research communications\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Crystal structure of bis­­[μ-2-(diiso­propyl­phosphor­yl)propan-2-olato-κ3O1,O2:O1]bis­­[chlorido­oxidovanadium(IV)]

CROSSMARK_Color_square_no_text.svg

aInstitute of Applied Synthetic Chemistry, Vienna University of Technology, Getreidemarkt 9/163-OC, 1060 Vienna, Austria, and bInstitute of Chemical Technologies and Analytics, Vienna University of Technology, Getreidemarkt 9, A-1060 Vienna, Austria
*Correspondence e-mail: matthias.weil@tuwien.ac.at

Edited by W. T. A. Harrison, University of Aberdeen, Scotland (Received 30 April 2016; accepted 3 May 2016; online 6 May 2016)

The dinuclear mol­ecule of the title complex, [VOCl{μ-OC(Me)2P(iPr)2-κ2O}]2 or [V2(C9H20O2P)2Cl2O2], which was obtained due to an unexpected oxidation reaction, is centrosymmetric, with the inversion centre located in the middle of the central V2O2 core. These core O atoms arise from the symmetry-related 2-(diiso­propyl­phosphor­yl)propan-2-olate dianions. The VIV atom is additionally bonded to one terminal Cl ligand, the second O atom of the dianion and double bonded to a vanadyl O atom, leading to an overall distorted square-pyramidal VO4Cl coordination polyhedron with the vanadyl O atom as the apex. An intra­molecular C—H⋯Cl contact helps to establish the mol­ecular configuration. In the crystal, mol­ecules are stacked in rows parallel to [001] and are linked by C—H⋯Cl contacts to form chains running in the same direction.

1. Chemical context

Tridentate pincer ligands play an important role in coordination chemistry and have found various applications, for example in the fields of catalysis, synthetic chemistry or mol­ecular recognition (Szabo & Wendt, 2014[Szabo, K. J. & Wendt, O. F. (2014). Editors. Pincer and Pincer-Type Complexes: Applications in Organic Synthesis and Catalysis. London: Wiley.]). Whereas a plethora of second- and third-row transition metal complexes with pincer ligands of various types (e.g. PNP- or PCP-coordinating) has been reported in recent years, investigations with respect to first-row transition metals are scarce (Murugesan & Kirchner, 2016[Murugesan, S. & Kirchner, K. (2016). Dalton Trans. 45, 416-439.]). During a current project to prepare the first vanadium pincer complexes (Mastalir et al., 2016[Mastalir, M., Glatz, M., Stöger, B., Weil, M., Pittenauer, E. & Allmaier, G. (2016). Inorg. Chim. Acta. DOI 10.1016/j.ica.2016.02.064.]), we also attempted to synthesize a vanadium(III) PCP-complex according to the reaction scheme presented in Fig. 1[link]. However, during the course of crystallization using a diffusion method in the presence of traces of water and/or oxygen, a variety of side-reactions took place. Those included oxidation of vanadium(III) to vanadium(IV) and of phospho­rus, cleavage of the P—N bond and the formation of a P—C bond. As a result, the vanadium(IV) title complex [VOCl{μ-OC(Me)2P(iPr)2-κ2O}]2, (1), was obtained instead. Its crystal structure is reported in this communication.

[Scheme 1]
[Figure 1]
Figure 1
Schematic representation of the attempted formation of a vanadium(III) complex with the PCP ligand.

2. Structural commentary

The dinuclear mol­ecular complex of (1) is centrosymmetric, containing a rhombic V2O2 core [V—O—V angle 105.36 (8)°, O—V—O angle 74.64 (7)°]. The VIV atom adopts a distorted square-pyramidal geometry with atoms O1, O2, O2i and Cl1 forming the basal plane and vanadyl atom O3 the apex [for symmetry operator (i), see Fig. 2[link]]. The VIV atom is displaced by 0.6157 (5) Å from the least-squares plane towards the apex. The Addison τ-parameter (Addison et al., 1984[Addison, A. W., Rao, T. N., Reedijk, J., van Rijn, J. & Verschoor, G. C. (1984). J. Chem. Soc. Dalton Trans. pp. 1349-1356.]), as calculated by −0.01667·(139.45)+0.01667·(148.82) = 0.156, also points to this coordination (a value of 0 refers to an ideal square-pyramidal, a value of 1 to an ideal trigonal-bipyramidal coordination). The V=O double-bond length of 1.586 (2) Å is in the typical range of those reported in similar dimeric oxido-chlorido-vanadium(IV) complexes containing alkoxide bridges (Cui et al., 2010[Cui, H., Hummert, M., Dechert, S. & Rosenthal, E. C. E. (2010). Inorg. Chem. Commun. 13, 769-773.]; Crans et al., 1991[Crans, D. C., Felty, R. A. & Miller, M. M. (1991). J. Am. Chem. Soc. 113, 265-269.]; Foulon et al., 1993[Foulon, G., Foulon, J.-D. & Hovnanian, N. (1993). Polyhedron, 12, 2507-2511.]; Janas et al., 1997[Janas, Z., Sobota, P., Klimowicz, M., Szafert, S., Szczegot, K. & Jerzykiewicz, L. B. (1997). J. Chem. Soc. Dalton Trans. pp. 3897-3902.]; Rosenthal, 2009[Rosenthal, E. C. E. (2009). Pure Appl. Chem. 81, 1197-1204.]).

[Figure 2]
Figure 2
The mol­ecular structure of the binuclear complex with displacement ellipsoids drawn at the 50% probability level. Unlabelled atoms are generated by symmetry code (−x + 1, −y, −z + 1).

3. Supra­molecular features

In the crystal, the mol­ecules are stacked into rows along [001] (Fig. 3[link]). An intra­molecular C—H⋯Cl contact [3.425 (3) Å] involving one methyl H atom of the isopropyl moiety is present. A similar inter­molecular contact [3.578 (3) Å] between the Cl atom of one and the secondary H atom of the isopropyl moiety of an adjacent mol­ecule leads to the formation of hydrogen-bonded chains along the stacking direction (Fig. 4[link]). Numerical details of these inter­actions are given in Table 1[link].

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
C3—H2C3⋯Cl1i 0.96 2.68 3.425 (3) 135
C4—H1C4⋯Cl1ii 0.96 2.77 3.578 (3) 142
Symmetry codes: (i) -x+1, -y, -z+1; (ii) -x+1, -y, -z.
[Figure 3]
Figure 3
A projection of the crystal structure along [001] showing the stacking of mol­ecules of (1) in this direction.
[Figure 4]
Figure 4
A hydrogen-bonded chain of mol­ecules extending parallel to [001]. Intra­molecular C—H⋯Cl contacts are given as blue dotted lines and inter­molecular C—H⋯Cl contacts as red dotted lines.

4. Database survey

A search in the Cambridge Structural Database (Groom et al., 2016[Groom, G. R., Bruno, I. J., Lightfood, M. P. & Ward, S. C. (2016). Acta Cryst. B72, 171-179.]) for structures of compounds containing the V2O2 core and vanadium atoms additionally bonded to one Cl atom and double-bonded to one vanadyl O atom revealed 22 entries. In all these structures the coordination environment of the vanadium atoms is similar to that of the title structure.

5. Synthesis and crystallization

General. All manipulations were performed under an inert atmosphere of argon by using Schlenk techniques or in a MBraun inert-gas glovebox. The solvents were purified according to standard procedures. VCl3(THF)3 was purchased from Sigma–Aldrich and used without further purification. The synthesis of the PCP ligand employed was described in detail by Murugesan et al. (2014[Murugesan, S., Stöger, B., Carvalho, M. D., Ferreira, L. P., Pittenauer, E., Allmaier, G., Veiros, L. F. & Kirchner, K. (2014). Organometallics, 33, 6132-6140.]).

The oxido-vanadium complex (1) was formed during an attempt to synthesize a VIII PCP complex (Fig. 1[link]). VCl3(THF)3 (75 mg, 0.20 mmol) and the PCP ligand (85 mg, 0.22 mmol) were stirred in 7 ml THF for 30 min and cooled to 195 K. Upon addition of 0.22 mmol n-BuLi (2.5 M solution in n-hexa­ne), the mixture was allowed to reach room temperature and was stirred for another two h. The colour changed from orange to violet. After evaporation of the solvent, the remaining solids were redissolved in 5 ml acetone and filtrated over celite. The clear violet solution was layered with 10 ml diethyl ether and was left to stand for two days. Pale violet crystals, mostly with a needle-like form, suitable for X-ray analysis were isolated. IR spectrum (Perkin–Elmer 400 FIR FTIR spectrometer, equipped with a Pike Technologies GladiATR using a diamond crystal plate): ν(V=O) 996 cm−1 (for the full spectrum see Supporting information).

6. Refinement

Crystal data, data collection and structure refinement details are summarized in Table 2[link]. All H atoms were placed in calculated positions and were refined in the riding-atom approximation, with C—H = 0.96 Å and Uiso(H) = 1.2Ueq(C).

Table 2
Experimental details

Crystal data
Chemical formula [V2(C9H20O2P)2Cl2O2]
Mr 587.2
Crystal system, space group Triclinic, P[\overline{1}]
Temperature (K) 100
a, b, c (Å) 8.0592 (17), 8.611 (2), 10.170 (2)
α, β, γ (°) 104.148 (7), 96.778 (6), 98.132 (6)
V3) 668.9 (3)
Z 1
Radiation type Mo Kα
μ (mm−1) 1.05
Crystal size (mm) 0.38 × 0.18 × 0.01
 
Data collection
Diffractometer Bruker Kappa APEXII CCD
Absorption correction Multi-scan (SADABS; Bruker, 2015[Bruker (2015). APEX2, SAINT-Plus and SADABS. Bruker Inc., Madison, Wisconsin, USA.])
Tmin, Tmax 0.80, 0.99
No. of measured, independent and observed [I > 3σ(I)] reflections 13875, 3233, 2231
Rint 0.053
(sin θ/λ)max−1) 0.661
 
Refinement
R[F > 3σ(F)], wR(F), S 0.040, 0.044, 1.53
No. of reflections 3233
No. of parameters 136
H-atom treatment H-atom parameters constrained
Δρmax, Δρmin (e Å−3) 0.59, −0.31
Computer programs: APEX2 and SAINT-Plus (Bruker, 2015[Bruker (2015). APEX2, SAINT-Plus and SADABS. Bruker Inc., Madison, Wisconsin, USA.]), SUPERFLIP (Palatinus & Chapuis, 2007[Palatinus, L. & Chapuis, G. (2007). J. Appl. Cryst. 40, 786-790.]), JANA2006 (Petříček et al., 2014[Petříček, V., Dušek, M. & Palatinus, L. (2014). Z. Kristallogr. 229, 345-352.]), Mercury (Macrae et al., 2006[Macrae, C. F., Edgington, P. R., McCabe, P., Pidcock, E., Shields, G. P., Taylor, R., Towler, M. & van de Streek, J. (2006). J. Appl. Cryst. 39, 453-457.]) and publCIF (Westrip, 2010[Westrip, S. P. (2010). J. Appl. Cryst. 43, 920-925.]).

Supporting information


Computing details top

Data collection: APEX2 (Bruker, 2015); cell refinement: SAINT-Plus (Bruker, 2015); data reduction: SAINT-Plus (Bruker, 2015); program(s) used to solve structure: SUPERFLIP (Palatinus & Chapuis, 2007); program(s) used to refine structure: JANA2006 (Petříček et al., 2014); molecular graphics: Mercury (Macrae et al., 2006); software used to prepare material for publication: publCIF (Westrip, 2010).

Bis[µ-2-(diisopropylphosphoryl)propan-2-olato-κ3O1,O2:O1]bis[chloridooxidovanadium(IV)] top
Crystal data top
[V2(C9H20O2P)2Cl2O2]Z = 1
Mr = 587.2F(000) = 306
Triclinic, P1Dx = 1.458 Mg m3
Hall symbol: -P 1Mo Kα radiation, λ = 0.71073 Å
a = 8.0592 (17) ÅCell parameters from 4741 reflections
b = 8.611 (2) Åθ = 2.5–25.5°
c = 10.170 (2) ŵ = 1.05 mm1
α = 104.148 (7)°T = 100 K
β = 96.778 (6)°Plate, translucent pale violet
γ = 98.132 (6)°0.38 × 0.18 × 0.01 mm
V = 668.9 (3) Å3
Data collection top
Bruker Kappa APEXII CCD
diffractometer
3233 independent reflections
Radiation source: X-ray tube2231 reflections with I > 3σ(I)
Graphite monochromatorRint = 0.053
ω– and φ–scansθmax = 28.0°, θmin = 2.1°
Absorption correction: multi-scan
(SADABS; Bruker, 2015)
h = 1010
Tmin = 0.80, Tmax = 0.99k = 1111
13875 measured reflectionsl = 1313
Refinement top
Refinement on F80 constraints
R[F > 3σ(F)] = 0.040H-atom parameters constrained
wR(F) = 0.044Weighting scheme based on measured s.u.'s w = 1/(σ2(F) + 0.0001F2)
S = 1.53(Δ/σ)max = 0.009
3233 reflectionsΔρmax = 0.59 e Å3
136 parametersΔρmin = 0.31 e Å3
0 restraints
Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
V10.38304 (5)0.00427 (6)0.36112 (5)0.01926 (17)
Cl10.25262 (9)0.24490 (9)0.20308 (7)0.0341 (3)
P10.68528 (8)0.13495 (8)0.24674 (7)0.0173 (2)
O10.49776 (19)0.0539 (2)0.21289 (17)0.0192 (6)
O20.60943 (19)0.0969 (2)0.47621 (17)0.0174 (6)
O30.2494 (2)0.1146 (2)0.38388 (19)0.0281 (7)
C10.7236 (3)0.2170 (3)0.4368 (2)0.0173 (9)
C20.6686 (3)0.3802 (3)0.4827 (3)0.0256 (10)
C30.9074 (3)0.2240 (3)0.4969 (3)0.0213 (9)
C40.7223 (3)0.2850 (3)0.1523 (3)0.0260 (10)
C50.5959 (4)0.4029 (3)0.1606 (3)0.0369 (12)
C60.9071 (4)0.3734 (3)0.1821 (3)0.0342 (11)
C70.8172 (3)0.0168 (3)0.1968 (3)0.0215 (9)
C80.7671 (3)0.1627 (3)0.2529 (3)0.0289 (11)
C90.7981 (4)0.0735 (4)0.0400 (3)0.0337 (11)
H1c20.7456080.4622290.4606310.0307*
H2c20.5560750.3745920.4364260.0307*
H3c20.6691430.4070970.5801090.0307*
H1c30.9810320.2885540.4551840.0256*
H2c30.9245960.2720330.5941950.0256*
H3c30.9326530.1158310.4790360.0256*
H1c40.7009550.2223990.0580350.0312*
H1c50.4831190.3438330.1522960.0443*
H2c50.6238750.4837950.2472520.0443*
H3c50.6013810.4548850.08740.0443*
H1c60.9815350.2949620.1737360.041*
H2c60.9249060.4365420.1175450.041*
H3c60.9306910.4440490.2736270.041*
H1c70.9332640.0313530.2343380.0257*
H1c80.7719660.1262980.3505450.0347*
H2c80.6536460.2159510.2109320.0347*
H3c80.8440260.2375130.2324030.0347*
H1c90.8517690.0122980.0060970.0404*
H2c90.8507080.1673680.0140340.0404*
H3c90.6797130.10110.0014810.0404*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
V10.0077 (2)0.0305 (3)0.0189 (2)0.00292 (19)0.00264 (18)0.0079 (2)
Cl10.0313 (4)0.0409 (5)0.0202 (4)0.0142 (3)0.0024 (3)0.0041 (3)
P10.0116 (3)0.0196 (4)0.0192 (4)0.0018 (3)0.0006 (3)0.0044 (3)
O10.0098 (9)0.0280 (11)0.0191 (9)0.0024 (8)0.0036 (7)0.0082 (8)
O20.0074 (8)0.0242 (10)0.0193 (9)0.0004 (7)0.0018 (7)0.0070 (8)
O30.0147 (10)0.0439 (13)0.0314 (11)0.0116 (9)0.0038 (8)0.0169 (10)
C10.0133 (13)0.0208 (15)0.0166 (13)0.0028 (11)0.0006 (10)0.0045 (11)
C20.0190 (14)0.0269 (16)0.0287 (16)0.0041 (12)0.0021 (12)0.0039 (13)
C30.0123 (13)0.0274 (16)0.0206 (14)0.0008 (11)0.0014 (11)0.0040 (12)
C40.0270 (15)0.0247 (16)0.0244 (15)0.0028 (13)0.0001 (12)0.0093 (13)
C50.0474 (19)0.0229 (17)0.0393 (19)0.0034 (15)0.0047 (16)0.0134 (14)
C60.0380 (17)0.0282 (17)0.0328 (18)0.0055 (14)0.0060 (15)0.0078 (15)
C70.0118 (13)0.0256 (16)0.0228 (14)0.0054 (11)0.0007 (11)0.0008 (12)
C80.0236 (15)0.0246 (16)0.0357 (17)0.0110 (13)0.0030 (13)0.0023 (14)
C90.0290 (17)0.0390 (19)0.0289 (16)0.0106 (15)0.0038 (14)0.0013 (14)
Geometric parameters (Å, º) top
V1—Cl12.3105 (13)C4—C51.532 (4)
V1—O11.986 (2)C4—C61.533 (4)
V1—O22.0014 (17)C4—H1c40.96
V1—O2i2.003 (2)C5—H1c50.96
V1—O31.586 (2)C5—H2c50.96
P1—O11.5333 (17)C5—H3c50.96
P1—C11.861 (3)C6—H1c60.96
P1—C41.802 (3)C6—H2c60.96
P1—C71.814 (3)C6—H3c60.96
O2—C11.448 (3)C7—C81.525 (4)
C1—C21.514 (4)C7—C91.532 (4)
C1—C31.522 (3)C7—H1c70.96
C2—H1c20.96C8—H1c80.96
C2—H2c20.96C8—H2c80.96
C2—H3c20.96C8—H3c80.96
C3—H1c30.96C9—H1c90.96
C3—H2c30.96C9—H2c90.96
C3—H3c30.96C9—H3c90.96
Cl1—V1—O187.75 (5)H2c3—C3—H3c3109.47
Cl1—V1—O2139.45 (6)P1—C4—C5114.9 (2)
Cl1—V1—O2i95.33 (5)P1—C4—C6112.9 (2)
Cl1—V1—O3108.79 (6)P1—C4—H1c4103.96
O1—V1—O282.92 (7)C5—C4—C6112.4 (2)
O1—V1—O2i148.82 (7)C5—C4—H1c4104.59
O1—V1—O3103.91 (10)C6—C4—H1c4107.07
O2—V1—O2i74.64 (7)C4—C5—H1c5109.47
O2—V1—O3111.77 (8)C4—C5—H2c5109.47
O2i—V1—O3104.38 (9)C4—C5—H3c5109.47
O1—P1—C1104.13 (10)H1c5—C5—H2c5109.47
O1—P1—C4109.68 (11)H1c5—C5—H3c5109.47
O1—P1—C7109.71 (10)H2c5—C5—H3c5109.47
C1—P1—C4114.97 (12)C4—C6—H1c6109.47
C1—P1—C7109.83 (12)C4—C6—H2c6109.47
C4—P1—C7108.40 (13)C4—C6—H3c6109.47
V1—O1—P1118.99 (10)H1c6—C6—H2c6109.47
V1—O2—V1i105.36 (8)H1c6—C6—H3c6109.47
V1—O2—C1120.68 (14)H2c6—C6—H3c6109.47
V1i—O2—C1133.87 (13)P1—C7—C8110.47 (19)
P1—C1—O2100.94 (13)P1—C7—C9110.0 (2)
P1—C1—C2112.56 (19)P1—C7—H1c7108.43
P1—C1—C3111.43 (17)C8—C7—C9109.4 (2)
O2—C1—C2108.3 (2)C8—C7—H1c7109.02
O2—C1—C3111.6 (2)C9—C7—H1c7109.51
C2—C1—C3111.50 (18)C7—C8—H1c8109.47
C1—C2—H1c2109.47C7—C8—H2c8109.47
C1—C2—H2c2109.47C7—C8—H3c8109.47
C1—C2—H3c2109.47H1c8—C8—H2c8109.47
H1c2—C2—H2c2109.47H1c8—C8—H3c8109.47
H1c2—C2—H3c2109.47H2c8—C8—H3c8109.47
H2c2—C2—H3c2109.47C7—C9—H1c9109.47
C1—C3—H1c3109.47C7—C9—H2c9109.47
C1—C3—H2c3109.47C7—C9—H3c9109.47
C1—C3—H3c3109.47H1c9—C9—H2c9109.47
H1c3—C3—H2c3109.47H1c9—C9—H3c9109.47
H1c3—C3—H3c3109.47H2c9—C9—H3c9109.47
Symmetry code: (i) x+1, y, z+1.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C3—H2C3···Cl1i0.962.683.425 (3)135
C4—H1C4···Cl1ii0.962.773.578 (3)142
Symmetry codes: (i) x+1, y, z+1; (ii) x+1, y, z.
 

Acknowledgements

The X-ray centre of TU Wien is acknowledged for providing access to the single-crystal diffractometer. This project was supported by Austrian Science Fund (FWF): P28866-N34.

References

First citationAddison, A. W., Rao, T. N., Reedijk, J., van Rijn, J. & Verschoor, G. C. (1984). J. Chem. Soc. Dalton Trans. pp. 1349–1356.  CSD CrossRef Web of Science Google Scholar
First citationBruker (2015). APEX2, SAINT-Plus and SADABS. Bruker Inc., Madison, Wisconsin, USA.  Google Scholar
First citationCrans, D. C., Felty, R. A. & Miller, M. M. (1991). J. Am. Chem. Soc. 113, 265–269.  CSD CrossRef CAS Web of Science Google Scholar
First citationCui, H., Hummert, M., Dechert, S. & Rosenthal, E. C. E. (2010). Inorg. Chem. Commun. 13, 769–773.  Web of Science CSD CrossRef CAS Google Scholar
First citationFoulon, G., Foulon, J.-D. & Hovnanian, N. (1993). Polyhedron, 12, 2507–2511.  CSD CrossRef CAS Web of Science Google Scholar
First citationGroom, G. R., Bruno, I. J., Lightfood, M. P. & Ward, S. C. (2016). Acta Cryst. B72, 171–179.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationJanas, Z., Sobota, P., Klimowicz, M., Szafert, S., Szczegot, K. & Jerzykiewicz, L. B. (1997). J. Chem. Soc. Dalton Trans. pp. 3897–3902.  CSD CrossRef Web of Science Google Scholar
First citationMacrae, C. F., Edgington, P. R., McCabe, P., Pidcock, E., Shields, G. P., Taylor, R., Towler, M. & van de Streek, J. (2006). J. Appl. Cryst. 39, 453–457.  Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
First citationMastalir, M., Glatz, M., Stöger, B., Weil, M., Pittenauer, E. & Allmaier, G. (2016). Inorg. Chim. Acta. DOI 10.1016/j.ica.2016.02.064.  Google Scholar
First citationMurugesan, S. & Kirchner, K. (2016). Dalton Trans. 45, 416–439.  Web of Science CrossRef CAS PubMed Google Scholar
First citationMurugesan, S., Stöger, B., Carvalho, M. D., Ferreira, L. P., Pittenauer, E., Allmaier, G., Veiros, L. F. & Kirchner, K. (2014). Organometallics, 33, 6132–6140.  Web of Science CSD CrossRef CAS Google Scholar
First citationPalatinus, L. & Chapuis, G. (2007). J. Appl. Cryst. 40, 786–790.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationPetříček, V., Dušek, M. & Palatinus, L. (2014). Z. Kristallogr. 229, 345–352.  Google Scholar
First citationRosenthal, E. C. E. (2009). Pure Appl. Chem. 81, 1197–1204.  Web of Science CSD CrossRef CAS Google Scholar
First citationSzabo, K. J. & Wendt, O. F. (2014). Editors. Pincer and Pincer-Type Complexes: Applications in Organic Synthesis and Catalysis. London: Wiley.  Google Scholar
First citationWestrip, S. P. (2010). J. Appl. Cryst. 43, 920–925.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds