms O1, O2, O2i and Cl1 forming the basal plane and vanadyl atom O3 the apex [for symmetry operator (i), see Fig. 2]. The VIV atom is displaced by 0.6157 (5) Å from the least-squares plane towards the apex. The Addison τ-parameter (Addison et al., 1984), as calculated by −0.01667·(139.45)+0.01667·(148.82) = 0.156, also points to this coordination (a value of 0 refers to an ideal square-pyramidal, a value of 1 to an ideal trigonal-bipyramidal coordination). The V=O double-bond length of 1.586 (2) Å is in the typical range of those reported in similar dimeric oxido-chlorido-vanadium(IV) complexes containing alkoxide bridges (Cui et al., 2010; Crans et al., 1991; Foulon et al., 1993; Janas et al., 1997; Rosenthal, 2009).
3. Supramolecular features
In the crystal, the molecules are stacked into rows along [001] (Fig. 3). An intramolecular C—H⋯Cl contact [3.425 (3) Å] involving one methyl H atom of the isopropyl moiety is present. A similar intermolecular contact [3.578 (3) Å] between the Cl atom of one and the secondary H atom of the isopropyl moiety of an adjacent molecule leads to the formation of hydrogen-bonded chains along the stacking direction (Fig. 4). Numerical details of these interactions are given in Table 1.
4. Database survey
A search in the Cambridge Structural Database (Groom et al., 2016) for structures of compounds containing the V2O2 core and vanadium atoms additionally bonded to one Cl atom and double-bonded to one vanadyl O atom revealed 22 entries. In all these structures the coordination environment of the vanadium atoms is similar to that of the title structure.
5. Synthesis and crystallization
General. All manipulations were performed under an inert atmosphere of argon by using Schlenk techniques or in a MBraun inert-gas glovebox. The solvents were purified according to standard procedures. VCl3(THF)3 was purchased from Sigma–Aldrich and used without further purification. The synthesis of the PCP ligand employed was described in detail by Murugesan et al. (2014).
The oxido-vanadium complex (1) was formed during an attempt to synthesize a VIII PCP complex (Fig. 1). VCl3(THF)3 (75 mg, 0.20 mmol) and the PCP ligand (85 mg, 0.22 mmol) were stirred in 7 ml THF for 30 min and cooled to 195 K. Upon addition of 0.22 mmol n-BuLi (2.5 M solution in n-hexane), the mixture was allowed to reach room temperature and was stirred for another two h. The colour changed from orange to violet. After evaporation of the solvent, the remaining solids were redissolved in 5 ml acetone and filtrated over celite. The clear violet solution was layered with 10 ml diethyl ether and was left to stand for two days. Pale violet crystals, mostly with a needle-like form, suitable for X-ray analysis were isolated. IR spectrum (Perkin–Elmer 400 FIR FTIR spectrometer, equipped with a Pike Technologies GladiATR using a diamond crystal plate): ν(V=O) 996 cm−1 (for the full spectrum see Supporting information).
6. Refinement
Crystal data, data collection and structure . All H atoms were placed in calculated positions and were refined in the riding-atom approximation, with C—H = 0.96 Å and Uiso(H) = 1.2Ueq(C).
details are summarized in Table 2Supporting information
CCDC reference: 1477727
https://doi.org/10.1107/S2056989016007362/hb7583sup1.cif
contains datablocks New_Global_Publ_Block, I. DOI:Structure factors: contains datablock I. DOI: https://doi.org/10.1107/S2056989016007362/hb7583Isup2.hkl
Supporting information file. DOI: https://doi.org/10.1107/S2056989016007362/hb7583sup3.pdf
Data collection: APEX2 (Bruker, 2015); cell
SAINT-Plus (Bruker, 2015); data reduction: SAINT-Plus (Bruker, 2015); program(s) used to solve structure: SUPERFLIP (Palatinus & Chapuis, 2007); program(s) used to refine structure: JANA2006 (Petříček et al., 2014); molecular graphics: Mercury (Macrae et al., 2006); software used to prepare material for publication: publCIF (Westrip, 2010).[V2(C9H20O2P)2Cl2O2] | Z = 1 |
Mr = 587.2 | F(000) = 306 |
Triclinic, P1 | Dx = 1.458 Mg m−3 |
Hall symbol: -P 1 | Mo Kα radiation, λ = 0.71073 Å |
a = 8.0592 (17) Å | Cell parameters from 4741 reflections |
b = 8.611 (2) Å | θ = 2.5–25.5° |
c = 10.170 (2) Å | µ = 1.05 mm−1 |
α = 104.148 (7)° | T = 100 K |
β = 96.778 (6)° | Plate, translucent pale violet |
γ = 98.132 (6)° | 0.38 × 0.18 × 0.01 mm |
V = 668.9 (3) Å3 |
Bruker Kappa APEXII CCD diffractometer | 3233 independent reflections |
Radiation source: X-ray tube | 2231 reflections with I > 3σ(I) |
Graphite monochromator | Rint = 0.053 |
ω– and φ–scans | θmax = 28.0°, θmin = 2.1° |
Absorption correction: multi-scan (SADABS; Bruker, 2015) | h = −10→10 |
Tmin = 0.80, Tmax = 0.99 | k = −11→11 |
13875 measured reflections | l = −13→13 |
Refinement on F | 80 constraints |
R[F > 3σ(F)] = 0.040 | H-atom parameters constrained |
wR(F) = 0.044 | Weighting scheme based on measured s.u.'s w = 1/(σ2(F) + 0.0001F2) |
S = 1.53 | (Δ/σ)max = 0.009 |
3233 reflections | Δρmax = 0.59 e Å−3 |
136 parameters | Δρmin = −0.31 e Å−3 |
0 restraints |
x | y | z | Uiso*/Ueq | ||
V1 | 0.38304 (5) | −0.00427 (6) | 0.36112 (5) | 0.01926 (17) | |
Cl1 | 0.25262 (9) | −0.24490 (9) | 0.20308 (7) | 0.0341 (3) | |
P1 | 0.68528 (8) | 0.13495 (8) | 0.24674 (7) | 0.0173 (2) | |
O1 | 0.49776 (19) | 0.0539 (2) | 0.21289 (17) | 0.0192 (6) | |
O2 | 0.60943 (19) | 0.0969 (2) | 0.47621 (17) | 0.0174 (6) | |
O3 | 0.2494 (2) | 0.1146 (2) | 0.38388 (19) | 0.0281 (7) | |
C1 | 0.7236 (3) | 0.2170 (3) | 0.4368 (2) | 0.0173 (9) | |
C2 | 0.6686 (3) | 0.3802 (3) | 0.4827 (3) | 0.0256 (10) | |
C3 | 0.9074 (3) | 0.2240 (3) | 0.4969 (3) | 0.0213 (9) | |
C4 | 0.7223 (3) | 0.2850 (3) | 0.1523 (3) | 0.0260 (10) | |
C5 | 0.5959 (4) | 0.4029 (3) | 0.1606 (3) | 0.0369 (12) | |
C6 | 0.9071 (4) | 0.3734 (3) | 0.1821 (3) | 0.0342 (11) | |
C7 | 0.8172 (3) | −0.0168 (3) | 0.1968 (3) | 0.0215 (9) | |
C8 | 0.7671 (3) | −0.1627 (3) | 0.2529 (3) | 0.0289 (11) | |
C9 | 0.7981 (4) | −0.0735 (4) | 0.0400 (3) | 0.0337 (11) | |
H1c2 | 0.745608 | 0.462229 | 0.460631 | 0.0307* | |
H2c2 | 0.556075 | 0.374592 | 0.436426 | 0.0307* | |
H3c2 | 0.669143 | 0.407097 | 0.580109 | 0.0307* | |
H1c3 | 0.981032 | 0.288554 | 0.455184 | 0.0256* | |
H2c3 | 0.924596 | 0.272033 | 0.594195 | 0.0256* | |
H3c3 | 0.932653 | 0.115831 | 0.479036 | 0.0256* | |
H1c4 | 0.700955 | 0.222399 | 0.058035 | 0.0312* | |
H1c5 | 0.483119 | 0.343833 | 0.152296 | 0.0443* | |
H2c5 | 0.623875 | 0.483795 | 0.247252 | 0.0443* | |
H3c5 | 0.601381 | 0.454885 | 0.0874 | 0.0443* | |
H1c6 | 0.981535 | 0.294962 | 0.173736 | 0.041* | |
H2c6 | 0.924906 | 0.436542 | 0.117545 | 0.041* | |
H3c6 | 0.930691 | 0.444049 | 0.273627 | 0.041* | |
H1c7 | 0.933264 | 0.031353 | 0.234338 | 0.0257* | |
H1c8 | 0.771966 | −0.126298 | 0.350545 | 0.0347* | |
H2c8 | 0.653646 | −0.215951 | 0.210932 | 0.0347* | |
H3c8 | 0.844026 | −0.237513 | 0.232403 | 0.0347* | |
H1c9 | 0.851769 | 0.012298 | 0.006097 | 0.0404* | |
H2c9 | 0.850708 | −0.167368 | 0.014034 | 0.0404* | |
H3c9 | 0.679713 | −0.1011 | 0.001481 | 0.0404* |
U11 | U22 | U33 | U12 | U13 | U23 | |
V1 | 0.0077 (2) | 0.0305 (3) | 0.0189 (2) | 0.00292 (19) | −0.00264 (18) | 0.0079 (2) |
Cl1 | 0.0313 (4) | 0.0409 (5) | 0.0202 (4) | −0.0142 (3) | −0.0024 (3) | 0.0041 (3) |
P1 | 0.0116 (3) | 0.0196 (4) | 0.0192 (4) | 0.0018 (3) | −0.0006 (3) | 0.0044 (3) |
O1 | 0.0098 (9) | 0.0280 (11) | 0.0191 (9) | 0.0024 (8) | −0.0036 (7) | 0.0082 (8) |
O2 | 0.0074 (8) | 0.0242 (10) | 0.0193 (9) | −0.0004 (7) | −0.0018 (7) | 0.0070 (8) |
O3 | 0.0147 (10) | 0.0439 (13) | 0.0314 (11) | 0.0116 (9) | 0.0038 (8) | 0.0169 (10) |
C1 | 0.0133 (13) | 0.0208 (15) | 0.0166 (13) | 0.0028 (11) | −0.0006 (10) | 0.0045 (11) |
C2 | 0.0190 (14) | 0.0269 (16) | 0.0287 (16) | 0.0041 (12) | 0.0021 (12) | 0.0039 (13) |
C3 | 0.0123 (13) | 0.0274 (16) | 0.0206 (14) | −0.0008 (11) | −0.0014 (11) | 0.0040 (12) |
C4 | 0.0270 (15) | 0.0247 (16) | 0.0244 (15) | −0.0028 (13) | 0.0001 (12) | 0.0093 (13) |
C5 | 0.0474 (19) | 0.0229 (17) | 0.0393 (19) | 0.0034 (15) | −0.0047 (16) | 0.0134 (14) |
C6 | 0.0380 (17) | 0.0282 (17) | 0.0328 (18) | −0.0055 (14) | 0.0060 (15) | 0.0078 (15) |
C7 | 0.0118 (13) | 0.0256 (16) | 0.0228 (14) | 0.0054 (11) | −0.0007 (11) | −0.0008 (12) |
C8 | 0.0236 (15) | 0.0246 (16) | 0.0357 (17) | 0.0110 (13) | −0.0030 (13) | 0.0023 (14) |
C9 | 0.0290 (17) | 0.0390 (19) | 0.0289 (16) | 0.0106 (15) | 0.0038 (14) | −0.0013 (14) |
V1—Cl1 | 2.3105 (13) | C4—C5 | 1.532 (4) |
V1—O1 | 1.986 (2) | C4—C6 | 1.533 (4) |
V1—O2 | 2.0014 (17) | C4—H1c4 | 0.96 |
V1—O2i | 2.003 (2) | C5—H1c5 | 0.96 |
V1—O3 | 1.586 (2) | C5—H2c5 | 0.96 |
P1—O1 | 1.5333 (17) | C5—H3c5 | 0.96 |
P1—C1 | 1.861 (3) | C6—H1c6 | 0.96 |
P1—C4 | 1.802 (3) | C6—H2c6 | 0.96 |
P1—C7 | 1.814 (3) | C6—H3c6 | 0.96 |
O2—C1 | 1.448 (3) | C7—C8 | 1.525 (4) |
C1—C2 | 1.514 (4) | C7—C9 | 1.532 (4) |
C1—C3 | 1.522 (3) | C7—H1c7 | 0.96 |
C2—H1c2 | 0.96 | C8—H1c8 | 0.96 |
C2—H2c2 | 0.96 | C8—H2c8 | 0.96 |
C2—H3c2 | 0.96 | C8—H3c8 | 0.96 |
C3—H1c3 | 0.96 | C9—H1c9 | 0.96 |
C3—H2c3 | 0.96 | C9—H2c9 | 0.96 |
C3—H3c3 | 0.96 | C9—H3c9 | 0.96 |
Cl1—V1—O1 | 87.75 (5) | H2c3—C3—H3c3 | 109.47 |
Cl1—V1—O2 | 139.45 (6) | P1—C4—C5 | 114.9 (2) |
Cl1—V1—O2i | 95.33 (5) | P1—C4—C6 | 112.9 (2) |
Cl1—V1—O3 | 108.79 (6) | P1—C4—H1c4 | 103.96 |
O1—V1—O2 | 82.92 (7) | C5—C4—C6 | 112.4 (2) |
O1—V1—O2i | 148.82 (7) | C5—C4—H1c4 | 104.59 |
O1—V1—O3 | 103.91 (10) | C6—C4—H1c4 | 107.07 |
O2—V1—O2i | 74.64 (7) | C4—C5—H1c5 | 109.47 |
O2—V1—O3 | 111.77 (8) | C4—C5—H2c5 | 109.47 |
O2i—V1—O3 | 104.38 (9) | C4—C5—H3c5 | 109.47 |
O1—P1—C1 | 104.13 (10) | H1c5—C5—H2c5 | 109.47 |
O1—P1—C4 | 109.68 (11) | H1c5—C5—H3c5 | 109.47 |
O1—P1—C7 | 109.71 (10) | H2c5—C5—H3c5 | 109.47 |
C1—P1—C4 | 114.97 (12) | C4—C6—H1c6 | 109.47 |
C1—P1—C7 | 109.83 (12) | C4—C6—H2c6 | 109.47 |
C4—P1—C7 | 108.40 (13) | C4—C6—H3c6 | 109.47 |
V1—O1—P1 | 118.99 (10) | H1c6—C6—H2c6 | 109.47 |
V1—O2—V1i | 105.36 (8) | H1c6—C6—H3c6 | 109.47 |
V1—O2—C1 | 120.68 (14) | H2c6—C6—H3c6 | 109.47 |
V1i—O2—C1 | 133.87 (13) | P1—C7—C8 | 110.47 (19) |
P1—C1—O2 | 100.94 (13) | P1—C7—C9 | 110.0 (2) |
P1—C1—C2 | 112.56 (19) | P1—C7—H1c7 | 108.43 |
P1—C1—C3 | 111.43 (17) | C8—C7—C9 | 109.4 (2) |
O2—C1—C2 | 108.3 (2) | C8—C7—H1c7 | 109.02 |
O2—C1—C3 | 111.6 (2) | C9—C7—H1c7 | 109.51 |
C2—C1—C3 | 111.50 (18) | C7—C8—H1c8 | 109.47 |
C1—C2—H1c2 | 109.47 | C7—C8—H2c8 | 109.47 |
C1—C2—H2c2 | 109.47 | C7—C8—H3c8 | 109.47 |
C1—C2—H3c2 | 109.47 | H1c8—C8—H2c8 | 109.47 |
H1c2—C2—H2c2 | 109.47 | H1c8—C8—H3c8 | 109.47 |
H1c2—C2—H3c2 | 109.47 | H2c8—C8—H3c8 | 109.47 |
H2c2—C2—H3c2 | 109.47 | C7—C9—H1c9 | 109.47 |
C1—C3—H1c3 | 109.47 | C7—C9—H2c9 | 109.47 |
C1—C3—H2c3 | 109.47 | C7—C9—H3c9 | 109.47 |
C1—C3—H3c3 | 109.47 | H1c9—C9—H2c9 | 109.47 |
H1c3—C3—H2c3 | 109.47 | H1c9—C9—H3c9 | 109.47 |
H1c3—C3—H3c3 | 109.47 | H2c9—C9—H3c9 | 109.47 |
Symmetry code: (i) −x+1, −y, −z+1. |
D—H···A | D—H | H···A | D···A | D—H···A |
C3—H2C3···Cl1i | 0.96 | 2.68 | 3.425 (3) | 135 |
C4—H1C4···Cl1ii | 0.96 | 2.77 | 3.578 (3) | 142 |
Symmetry codes: (i) −x+1, −y, −z+1; (ii) −x+1, −y, −z. |
Acknowledgements
The X-ray centre of TU Wien is acknowledged for providing access to the single-crystal diffractometer. This project was supported by Austrian Science Fund (FWF): P28866-N34.
References
Addison, A. W., Rao, T. N., Reedijk, J., van Rijn, J. & Verschoor, G. C. (1984). J. Chem. Soc. Dalton Trans. pp. 1349–1356. CSD CrossRef Web of Science Google Scholar
Bruker (2015). APEX2, SAINT-Plus and SADABS. Bruker Inc., Madison, Wisconsin, USA. Google Scholar
Crans, D. C., Felty, R. A. & Miller, M. M. (1991). J. Am. Chem. Soc. 113, 265–269. CSD CrossRef CAS Web of Science Google Scholar
Cui, H., Hummert, M., Dechert, S. & Rosenthal, E. C. E. (2010). Inorg. Chem. Commun. 13, 769–773. Web of Science CSD CrossRef CAS Google Scholar
Foulon, G., Foulon, J.-D. & Hovnanian, N. (1993). Polyhedron, 12, 2507–2511. CSD CrossRef CAS Web of Science Google Scholar
Groom, G. R., Bruno, I. J., Lightfood, M. P. & Ward, S. C. (2016). Acta Cryst. B72, 171–179. Web of Science CSD CrossRef IUCr Journals Google Scholar
Janas, Z., Sobota, P., Klimowicz, M., Szafert, S., Szczegot, K. & Jerzykiewicz, L. B. (1997). J. Chem. Soc. Dalton Trans. pp. 3897–3902. CSD CrossRef Web of Science Google Scholar
Macrae, C. F., Edgington, P. R., McCabe, P., Pidcock, E., Shields, G. P., Taylor, R., Towler, M. & van de Streek, J. (2006). J. Appl. Cryst. 39, 453–457. Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
Mastalir, M., Glatz, M., Stöger, B., Weil, M., Pittenauer, E. & Allmaier, G. (2016). Inorg. Chim. Acta. DOI 10.1016/j.ica.2016.02.064. Google Scholar
Murugesan, S. & Kirchner, K. (2016). Dalton Trans. 45, 416–439. Web of Science CrossRef CAS PubMed Google Scholar
Murugesan, S., Stöger, B., Carvalho, M. D., Ferreira, L. P., Pittenauer, E., Allmaier, G., Veiros, L. F. & Kirchner, K. (2014). Organometallics, 33, 6132–6140. Web of Science CSD CrossRef CAS Google Scholar
Palatinus, L. & Chapuis, G. (2007). J. Appl. Cryst. 40, 786–790. Web of Science CrossRef CAS IUCr Journals Google Scholar
Petříček, V., Dušek, M. & Palatinus, L. (2014). Z. Kristallogr. 229, 345–352. Google Scholar
Rosenthal, E. C. E. (2009). Pure Appl. Chem. 81, 1197–1204. Web of Science CSD CrossRef CAS Google Scholar
Szabo, K. J. & Wendt, O. F. (2014). Editors. Pincer and Pincer-Type Complexes: Applications in Organic Synthesis and Catalysis. London: Wiley. Google Scholar
Westrip, S. P. (2010). J. Appl. Cryst. 43, 920–925. Web of Science CrossRef CAS IUCr Journals Google Scholar
This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.