research communications\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

12-(3,4,5-Tri­meth­­oxy­phen­yl)-2,3,4,12-tetra­hydro-1H-5-oxa­tetra­phen-1-one: crystal structure and Hirshfeld surface analysis

CROSSMARK_Color_square_no_text.svg

aDepartment of Physics, Bhavan's Sheth R. A. College of Science, Ahmedabad, Gujarat 380 001, India, bCentre for Organic and Medicinal Chemistry, VIT University, Vellore, Tamil Nadu 632 014, India, and cResearch Centre for Crystalline Materials, Faculty of Science and Technology, Sunway University, 47500 Bandar Sunway, Selangor Darul Ehsan, Malaysia
*Correspondence e-mail: mmjotani@rediffmail.com, edwardt@sunway.edu.my

Edited by W. T. A. Harrison, University of Aberdeen, Scotland (Received 5 May 2016; accepted 11 May 2016; online 13 May 2016)

In the title compound, C26H24O5, the pyran ring has a flattened-boat con­formation, with the 1,4-related ether O and methine C atoms lying 0.1205 (18) and 0.271 (2) Å, respectively, above the least-squares plane involving the doubly bonded C atoms (r.m.s deviation = 0.0208 Å). An envelope conformation is found for the cyclo­hexene ring, with the flap atom being the middle methyl­ene C atom, lying 0.616 (2) Å out of the plane defined by the remaining atoms (r.m.s. deviation = 0.0173 Å). The fused four-ring system is approximately planar, with the dihedral angle between the least-squares planes through the cyclo­hexene and naphthyl rings being 10.78 (7)°. The tris­ubstituted benzene ring occupies a position almost perpendicular to the pyran ring [dihedral angle = 83.97 (4)°]. The most prominent feature of the packing is the formation of zigzag supra­molecular chains mediated by aryl-C—H⋯O(meth­oxy) inter­actions; chains are connected into a three-dimensional architecture by methyl­ene- and methyl-C—H⋯π inter­actions. The prevalence of C—H⋯O and C—H⋯π inter­actions is confirmed by an analysis of the Hirshfeld surface. A comparison with related structures suggests that the mol­ecular conformation of the title compound is relatively robust with respect to varying substitution patterns at the methine C atom of the pyran ring.

1. Chemical context

Xanthenes and benzoxanthenes are important bioactive compounds that possess a wide range of biological and thera­peutic properties, such as analgesic (Hafez et al., 2008[Hafez, H. N., Hegab, M. I., Ahmed-Farag, I. S. & El-Gazzar, A. B. A. (2008). Bioorg. Med. Chem. Lett. 18, 4538-4543.]), anti­viral and anti­bacterial and anti-inflammatory activities (Poupelin et al., 1978[Poupelin, J. P., Saintruf, G., Foussardblanpin, O., Narcisse, G., Uchidaernouf, G. & Lacroix, R. (1978). Eur. J. Med. Chem. 13, 67-71.]; Hideo & Teruomi, 1981[Hideo, T. & Teruomi, J. (1981). Jpn Patent 56005480.]; Asano et al., 1996[Asano, J., Chiba, K., Tada, M. & Yoshii, T. (1996). Phytochemistry, 41, 815-820.]; Matsumoto et al., 2005[Matsumoto, K., Akao, Y., Ohguchi, K., Ito, T., Tanaka, T., Iinuma, M. & Nozawa, Y. (2005). Bioorg. Med. Chem. 13, 6064-6069.]; Pinto et al., 2005[Pinto, M. M., Sousa, M. E. & Nascimento, M. S. (2005). Curr. Med. Chem. 12, 2517-2538.]; Woo et al., 2007[Woo, S., Jung, J., Lee, C., Kwon, Y. & Na, Y. (2007). Bioorg. Med. Chem. Lett. 17, 1163-1166.]; Pouli & Marakos, 2009[Pouli, N. & Marakos, P. (2009). Anticancer Agents Med. Chem. 9, 77-98.]). Some of these compounds have been used in photodynamic therapy (Ion, 1997[Ion, R. M. (1997). Prog. Catal. 2, 55-76.]). Further, due to their having desirable spectroscopic properties, some derivatives have been used as dyes in laser technologies (Menchen et al., 2003[Menchen, S. M., Benson, S. C., Lam, J. Y. L., Zhen, W., Sun, D., Rosenblum, B. B., Khan, S. H. & Taing, M. (2003). US Patent 6583168.]) and as pH-sensitive fluorescent materials for the visualization of biomolecules (Ahmad et al., 2002[Ahmad, M., King, T. A., Ko, D.-K., Cha, B. H. & Lee, J. J. (2002). J. Phys. D Appl. Phys. 35, 1473-1476.]).

Various methods for the synthesis of tetra­hydro­benzo[a]xanthen-11-ones have been reported (Knight & Stephens, 1989[Knight, C. G. & Stephens, T. (1989). Biochem. J. 258, 683-687.]). These usually involve a three-component condensation of dimedone with an aromatic aldehyde and 2-naphthol. However, each of these procedures has some drawbacks, such as harsh reaction conditions, tedious work-up and low yields. Hence, the microwave-assisted ionic liquid-mediated synthesis of xanthenes from cyclo­hexane-1,3-dione, 3,4,5-tri­meth­oxy­benzaldehyde and 2-naphthol was attempted. The use of an ionic liquid, i.e. [1-butyl-3-methyl­imid­azol­ium]­PF6, and microwave irradiation afforded the title compound in high yield within 12 min (Iniyavan et al., 2015[Iniyavan, P., Sarveswari, S. & Vijayakumar, V. (2015). Res. Chem. Intermed. 41, 7413-7426.]). The title compound is a potent anti-oxidant (Iniyavan et al., 2015[Iniyavan, P., Sarveswari, S. & Vijayakumar, V. (2015). Res. Chem. Intermed. 41, 7413-7426.]) and herein its crystal and mol­ecular structures are described, along with an analysis of its Hirshfeld surface in order to gain greater insight into the crystal packing, especially the role of weaker inter­actions.

[Scheme 1]

2. Structural commentary

The central pyran ring in the title compound, (I)[link], is flanked by both a cyclo­hexene ring and a naphthyl-fused ring system (Fig. 1[link]). A tris­ubstituted benzene ring is connected to the aforementioned four-ring residue at the methine C7 atom. The pyran ring has a flattened boat conformation, with the 1,4-related O1 and C7 atoms lying 0.1205 (18) and 0.271 (2) Å to the same side of the plane (r.m.s. deviation of the fitted atoms = 0.0208 Å) defined by the C1=C6 [1.3431 (19) Å] and C8=C17 [1.3681 (19) Å] double bonds. To a first approximation, the cyclo­hexene ring has an envelope conformation, with the C3 (flap) atom lying 0.616 (2) Å above the plane defined by the remaining atoms (r.m.s. deviation = 0.0173 Å). The atoms comprising the four-ring system are approximately coplanar, as seen in the dihedral angle between the best plane through the cyclo­hexene ring and naphthyl residue of 10.78 (7)°. The benzene ring occupies a position almost perpendicular to the previous residue, forming a dihedral angle of 83.97 (4)° with the best plane through the pyran ring. In the benzene ring, two meth­oxy groups are coplanar with the ring to which they are connected [the C20′—O20—C20—C19 and C22′—O22—C22—C23 torsion angles are 4.98 (19) and 0.51 (19)°, respectively], while the central substituent is approximately perpendicular to the ring lying over the naphthyl residue, i.e. C21′—O21—C21—C22 is 76.08 (16)°. Presumably, this conformation is adopted to reduce steric hindrance.

[Figure 1]
Figure 1
The mol­ecular structure of (I)[link], showing the atom-labelling scheme and displacement ellipsoids at the 70% probability level.

3. Supra­molecular features

In the mol­ecular packing of (I)[link], supra­molecular chains along the a axis are formed through the agency of relatively strong aryl-C16—H16⋯O(meth­oxy) inter­actions (Table 1[link]). Being generated by glide symmetry, the topology of the chain is zigzag (Fig. 2[link]a). The chains are connected into a three-dimensional architecture by a network of C—H⋯π(ar­yl) inter­actions (Table 1[link]). The donor atoms are derived from methyl­ene and methyl groups, with the acceptor rings being each of the aromatic rings and with the outer benzene ring participating in two such contacts (Fig. 2[link]b).

Table 1
Hydrogen-bond geometry (Å, °)

Cg1, Cg2 and Cg3 are the centroids of the C8/C9/C14–C17, C18–C23 and C9–C14 rings, respectively.

D—H⋯A D—H H⋯A DA D—H⋯A
C16—H16⋯O20i 0.95 2.36 3.2604 (18) 159
C2—H2BCg1ii 0.99 2.92 3.8088 (16) 150
C4—H4BCg2iii 0.99 2.75 3.5605 (16) 140
C22′—H22BCg2iv 0.98 2.56 3.3918 (16) 143
C22′—H22CCg3iv 0.98 2.78 3.4332 (16) 125
Symmetry codes: (i) [-x+{\script{1\over 2}}, y-{\script{1\over 2}}, z]; (ii) [x-{\script{1\over 2}}, -y+{\script{1\over 2}}, -z]; (iii) -x, -y+1, -z; (iv) [x-{\script{3\over 2}}, y, -z-{\script{1\over 2}}].
[Figure 2]
Figure 2
The mol­ecular packing in (I)[link]: (a) a view of the supra­molecular chain along the a axis sustained by C—H⋯O inter­actions shown as orange dashed lines and (b) the unit-cell contents shown in projection down the a axis with the C—H⋯π(ar­yl) inter­actions shown as purple dashed lines.

4. Hirshfeld surface analysis

With the aid of the program Crystal Explorer (Wolff et al., 2012[Wolff, S. K., Grimwood, D. J., McKinnon, J. J., Turner, M. J., Jayatilaka, D. & Spackman, M. A. (2012). Crystal Explorer. The University of Western Australia.]), Hirshfeld surfaces mapped over dnorm, de, curvedness and electrostatic potential were generated. The electrostatic potential was calculated with TONTO (Spackman et al., 2008[Spackman, M. A., McKinnon, J. J. & Jayatilaka, D. (2008). CrystEngComm, 10, 377-388.]; Jayatilaka et al., 2005[Jayatilaka, D., Grimwood, D. J., Lee, A., Lemay, A., Russel, A. J., Taylo, C., Wolff, S. K., Chenai, C. & Whitton, A. (2005). TONTO - A System for Computational Chemistry. Available at: https://hirshfeldsurface.net/]), integrated in Crystal Explorer, using the crystal structure as the starting geometry. The electrostatic potentials were mapped on the Hirshfeld surface using the STO-3G basis/Hartree–Fock level of theory over the range ±0.08 au. The contact distances di and de from the Hirshfeld surface to the nearest atom inside and outside, respectively, enables the analysis of the inter­molecular inter­actions through the mapping of dnorm. The combination of de and di in the form of a two-dimensional fingerprint plot (McKinnon et al., 2004[McKinnon, J. J., Spackman, M. A. & Mitchell, A. S. (2004). Acta Cryst. B60, 627-668.]) provides a convenient summary of the inter­molecular contacts in the crystal.

The bright-red spots at the aryl H16 and meth­oxy O20 atoms, visible on the Hirshfeld surface mapped over dnorm and labelled as `1' in Fig. 3[link], represent the donor and acceptor atoms for the inter­molecular C—H⋯O inter­action, respectively. On the surface mapped over electrostatic potential (Fig. 4[link]), these inter­actions appear as the respective blue and red regions. The views of surfaces mapped over dnorm, de, electrostatic potential and shape-index (Figs. 3[link]–6[link][link][link]) highlight the significant role of C—H⋯π inter­actions in the packing. In particular, the involvement of the meth­oxy C22′—H group in two C—H⋯π inter­actions with the symmetry-related aryl rings (Table 1[link]) are evident from the two faint-red spots near these atoms on the dnorm mapped surface, indicated with `2' in Fig. 3[link].

[Figure 3]
Figure 3
Two views of Hirshfeld surfaces mapped over dnorm for (I)[link]. Labels `1', `2' and `3' indicate specific inter­molecular inter­actions (see text).
[Figure 4]
Figure 4
Two views of Hirshfeld surfaces mapped over electrostatic potential for (I)[link]. The red and blue regions represent negative and positive electrostatic potentials, respectively.
[Figure 5]
Figure 5
Views of Hirshfeld surface mapped over de for (I)[link]. The pale-orange spots within blue circles indicate the involvement of aryl ring atoms in C—H⋯π inter­actions.
[Figure 6]
Figure 6
Views of Hirshfeld surface mapped with the shape-index property for (I)[link]. The bright-red spots identified with arrows indicate the C—H⋯π inter­actions, while the blue spots indicate complementary π⋯H—C inter­actions.

The corresponding regions on the Hirshfeld surface mapped over electrostatic potential (Fig. 4[link]) appear as blue and light-red, respectively. The remaining C—H⋯π inter­actions, involving the methyl­ene H2B and H4B atoms as donors, and the C8/C9/C14–C17 and C18–C23 rings as π-acceptors, are also evident from Fig. 4[link], through the appearance of respective blue and light-red regions near these atoms. The network of these C—H⋯π inter­actions are also recognized through the pale-orange spots present on the Hirshfeld surfaces mapped over de, highlighted within blue circles in Fig. 5[link], and as bright-red spots over the front side of shape-indexed surfaces identified with arrows in Fig. 6[link]. The reciprocal of these C—H⋯π inter­actions, i.e. π⋯H—C, are also seen as blue spots on the shape-indexed surface in Fig. 6[link]. The faint-red spots near the phenyl C23 atom on the surface mapped over dnorm, labelled as `3' in Fig. 3[link], indicate the presence of short interatomic C⋯H/H⋯C contacts in the crystal, Table 2[link].

Table 2
Additional short inter­atomic contacts (Å) for the title compound

Inter­action Distance Symmetry operation
C23⋯H4B 2.86 x, 1 − y, −z
C23⋯H22B 2.72 [{1\over 2}] + x, y, [{1\over 2}] − z
C11⋯H2A 2.86 1 + x, y, z
C11⋯H22A 2.83 1 + x, y, z
O2⋯H3B 2.61 x, 1 − y, −z
C12⋯H22A 2.82 1 + x, y, z
C18⋯H22B 2.77 [{1\over 2}] + x, y, [{1\over 2}] − z
C22⋯H22B 2.86 [{1\over 2}] + x, y, [{1\over 2}] − z
C21′⋯H4A 2.82 [{1\over 2}] − x, 1 − y, [{1\over 2}] + z

The overall two-dimensional fingerprint plot (Fig. 7[link]a) and those delineated (McKinnon et al., 2007[McKinnon, J. J., Jayatilaka, D. & Spackman, M. A. (2007). Chem. Commun. pp. 3814-3816.]) into H⋯H, O⋯H/H⋯O and C⋯H/H⋯C contacts are illustrated in Figs. 7[link](bd), respectively; their relative contributions are summarized in Table 3[link]. The inter­atomic H⋯H contacts at distances greater than their van der Waals separation appear as scattered points in the greater part of the fingerprint plot (Fig. 7[link]b), and makes the most significant contribution to the overall Hirshfeld surface, i.e. 49.3%. In the fingerprint plot delineated into O⋯H/H⋯O contacts, a pair of short spikes at de + di ∼ 2.4 Å, and the cluster of blue points aligned in pairs with (de + di)min ∼ 2.7 Å, identified with labels `1' and `2', respectively, in Fig. 7[link](c), corresponds to a 21.2% contribution to the Hirshfeld surface. These features reflect the presence of aryl-C16—H16⋯O(meth­oxy) inter­actions, as well as the short inter­atomic O⋯H/H⋯O contacts between carboxyl O2 and methyl­ene H3B atoms (Table 2[link]).

Table 3
Percentage contribution of the different inter­molecular inter­actions to the Hirshfeld surface of (I)[link]

Contact Contribution
H⋯H 49.9
O⋯H/H⋯O 21.2
C⋯H/H⋯C 28.1
C⋯O/O⋯C 0.6
O⋯O 0.2
C⋯C 0.0
[Figure 7]
Figure 7
Two-dimensional fingerprint plots calculated for (I)[link]: (a) overall plot, and those delineated into (b) H⋯H, (c) O⋯H/H⋯O and (d) C⋯H/H⋯C contacts.

The fingerprint plot delineated into C⋯H/H⋯C contacts, with a 28.1% contribution to the Hirshfeld surface, shows the points in the plot arranged in the form of two pairs of arrow-like shapes with their tips at de + di = 2.70 and 2.85 Å, labelled as `1' and `2' in Fig. 7[link](d), respectively. These features reflect the presence of C—H⋯π inter­actions and short inter­atomic C⋯H/H⋯C contacts (Table 3[link]) in the crystal. The absence of ππ stacking inter­actions is consistent with their being no contribution from C⋯C contacts to the Hirshfeld surface (Table 3[link]).

The final analysis of the mol­ecular packing involves a relatively new descriptor, i.e. the enrichment ratio (ER) (Jelsch et al., 2014[Jelsch, C., Ejsmont, K. & Huder, L. (2014). IUCrJ, 1, 119-128.]); data are collated in Table 4[link]. The involvement of surface H atoms in C—H⋯π inter­actions and the presence of a number of inter­atomic C⋯H contacts (Table 3[link]) yields an ER value for H⋯H contacts less than unity, i.e. 0.90. The presence of these inter­actions explains the enhanced ER value of 1.31 for C⋯H/H⋯C contacts, consistent with their high propensity to form in the mol­ecular packing of (I)[link]. The O atoms comprise only 11.1% of the surface but provide a 21.2% contribution from O⋯H/H⋯O contacts to the Hirshfeld surface. Reflecting this, the ER value is 1.28, which is in the expected 1.2–1.6 range. Other contacts, namely C⋯C, O⋯O and C⋯O/O⋯C, show no propensity to form as reflected in their low ER values (Table 4[link]).

Table 4
Enrichment ratios (ER) for the title compound

Inter­action ER
H⋯H 0.90
O⋯H/H⋯O 1.28
C⋯H/H⋯C 1.31
C⋯C 0.0
C⋯O/O⋯C 0.19
O⋯O 0.16

5. Database survey

There are two structures in the crystallographic literature (Groom et al., 2016[Groom, C. R., Bruno, I. J., Lightfoot, M. P. & Ward, S. C. (2016). Acta Cryst. B72, 171-179.]) featuring the methine-substituted 2,3,4,12-tetra­hydro-5-oxa­tetra­phen-1-one residue, as in (I)[link]. In the most closely related structure, (II) (Sethukumar et al., 2012[Sethukumar, A., Vidhya, V., Kumar, C. U. & Prakasam, B. A. (2012). J. Mol. Struct. 1008, 8-16.]), with a 2-chloro­benzene ring at the methine C7 atom, an essentially similar conformation is found, as emphasized in the overlay diagram shown in Fig. 8[link]. Here, the dihedral angle between the best plane through the cyclo­hexene ring and naphthyl residue is 7.50 (6)°, i.e. marginally less folded than in (I)[link] where the angle was 10.78 (7)°. The angle between the least-squares planes through the pyran and benzene rings is 89.71 (6)°. Despite having a bulky 2-hy­droxy-6-oxo­cyclo­hex-1-enyl residue at the methine C7 atom, rather than an aryl ring, the conformation in (III) (Akkurt et al., 2013[Akkurt, M., Mohamed, S. K., Kennedy, A. R., Abdelhamid, A. A., Miller, G. J. & Albayati, M. R. (2013). Acta Cryst. E69, o1558-o1559.]) bears a close resemblance to those of (I)[link] and (II). Thus, in (III), the cyclo­hexene/naphthyl dihedral angle is 16.26 (5)°, indicating a non-folded four-ring residue, and the pyran/cyclohexenyl dihedral angle is 85.57 (6)°. Clearly, the non-folded conformation of the 2,3,4,12-tetra­hydro-5-oxa­tetra­phen-1-one core and its orthogonal relationship to the methine C7-bound substituent in (I)–(III) is to a first robust.

[Figure 8]
Figure 8
Overlap diagram of the title compound, (I)[link] (red image), with literature precedents (II) (green) and (III) (blue). The mol­ecules have been overlapped so that the C1, C6 and C8 atoms are coincident.

6. Synthesis and crystallization

The title compound was prepared and characterized spectroscopically as per the literature (Iniyavan et al., 2015[Iniyavan, P., Sarveswari, S. & Vijayakumar, V. (2015). Res. Chem. Intermed. 41, 7413-7426.]). Crystals for the X-ray study were obtained after 2 d of slow evaporation of a chloro­form solution of (I)[link] held at room temperature.

7. Refinement details

Crystal data, data collection and structure refinement details are summarized in Table 5[link]. Carbon-bound H atoms were placed in calculated positions (C—H = 0.95–1.00 Å) and were included in the refinement in the riding model approximation, with Uiso(H) set at 1.2–1.5Ueq(C).

Table 5
Experimental details

Crystal data
Chemical formula C26H24O5
Mr 416.45
Crystal system, space group Orthorhombic, Pbca
Temperature (K) 100
a, b, c (Å) 9.2164 (5), 20.3760 (9), 21.8731 (9)
V3) 4107.6 (3)
Z 8
Radiation type Mo Kα
μ (mm−1) 0.09
Crystal size (mm) 0.25 × 0.20 × 0.20
 
Data collection
Diffractometer Agilent Technologies SuperNova Dual diffractometer with an Atlas detector
Absorption correction Multi-scan (CrysAlis PRO; Agilent, 2014[Agilent (2014). CrysAlis PRO. Agilent Technologies Inc., Santa Clara, CA, USA.])
Tmin, Tmax 0.855, 1.000
No. of measured, independent and observed [I > 2σ(I)] reflections 23597, 4664, 3991
Rint 0.034
(sin θ/λ)max−1) 0.650
 
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.040, 0.100, 1.04
No. of reflections 4664
No. of parameters 283
H-atom treatment H-atom parameters constrained
Δρmax, Δρmin (e Å−3) 0.34, −0.22
Computer programs: CrysAlis PRO (Agilent, 2014[Agilent (2014). CrysAlis PRO. Agilent Technologies Inc., Santa Clara, CA, USA.]), SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]), SHELXL2014 (Sheldrick, 2015[Sheldrick, G. M. (2015). Acta Cryst. C71, 3-8.]), ORTEP-3 for Windows (Farrugia, 2012[Farrugia, L. J. (2012). J. Appl. Cryst. 45, 849-854.]), QMol (Gans & Shalloway, 2001[Gans, J. & Shalloway, D. (2001). J. Mol. Graphics Modell. 19, 557-559.]), DIAMOND (Brandenburg, 2006[Brandenburg, K. (2006). DIAMOND. Crystal Impact GbR, Bonn, Germany.]) and publCIF (Westrip, 2010[Westrip, S. P. (2010). J. Appl. Cryst. 43, 920-925.]).

Supporting information


Computing details top

Data collection: CrysAlis PRO (Agilent, 2014); cell refinement: CrysAlis PRO (Agilent, 2014); data reduction: CrysAlis PRO (Agilent, 2014); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL2014 (Sheldrick, 2015); molecular graphics: ORTEP-3 for Windows (Farrugia, 2012), QMol (Gans & Shalloway, 2001) and DIAMOND (Brandenburg, 2006); software used to prepare material for publication: publCIF (Westrip, 2010).

12-(3,4,5-Trimethoxyphenyl)-2,3,4,12-tetrahydro-1H-5-oxatetraphen-1-one top
Crystal data top
C26H24O5Dx = 1.347 Mg m3
Mr = 416.45Mo Kα radiation, λ = 0.71073 Å
Orthorhombic, PbcaCell parameters from 7968 reflections
a = 9.2164 (5) Åθ = 3.5–29.3°
b = 20.3760 (9) ŵ = 0.09 mm1
c = 21.8731 (9) ÅT = 100 K
V = 4107.6 (3) Å3Prism, colourless
Z = 80.25 × 0.20 × 0.20 mm
F(000) = 1760
Data collection top
Agilent Technologies SuperNova Dual
diffractometer with an Atlas detector
4664 independent reflections
Radiation source: SuperNova (Mo) X-ray Source3991 reflections with I > 2σ(I)
Mirror monochromatorRint = 0.034
Detector resolution: 10.4041 pixels mm-1θmax = 27.5°, θmin = 2.9°
ω scanh = 911
Absorption correction: multi-scan
(CrysAlis PRO; Agilent, 2014)
k = 2624
Tmin = 0.855, Tmax = 1.000l = 2825
23597 measured reflections
Refinement top
Refinement on F20 restraints
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.040H-atom parameters constrained
wR(F2) = 0.100 w = 1/[σ2(Fo2) + (0.0327P)2 + 3.0207P]
where P = (Fo2 + 2Fc2)/3
S = 1.04(Δ/σ)max < 0.001
4664 reflectionsΔρmax = 0.34 e Å3
283 parametersΔρmin = 0.22 e Å3
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
O10.13499 (11)0.29394 (5)0.08369 (4)0.0202 (2)
O20.21599 (12)0.47795 (5)0.04262 (5)0.0249 (2)
O200.43308 (11)0.62718 (5)0.14235 (4)0.0215 (2)
O210.24076 (11)0.61119 (5)0.23202 (4)0.0204 (2)
O220.09183 (11)0.49986 (5)0.24461 (4)0.0202 (2)
C10.10078 (15)0.33649 (7)0.03771 (6)0.0181 (3)
C20.03608 (16)0.31688 (7)0.00588 (7)0.0223 (3)
H2A0.10580.29930.03620.027*
H2B0.01460.28170.02400.027*
C30.10412 (16)0.37501 (7)0.02719 (7)0.0236 (3)
H3A0.18260.35930.05440.028*
H3B0.14730.40540.00310.028*
C40.00918 (17)0.41132 (8)0.06483 (6)0.0249 (3)
H4A0.03960.38310.09940.030*
H4B0.03540.45140.08220.030*
C50.14184 (16)0.43053 (7)0.02839 (6)0.0188 (3)
C60.18328 (15)0.38862 (6)0.02343 (6)0.0172 (3)
C70.31954 (15)0.40554 (6)0.05870 (6)0.0159 (3)
H70.39680.41860.02900.019*
C80.37084 (15)0.34558 (6)0.09372 (6)0.0163 (3)
C90.51546 (15)0.34033 (6)0.11767 (6)0.0179 (3)
C100.62592 (16)0.38608 (7)0.10377 (6)0.0215 (3)
H100.60520.42170.07720.026*
C110.76293 (17)0.37994 (8)0.12805 (7)0.0261 (3)
H110.83560.41110.11790.031*
C120.79633 (17)0.32772 (8)0.16789 (7)0.0280 (3)
H120.89140.32360.18420.034*
C130.69162 (18)0.28293 (7)0.18297 (7)0.0267 (3)
H130.71420.24830.21040.032*
C140.55010 (16)0.28747 (7)0.15820 (6)0.0207 (3)
C150.44087 (16)0.24150 (7)0.17401 (7)0.0225 (3)
H150.46180.20790.20280.027*
C160.30631 (16)0.24481 (7)0.14842 (6)0.0196 (3)
H160.23490.21270.15780.024*
C170.27480 (15)0.29668 (7)0.10782 (6)0.0175 (3)
C180.29511 (14)0.46231 (6)0.10361 (6)0.0153 (3)
C190.37542 (15)0.51971 (6)0.09866 (6)0.0168 (3)
H190.44170.52530.06580.020*
C200.35832 (15)0.56922 (6)0.14226 (6)0.0168 (3)
C20'0.52664 (17)0.63990 (7)0.09194 (7)0.0244 (3)
H20A0.60110.60560.08970.037*
H20B0.57320.68270.09740.037*
H20C0.47000.64010.05400.037*
C210.26077 (15)0.56129 (6)0.19031 (6)0.0166 (3)
C21'0.30768 (18)0.59803 (7)0.29015 (6)0.0255 (3)
H21A0.26860.55710.30700.038*
H21B0.28720.63420.31830.038*
H21C0.41280.59380.28470.038*
C220.18044 (15)0.50332 (6)0.19494 (6)0.0162 (3)
C22'0.01074 (17)0.44121 (7)0.25262 (7)0.0225 (3)
H22A0.05890.43660.21900.034*
H22B0.04160.44310.29160.034*
H22C0.07680.40350.25280.034*
C230.19668 (15)0.45412 (6)0.15136 (6)0.0165 (3)
H230.14080.41510.15420.020*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
O10.0199 (5)0.0172 (5)0.0234 (5)0.0026 (4)0.0031 (4)0.0040 (4)
O20.0296 (6)0.0215 (5)0.0237 (5)0.0001 (4)0.0005 (4)0.0052 (4)
O200.0258 (6)0.0131 (4)0.0255 (5)0.0026 (4)0.0055 (4)0.0010 (4)
O210.0282 (6)0.0143 (5)0.0187 (5)0.0031 (4)0.0013 (4)0.0022 (4)
O220.0232 (5)0.0180 (5)0.0196 (5)0.0009 (4)0.0058 (4)0.0012 (4)
C10.0210 (7)0.0167 (6)0.0167 (6)0.0021 (5)0.0013 (5)0.0011 (5)
C20.0225 (7)0.0202 (7)0.0242 (7)0.0009 (6)0.0043 (6)0.0004 (5)
C30.0222 (7)0.0250 (7)0.0237 (7)0.0020 (6)0.0055 (6)0.0003 (6)
C40.0287 (8)0.0276 (7)0.0183 (7)0.0026 (6)0.0047 (6)0.0022 (6)
C50.0223 (7)0.0190 (6)0.0151 (6)0.0042 (5)0.0019 (5)0.0009 (5)
C60.0205 (7)0.0168 (6)0.0142 (6)0.0023 (5)0.0006 (5)0.0013 (5)
C70.0183 (7)0.0141 (6)0.0153 (6)0.0003 (5)0.0004 (5)0.0005 (5)
C80.0202 (7)0.0147 (6)0.0140 (6)0.0015 (5)0.0010 (5)0.0016 (5)
C90.0206 (7)0.0157 (6)0.0173 (6)0.0015 (5)0.0001 (5)0.0032 (5)
C100.0224 (7)0.0203 (7)0.0219 (7)0.0005 (6)0.0015 (6)0.0008 (5)
C110.0244 (8)0.0258 (7)0.0282 (7)0.0028 (6)0.0001 (6)0.0013 (6)
C120.0233 (8)0.0271 (8)0.0335 (8)0.0015 (6)0.0082 (7)0.0032 (6)
C130.0316 (8)0.0188 (7)0.0295 (8)0.0028 (6)0.0068 (7)0.0012 (6)
C140.0249 (7)0.0158 (6)0.0214 (6)0.0016 (5)0.0035 (6)0.0026 (5)
C150.0279 (8)0.0167 (6)0.0229 (7)0.0027 (6)0.0017 (6)0.0029 (5)
C160.0242 (7)0.0147 (6)0.0199 (6)0.0021 (5)0.0008 (6)0.0001 (5)
C170.0193 (7)0.0161 (6)0.0170 (6)0.0013 (5)0.0012 (5)0.0019 (5)
C180.0174 (6)0.0143 (6)0.0142 (6)0.0023 (5)0.0035 (5)0.0007 (5)
C190.0183 (7)0.0161 (6)0.0159 (6)0.0012 (5)0.0007 (5)0.0024 (5)
C200.0182 (7)0.0120 (6)0.0202 (6)0.0001 (5)0.0018 (5)0.0027 (5)
C20'0.0243 (8)0.0181 (7)0.0308 (8)0.0026 (6)0.0075 (6)0.0012 (6)
C210.0200 (7)0.0135 (6)0.0163 (6)0.0031 (5)0.0021 (5)0.0008 (5)
C21'0.0353 (9)0.0205 (7)0.0206 (7)0.0008 (6)0.0035 (6)0.0049 (6)
C220.0160 (6)0.0175 (6)0.0151 (6)0.0026 (5)0.0006 (5)0.0028 (5)
C22'0.0231 (7)0.0207 (7)0.0238 (7)0.0019 (6)0.0068 (6)0.0018 (6)
C230.0172 (7)0.0152 (6)0.0172 (6)0.0003 (5)0.0019 (5)0.0020 (5)
Geometric parameters (Å, º) top
O1—C11.3647 (16)C10—H100.9500
O1—C171.3936 (17)C11—C121.409 (2)
O2—C51.2237 (17)C11—H110.9500
O20—C201.3671 (16)C12—C131.369 (2)
O20—C20'1.4235 (17)C12—H120.9500
O21—C211.3784 (15)C13—C141.415 (2)
O21—C21'1.4384 (17)C13—H130.9500
O22—C221.3610 (16)C14—C151.418 (2)
O22—C22'1.4204 (16)C15—C161.362 (2)
C1—C61.3431 (19)C15—H150.9500
C1—C21.495 (2)C16—C171.4105 (19)
C2—C31.523 (2)C16—H160.9500
C2—H2A0.9900C18—C191.3884 (18)
C2—H2B0.9900C18—C231.3934 (19)
C3—C41.522 (2)C19—C201.3972 (18)
C3—H3A0.9900C19—H190.9500
C3—H3B0.9900C20—C211.3926 (19)
C4—C51.511 (2)C20'—H20A0.9800
C4—H4A0.9900C20'—H20B0.9800
C4—H4B0.9900C20'—H20C0.9800
C5—C61.4698 (18)C21—C221.3978 (19)
C6—C71.5136 (19)C21'—H21A0.9800
C7—C81.5174 (18)C21'—H21B0.9800
C7—C181.5342 (17)C21'—H21C0.9800
C7—H71.0000C22—C231.3913 (18)
C8—C171.3681 (19)C22'—H22A0.9800
C8—C91.4361 (19)C22'—H22B0.9800
C9—C101.413 (2)C22'—H22C0.9800
C9—C141.4311 (19)C23—H230.9500
C10—C111.376 (2)
C1—O1—C17117.86 (11)C12—C13—C14120.92 (14)
C20—O20—C20'117.48 (11)C12—C13—H13119.5
C21—O21—C21'112.96 (10)C14—C13—H13119.5
C22—O22—C22'117.24 (11)C13—C14—C15121.18 (13)
C6—C1—O1122.89 (13)C13—C14—C9119.47 (13)
C6—C1—C2125.50 (13)C15—C14—C9119.34 (13)
O1—C1—C2111.61 (12)C16—C15—C14120.89 (13)
C1—C2—C3111.14 (12)C16—C15—H15119.6
C1—C2—H2A109.4C14—C15—H15119.6
C3—C2—H2A109.4C15—C16—C17118.90 (13)
C1—C2—H2B109.4C15—C16—H16120.6
C3—C2—H2B109.4C17—C16—H16120.6
H2A—C2—H2B108.0C8—C17—O1122.82 (12)
C4—C3—C2110.64 (13)C8—C17—C16123.67 (13)
C4—C3—H3A109.5O1—C17—C16113.51 (12)
C2—C3—H3A109.5C19—C18—C23120.43 (12)
C4—C3—H3B109.5C19—C18—C7120.46 (12)
C2—C3—H3B109.5C23—C18—C7119.03 (12)
H3A—C3—H3B108.1C18—C19—C20119.66 (12)
C5—C4—C3113.31 (12)C18—C19—H19120.2
C5—C4—H4A108.9C20—C19—H19120.2
C3—C4—H4A108.9O20—C20—C21115.12 (12)
C5—C4—H4B108.9O20—C20—C19124.60 (12)
C3—C4—H4B108.9C21—C20—C19120.28 (12)
H4A—C4—H4B107.7O20—C20'—H20A109.5
O2—C5—C6120.65 (13)O20—C20'—H20B109.5
O2—C5—C4121.49 (12)H20A—C20'—H20B109.5
C6—C5—C4117.81 (12)O20—C20'—H20C109.5
C1—C6—C5119.46 (13)H20A—C20'—H20C109.5
C1—C6—C7122.09 (12)H20B—C20'—H20C109.5
C5—C6—C7118.45 (12)O21—C21—C20120.02 (12)
C6—C7—C8109.41 (11)O21—C21—C22120.31 (12)
C6—C7—C18112.10 (11)C20—C21—C22119.65 (12)
C8—C7—C18109.24 (10)O21—C21'—H21A109.5
C6—C7—H7108.7O21—C21'—H21B109.5
C8—C7—H7108.7H21A—C21'—H21B109.5
C18—C7—H7108.7O21—C21'—H21C109.5
C17—C8—C9117.65 (12)H21A—C21'—H21C109.5
C17—C8—C7119.91 (12)H21B—C21'—H21C109.5
C9—C8—C7122.23 (12)O22—C22—C23125.04 (12)
C10—C9—C14117.97 (13)O22—C22—C21114.79 (12)
C10—C9—C8122.74 (12)C23—C22—C21120.15 (12)
C14—C9—C8119.28 (13)O22—C22'—H22A109.5
C11—C10—C9121.20 (13)O22—C22'—H22B109.5
C11—C10—H10119.4H22A—C22'—H22B109.5
C9—C10—H10119.4O22—C22'—H22C109.5
C10—C11—C12120.53 (14)H22A—C22'—H22C109.5
C10—C11—H11119.7H22B—C22'—H22C109.5
C12—C11—H11119.7C22—C23—C18119.82 (12)
C13—C12—C11119.90 (14)C22—C23—H23120.1
C13—C12—H12120.1C18—C23—H23120.1
C11—C12—H12120.1
C17—O1—C1—C613.87 (19)C8—C9—C14—C150.18 (19)
C17—O1—C1—C2165.29 (11)C13—C14—C15—C16177.73 (13)
C6—C1—C2—C322.4 (2)C9—C14—C15—C163.8 (2)
O1—C1—C2—C3158.43 (12)C14—C15—C16—C172.9 (2)
C1—C2—C3—C448.01 (16)C9—C8—C17—O1175.23 (11)
C2—C3—C4—C552.63 (16)C7—C8—C17—O110.04 (19)
C3—C4—C5—O2153.03 (13)C9—C8—C17—C165.5 (2)
C3—C4—C5—C629.63 (18)C7—C8—C17—C16169.20 (12)
O1—C1—C6—C5177.52 (12)C1—O1—C17—C89.55 (18)
C2—C1—C6—C51.5 (2)C1—O1—C17—C16171.14 (11)
O1—C1—C6—C71.8 (2)C15—C16—C17—C82.0 (2)
C2—C1—C6—C7179.13 (13)C15—C16—C17—O1178.70 (12)
O2—C5—C6—C1179.34 (13)C6—C7—C18—C19120.36 (13)
C4—C5—C6—C11.98 (19)C8—C7—C18—C19118.19 (13)
O2—C5—C6—C70.03 (19)C6—C7—C18—C2362.98 (15)
C4—C5—C6—C7177.40 (12)C8—C7—C18—C2358.47 (16)
C1—C6—C7—C819.27 (17)C23—C18—C19—C200.7 (2)
C5—C6—C7—C8160.10 (11)C7—C18—C19—C20175.94 (12)
C1—C6—C7—C18102.08 (15)C20'—O20—C20—C21175.65 (12)
C5—C6—C7—C1878.55 (14)C20'—O20—C20—C194.98 (19)
C6—C7—C8—C1722.82 (16)C18—C19—C20—O20179.03 (12)
C18—C7—C8—C17100.24 (14)C18—C19—C20—C210.3 (2)
C6—C7—C8—C9162.70 (12)C21'—O21—C21—C20105.78 (14)
C18—C7—C8—C974.24 (15)C21'—O21—C21—C2276.08 (16)
C17—C8—C9—C10176.82 (13)O20—C20—C21—O212.79 (18)
C7—C8—C9—C108.6 (2)C19—C20—C21—O21177.81 (12)
C17—C8—C9—C144.30 (18)O20—C20—C21—C22179.06 (12)
C7—C8—C9—C14170.30 (12)C19—C20—C21—C220.3 (2)
C14—C9—C10—C110.4 (2)C22'—O22—C22—C230.51 (19)
C8—C9—C10—C11179.30 (13)C22'—O22—C22—C21178.19 (12)
C9—C10—C11—C120.4 (2)O21—C21—C22—O223.82 (18)
C10—C11—C12—C130.4 (2)C20—C21—C22—O22178.04 (12)
C11—C12—C13—C141.2 (2)O21—C21—C22—C23177.42 (12)
C12—C13—C14—C15179.52 (14)C20—C21—C22—C230.7 (2)
C12—C13—C14—C91.1 (2)O22—C22—C23—C18177.55 (12)
C10—C9—C14—C130.3 (2)C21—C22—C23—C181.1 (2)
C8—C9—C14—C13178.63 (13)C19—C18—C23—C221.1 (2)
C10—C9—C14—C15178.75 (13)C7—C18—C23—C22175.60 (12)
Hydrogen-bond geometry (Å, º) top
Cg1, Cg2 and Cg3 are the centroids of the C8/C9/C14–C17, C18–C23 and C9–C14 rings, respectively.
D—H···AD—HH···AD···AD—H···A
C16—H16···O20i0.952.363.2604 (18)159
C2—H2B···Cg1ii0.992.923.8088 (16)150
C4—H4B···Cg2iii0.992.753.5605 (16)140
C22—H22B···Cg2iv0.982.563.3918 (16)143
C22—H22C···Cg3iv0.982.783.4332 (16)125
Symmetry codes: (i) x+1/2, y1/2, z; (ii) x1/2, y+1/2, z; (iii) x, y+1, z; (iv) x3/2, y, z1/2.
Percentage contribution of the different intermolecular interactions to the Hirshfeld surface of (I). top
ContactContribution
H···H49.9
O···H/H···O21.2
C···H/H···C28.1
C···O/O···C0.6
O···O0.2
C···C0.0
Additional short interatomic contacts (Å) for the title compound top
InteractionDistanceSymmetry operation
C23···H4B2.86-x, 1-y, -z
C23···H22B2.721/2+x, y, 1/2-z
C11···H2A2.861+x, y, z
C11···H22A2.831+x, y, z
O2···H3B2.61-x, 1-y, -z
C12···H22A2.821+x, y, z
C18···H22B2.771/2+x, y, 1/2-z
C22···H22B2.861/2+x, y, 1/2-z
C21'···H4A2.821/2-x, 1-y, 1/2+z
Enrichment ratios (ER) for the title compound. top
InteractionER
H···H0.90
O···H/H···O1.28
C···H/H···C1.31
C···C0.0
C···O/O···C0.19
O···O0.16
 

Acknowledgements

VIT University is thanked for providing facilities.

References

First citationAgilent (2014). CrysAlis PRO. Agilent Technologies Inc., Santa Clara, CA, USA.  Google Scholar
First citationAhmad, M., King, T. A., Ko, D.-K., Cha, B. H. & Lee, J. J. (2002). J. Phys. D Appl. Phys. 35, 1473–1476.  Web of Science CrossRef CAS Google Scholar
First citationAkkurt, M., Mohamed, S. K., Kennedy, A. R., Abdelhamid, A. A., Miller, G. J. & Albayati, M. R. (2013). Acta Cryst. E69, o1558–o1559.  CSD CrossRef IUCr Journals Google Scholar
First citationAsano, J., Chiba, K., Tada, M. & Yoshii, T. (1996). Phytochemistry, 41, 815–820.  CrossRef CAS PubMed Web of Science Google Scholar
First citationBrandenburg, K. (2006). DIAMOND. Crystal Impact GbR, Bonn, Germany.  Google Scholar
First citationFarrugia, L. J. (2012). J. Appl. Cryst. 45, 849–854.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationGans, J. & Shalloway, D. (2001). J. Mol. Graphics Modell. 19, 557–559.  Web of Science CrossRef CAS Google Scholar
First citationGroom, C. R., Bruno, I. J., Lightfoot, M. P. & Ward, S. C. (2016). Acta Cryst. B72, 171–179.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationHafez, H. N., Hegab, M. I., Ahmed-Farag, I. S. & El-Gazzar, A. B. A. (2008). Bioorg. Med. Chem. Lett. 18, 4538–4543.  Web of Science CSD CrossRef PubMed CAS Google Scholar
First citationHideo, T. & Teruomi, J. (1981). Jpn Patent 56005480.  Google Scholar
First citationIniyavan, P., Sarveswari, S. & Vijayakumar, V. (2015). Res. Chem. Intermed. 41, 7413–7426.  Web of Science CrossRef CAS Google Scholar
First citationIon, R. M. (1997). Prog. Catal. 2, 55–76.  Google Scholar
First citationJayatilaka, D., Grimwood, D. J., Lee, A., Lemay, A., Russel, A. J., Taylo, C., Wolff, S. K., Chenai, C. & Whitton, A. (2005). TONTO – A System for Computational Chemistry. Available at: https://hirshfeldsurface.net/  Google Scholar
First citationJelsch, C., Ejsmont, K. & Huder, L. (2014). IUCrJ, 1, 119–128.  Web of Science CrossRef CAS PubMed IUCr Journals Google Scholar
First citationKnight, C. G. & Stephens, T. (1989). Biochem. J. 258, 683–687.  CrossRef CAS PubMed Google Scholar
First citationMatsumoto, K., Akao, Y., Ohguchi, K., Ito, T., Tanaka, T., Iinuma, M. & Nozawa, Y. (2005). Bioorg. Med. Chem. 13, 6064–6069.  Web of Science CrossRef PubMed CAS Google Scholar
First citationMcKinnon, J. J., Jayatilaka, D. & Spackman, M. A. (2007). Chem. Commun. pp. 3814–3816.  Web of Science CrossRef Google Scholar
First citationMcKinnon, J. J., Spackman, M. A. & Mitchell, A. S. (2004). Acta Cryst. B60, 627–668.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationMenchen, S. M., Benson, S. C., Lam, J. Y. L., Zhen, W., Sun, D., Rosenblum, B. B., Khan, S. H. & Taing, M. (2003). US Patent 6583168.  Google Scholar
First citationPinto, M. M., Sousa, M. E. & Nascimento, M. S. (2005). Curr. Med. Chem. 12, 2517–2538.  Web of Science CrossRef PubMed CAS Google Scholar
First citationPouli, N. & Marakos, P. (2009). Anticancer Agents Med. Chem. 9, 77–98.  CrossRef PubMed CAS Google Scholar
First citationPoupelin, J. P., Saintruf, G., Foussardblanpin, O., Narcisse, G., Uchidaernouf, G. & Lacroix, R. (1978). Eur. J. Med. Chem. 13, 67–71.  CAS Google Scholar
First citationSethukumar, A., Vidhya, V., Kumar, C. U. & Prakasam, B. A. (2012). J. Mol. Struct. 1008, 8–16.  Web of Science CSD CrossRef CAS Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSheldrick, G. M. (2015). Acta Cryst. C71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar
First citationSpackman, M. A., McKinnon, J. J. & Jayatilaka, D. (2008). CrystEngComm, 10, 377–388.  CAS Google Scholar
First citationWestrip, S. P. (2010). J. Appl. Cryst. 43, 920–925.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationWolff, S. K., Grimwood, D. J., McKinnon, J. J., Turner, M. J., Jayatilaka, D. & Spackman, M. A. (2012). Crystal Explorer. The University of Western Australia.  Google Scholar
First citationWoo, S., Jung, J., Lee, C., Kwon, Y. & Na, Y. (2007). Bioorg. Med. Chem. Lett. 17, 1163–1166.  Web of Science CrossRef PubMed CAS Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds