research communications
Trisodium citrate, Na3(C6H5O7)
aAtlantic International University, Honolulu, HI, USA, and bIllinois Institute of Technology, Chicago, IL, USA
*Correspondence e-mail: kaduk@polycrystallography.com
The 3(C6H5O7), has been solved and refined using synchrotron X-ray powder diffraction data, and optimized using density functional theory (DFT). There are two independent five-coordinate Na+ and one six-coordinate Na+ cations in the The [NaO5] and [NaO6] polyhedra share edges and corners to form a three-dimensional framework. There are channels parallel to the a and b axes in which the remainder of the citrate anions reside. The only hydrogen bonds are an intramolecular one between the hydroxy group and one of the terminal carboxylate O atoms and an intermolecular one between a methylene group and the hydroxyl O atom.
of anhydrous trisodium citrate, Na1. Chemical context
In the course of a systematic study of the crystal structures of Group 1 (alkali metal) citrate salts to understand the anion's conformational flexibility, ionization, coordination tendencies, and hydrogen bonding, we have determined several new crystal structures. Most of the new structures were solved using powder diffraction data (laboratory and/or synchrotron), but single crystals were used where available. The general trends and conclusions about the 16 new compounds and 12 previously characterized structures are being reported separately (Rammohan & Kaduk, 2016a). Two of the new structures containing multiple Group 1 cations) – NaKHC6H5O7 and NaK2C6H5O7 – have been published recently (Rammohan & Kaduk, 2016b,c).
2. Structural commentary
The . The root-mean-square deviation of the non-hydrogen atoms in the Rietveld refined and the optimized structure using density functional theory (DFT) is only 0.057 Å. The maximum deviation is 0.103 Å, at Na19. The excellent agreement between the two structures (Fig. 2) is strong evidence that the experimental structure is correct (van de Streek & Neumann, 2014). This discussion uses the DFT-optimized structure. All of the bond lengths, bond angles, and torsion angles fall within the normal ranges indicated by a Mercury Mogul geometry check (Macrae et al., 2008). The hydroxyl group bridges atoms Na20 and Na21. The citrate anion occurs in the trans,trans-conformation (about C2—C3 and C3—C4), which is one of the two low-energy conformations of an isolated citrate. The central carboxylate group and the hydroxyl group occur in the normal planar arrangement. The central carboxylate group C6–O15–O16 chelates to Na19, and the terminal carboxylate C5–O13–O14 chelates to Na21. The citrate chelates to Na20 through the hydroxyl group O17 and the terminal carboxylate C1–O11–O12, and to a second Na19 through the terminal carboxylate oxygen atom O14 and the central carboxylate oxygen atom O16. Na19 is five-coordinate (irregular) with a bond-valence sum of 1.08. Na20 is six-coordinate (distorted octahedral) with a bond-valence sum of 1.14. Na21 is five-coordinate (trigonal–bipyramidal) with a bond-valence sum of 1.01. The metal–oxygen bonding is ionic, based on the cation charges and Mulliken overlap populations.
of the title compound is shown in Fig. 13. Supramolecular features
There are two independent five-coordinate and one six-coordinate Na+ cations in the The [NaO5] and [NaO6] polyhedra share edges and corners to form a three-dimensional framework (Fig. 3). There are channels parallel to the a and b axes in which the remainder of the citrate anions reside. The only hydrogen bond is an intramolecular O17–H18⋯O14 one between the hydroxy group and one of the terminal carboxylate O atoms (Table 1). One intermolecular C—H⋯O hydrogen bond also apparently contributes to the crystal packing.
4. Database survey
Details of the comprehensive literature search for citrate structures are presented in Rammohan & Kaduk (2016a). A in the Cambridge Structural Database (Groom et al., 2016) search (increasing the default tolerance from 1.5 to 2.0%) yielded 19 hits, but limiting the chemistry to C, H, Na, and O only resulted in no hits. The powder pattern matched no entry in the Powder Diffraction File (ICDD, 2015).
5. Synthesis and crystallization
The sample was purchased from Sigma–Aldrich (lot #119K0107V) as anhydrous Na3(C6H5O7). A laboratory powder pattern confirmed its phase purity. In the one year between this measurement and the measurement of the synchrotron pattern, the sample had partially hydrated to contain Na3(C6H5O7)(H2O)2 (UMOGAE; Fischer & Palladino, 2003).
6. details
Both laboratory and synchrotron patterns could be indexed (DICVOL06; Louër & Boultif, 2007) on a primitive monoclinic cell having a = 7.34705 (5), b = 5.43481 (4), c = 11.03449 (7) Å, β = 103.8 (6)°, and V = 427.740 (5) Å3. The were consistent with P21 (No. 4). All attempts to solve the structure using and Monte Carlo simulated annealing (using a citrate and 3 Na) failed using this Using the synchrotron pattern was complicated by the presence of 12.8 (1) wt% Na3(C6H5O7)(H2O)2 (UMOGAE; Fischer & Palladino, 2003). Since the cell of the anhydrous compound is approximately ½a, ½b, c that of the C2/c cell of UMOGAE, unsuccessful attempts to solve the structure were also made in 2× and 4× supercells of the observed cell. The powder pattern (Fig. 4) was indexed using Jade 9.5 (MDI, 2012). Pseudo-Voigt profile coefficients were as parameterized in Thompson et al. (1987), and the asymmetry correction of Finger et al. (1994) was applied and microstrain broadening by Stephens (1999).
The structure was ultimately solved with FOX (Favre-Nicolin & Černý, 2002) using laboratory data from a single-phase dehydrated sample. A single Na3(C6H5O7) fragment was derived from UMOGAE, with Na bound to the hydroxyl group, the central carboxyl group, and one of the terminal carboxyl groups. Attempts were made using both bump-check and bond-valence restraints, but the ultimate solution came without applying these restraints. This model refined reasonably well, but the bond-valence sums of the Na atom were unreasonable. A Hartree–Fock geometry optimization was carried out using CRYSTAL09 (Dovesi et al., 2005), and the resulting model (which had Na bond-valence sums 2) led to a successful All C—C and C—O bond lengths were restrained, as were all bond angles. The hydrogen atoms were included at fixed positions, which were re-calculated using Materials Studio (Dassault Systemes, 2014) during the course of the The Uiso of C2, C3, and C4 were constrained to be equal, and those of H7, H8, H9, and H10 were constrained to be 1.3 × that of these carbon atoms. The Uiso of C1, C5, C6 and the oxygen atoms were constrained to be equal, and that of H18 was constrained to be 1.3 × this value. Crystal data, data collection and structure details are summarized in Table 2. The structure of the UMOGAE impurity was not refined.
The Bravais–Friedel–Donnay–Harker (Bravais, 1866; Friedel, 1907; Donnay & Harker, 1937) morphology suggests that we might expect platy morphology for trisodium citrate, with {001} as the principal faces. No texture model was necessary in the showing that was not significant for the rotated capillary specimen.
7. DFT calculations
After the CRYSTAL09 (Dovesi et al., 2005). The basis sets for the C, H, and O atoms were those of Gatti et al. (1994), and the basis set for Na was that of Dovesi et al. (1991). The calculation used 8 k-points and the B3LYP functional, and took about 42 h on a 2.8 GHz PC. The Uiso from the were assigned to the optimized fractional coordinates.
a density functional geometry optimization (fixed experimental unit cell) was carried out usingSupporting information
https://doi.org/10.1107/S2056989016007453/vn2111sup1.cif
contains datablocks NA3CITRATE_publ, Na3Citrate_DFT, NA3CITRATE_overall, Na3Citrate_phase_1, Na3Citrate_phase_2, NA3CITRATE_p_01. DOI:Supporting information file. DOI: https://doi.org/10.1107/S2056989016007453/vn2111Na3Citrate_phase_1sup2.cml
Na3(C6H5O7) | c = 11.03447 (7) Å |
Mr = 258.07 | β = 103.8797 (6)° |
Monoclinic, P21 | V = 427.74 (1) Å3 |
Hall symbol: P 2yb | Z = 2 |
a = 7.34705 (5) Å | T = 293 K |
b = 5.43482 (4) Å |
x | y | z | Uiso*/Ueq | ||
C1 | 0.5224 (5) | 0.38175 | 0.1958 (4) | 0.0157 (4)* | |
C2 | 0.6922 (5) | 0.3880 (11) | 0.3074 (3) | 0.0067 (9)* | |
C3 | 0.8567 (5) | 0.5386 (10) | 0.2868 (3) | 0.0067 (9)* | |
C4 | 1.0366 (5) | 0.4640 (10) | 0.3842 (4) | 0.0067 (9)* | |
C5 | 1.2023 (5) | 0.6347 (10) | 0.3794 (4) | 0.0157 (4)* | |
C6 | 0.8848 (6) | 0.4726 (10) | 0.1548 (4) | 0.0157 (4)* | |
H7 | 0.6428 | 0.46664 | 0.38548 | 0.0087 (11)* | |
H8 | 0.74029 | 0.20195 | 0.33589 | 0.0087 (11)* | |
H9 | 1.00831 | 0.48799 | 0.4767 | 0.0087 (11)* | |
H10 | 1.08026 | 0.28777 | 0.37225 | 0.0087 (11)* | |
O11 | 0.4714 (5) | 0.5729 (8) | 0.1317 (3) | 0.0157 (4)* | |
O12 | 0.4413 (5) | 0.1760 (8) | 0.1782 (3) | 0.0157 (4)* | |
O13 | 1.3623 (4) | 0.5618 (9) | 0.4457 (3) | 0.0157 (4)* | |
O14 | 1.1800 (4) | 0.8466 (10) | 0.3267 (3) | 0.0157 (4)* | |
O15 | 0.8895 (5) | 0.2494 (9) | 0.1281 (3) | 0.0157 (4)* | |
O16 | 0.9014 (5) | 0.6501 (10) | 0.0875 (3) | 0.0157 (4)* | |
O17 | 0.8078 (4) | 0.7917 (8) | 0.2931 (3) | 0.0157 (4)* | |
H18 | 0.92601 | 0.87924 | 0.29256 | 0.0205 (5)* | |
Na19 | −0.1355 (3) | −0.5364 (7) | −0.10917 (18) | 0.0232 (4)* | |
Na20 | −0.3462 (3) | −0.0710 (8) | 0.07677 (18) | 0.0232 (4)* | |
Na21 | 0.5075 (3) | −0.0927 (8) | 0.35877 (15) | 0.0232 (4)* |
C1—C2 | 1.529 (3) | O13—Na21i | 2.465 (4) |
C1—O11 | 1.262 (4) | O13—Na21iv | 2.299 (4) |
C1—O12 | 1.260 (4) | O14—C5 | 1.282 (4) |
C2—C1 | 1.529 (3) | O14—Na19v | 2.429 (3) |
C2—C3 | 1.521 (3) | O14—Na21i | 2.370 (3) |
C2—H7 | 1.098 (4) | O15—C6 | 1.251 (4) |
C2—H8 | 1.092 (6) | O15—Na19vi | 2.430 (4) |
C3—C2 | 1.521 (3) | O15—Na20iii | 2.425 (4) |
C3—C4 | 1.544 (3) | O16—C6 | 1.241 (4) |
C3—C6 | 1.560 (3) | O16—Na19i | 2.351 (3) |
C3—O17 | 1.427 (4) | O16—Na19v | 2.392 (4) |
C4—C3 | 1.544 (3) | O16—Na20i | 2.349 (4) |
C4—C5 | 1.542 (3) | O17—C3 | 1.427 (4) |
C4—H9 | 1.097 (4) | O17—H18 | 0.992 (3) |
C4—H10 | 1.029 (5) | O17—Na20i | 2.497 (4) |
C5—C4 | 1.542 (3) | O17—Na21vii | 2.561 (4) |
C5—O13 | 1.289 (4) | H18—O17 | 0.992 (3) |
C5—O14 | 1.282 (4) | Na19—O12viii | 2.478 (4) |
C6—C3 | 1.560 (3) | Na19—O14ix | 2.429 (3) |
C6—O15 | 1.251 (4) | Na19—O15x | 2.430 (4) |
C6—O16 | 1.241 (4) | Na19—O16xi | 2.351 (3) |
H7—C2 | 1.098 (4) | Na19—O16ix | 2.392 (4) |
H8—C2 | 1.092 (6) | Na20—O11xi | 2.509 (4) |
H9—C4 | 1.097 (4) | Na20—O11viii | 2.394 (4) |
H10—C4 | 1.029 (5) | Na20—O12xii | 2.516 (4) |
O11—C1 | 1.262 (4) | Na20—O15xii | 2.425 (4) |
O11—Na20i | 2.509 (4) | Na20—O16xi | 2.349 (4) |
O11—Na20ii | 2.394 (4) | Na20—O17xi | 2.497 (4) |
O12—C1 | 1.260 (4) | Na21—O12 | 2.424 (4) |
O12—Na19ii | 2.478 (4) | Na21—O13xi | 2.465 (4) |
O12—Na20iii | 2.516 (4) | Na21—O13xiii | 2.299 (4) |
O12—Na21 | 2.424 (4) | Na21—O14xi | 2.370 (3) |
O13—C5 | 1.289 (4) | Na21—O17xiv | 2.561 (4) |
C2—C1—O11 | 120.6 (4) | C6—O16—Na19i | 102.2 (3) |
C2—C1—O12 | 114.1 (4) | C6—O16—Na19v | 131.7 (3) |
O11—C1—O12 | 125.3 (4) | C6—O16—Na20i | 110.2 (3) |
C1—C2—C3 | 114.5 (3) | Na19i—O16—Na19v | 108.68 (13) |
C1—C2—H7 | 106.3 (3) | Na19i—O16—Na20i | 108.37 (18) |
C1—C2—H8 | 110.9 (4) | Na19v—O16—Na20i | 94.30 (16) |
C3—C2—H7 | 109.4 (4) | C3—O17—H18 | 103.4 (3) |
C3—C2—H8 | 109.1 (3) | C3—O17—Na20i | 107.7 (2) |
H7—C2—H8 | 106.2 (3) | C3—O17—Na21vii | 119.6 (3) |
C2—C3—C4 | 109.4 (3) | H18—O17—Na20i | 92.7 (2) |
C2—C3—C6 | 107.7 (3) | H18—O17—Na21vii | 134.4 (3) |
C2—C3—O17 | 107.0 (3) | Na20i—O17—Na21vii | 88.49 (12) |
C4—C3—C6 | 107.9 (3) | O12viii—Na19—O14ix | 85.47 (12) |
C4—C3—O17 | 113.8 (3) | O12viii—Na19—O15x | 108.30 (14) |
C6—C3—O17 | 111.0 (3) | O12viii—Na19—O16xi | 88.75 (14) |
C3—C4—C5 | 111.7 (3) | O12viii—Na19—O16ix | 160.03 (14) |
C3—C4—H9 | 107.2 (3) | O14ix—Na19—O15x | 90.50 (12) |
C3—C4—H10 | 113.4 (4) | O14ix—Na19—O16xi | 169.63 (18) |
C5—C4—H9 | 106.7 (4) | O14ix—Na19—O16ix | 80.52 (13) |
C5—C4—H10 | 106.4 (4) | O15x—Na19—O16xi | 83.13 (14) |
H9—C4—H10 | 111.4 (4) | O15x—Na19—O16ix | 86.11 (13) |
C4—C5—O13 | 114.6 (4) | O16xi—Na19—O16ix | 107.09 (11) |
C4—C5—O14 | 122.7 (4) | O11xi—Na20—O11viii | 112.30 (11) |
O13—C5—O14 | 122.2 (4) | O11xi—Na20—O12xii | 83.09 (12) |
C3—C6—O15 | 117.4 (4) | O11xi—Na20—O15xii | 152.88 (15) |
C3—C6—O16 | 115.7 (3) | O11xi—Na20—O16xi | 86.68 (13) |
O15—C6—O16 | 126.9 (4) | O11xi—Na20—O17xi | 71.61 (12) |
C2—H7—Na21vii | 117.5 (3) | O11viii—Na20—O12xii | 96.69 (13) |
C2—H8—Na21 | 117.30 (18) | O11viii—Na20—O15xii | 94.48 (13) |
C1—O11—Na20i | 131.8 (3) | O11viii—Na20—O16xi | 111.95 (14) |
C1—O11—Na20ii | 105.3 (3) | O11viii—Na20—O17xi | 175.68 (13) |
Na20i—O11—Na20ii | 97.15 (12) | O12xii—Na20—O15xii | 89.86 (13) |
C1—O12—Na19ii | 145.2 (3) | O12xii—Na20—O16xi | 151.35 (15) |
C1—O12—Na20iii | 102.8 (3) | O12xii—Na20—O17xi | 85.50 (13) |
C1—O12—Na21 | 114.5 (3) | O15xii—Na20—O16xi | 87.17 (12) |
Na19ii—O12—Na20iii | 103.21 (13) | O15xii—Na20—O17xi | 81.78 (12) |
Na19ii—O12—Na21 | 87.73 (12) | O16xi—Na20—O17xi | 65.87 (12) |
Na20iii—O12—Na21 | 91.19 (13) | O12—Na21—O13xi | 139.35 (12) |
C5—O13—Na21i | 88.0 (3) | O12—Na21—O13xiii | 120.53 (15) |
C5—O13—Na21iv | 139.7 (3) | O12—Na21—O14xi | 88.00 (12) |
Na21i—O13—Na21iv | 121.45 (13) | O12—Na21—O17xiv | 86.08 (13) |
C5—O14—Na19v | 130.9 (4) | O13xi—Na21—O13xiii | 91.98 (9) |
C5—O14—Na21i | 92.4 (2) | O13xi—Na21—O14xi | 55.47 (10) |
Na19v—O14—Na21i | 90.11 (11) | O13xi—Na21—O17xiv | 113.94 (16) |
C6—O15—Na19vi | 134.7 (4) | O13xiii—Na21—O14xi | 111.71 (13) |
C6—O15—Na20iii | 133.8 (4) | O13xiii—Na21—O17xiv | 99.35 (12) |
Na19vi—O15—Na20iii | 91.44 (12) | O14xi—Na21—O17xiv | 146.79 (15) |
Symmetry codes: (i) x+1, y+1, z; (ii) −x, y+1/2, −z; (iii) x+1, y, z; (iv) −x+2, y+1/2, −z+1; (v) −x+1, y+3/2, −z; (vi) −x+1, y+1/2, −z; (vii) x, y+1, z; (viii) −x, y−1/2, −z; (ix) −x+1, y−3/2, −z; (x) −x+1, y−1/2, −z; (xi) x−1, y−1, z; (xii) x−1, y, z; (xiii) −x+2, y−1/2, −z+1; (xiv) x, y−1, z. |
C6H5O7(H2O)2 | c = 11.2945 (8) Å |
Mr = 98.03 | β = 103.611 (4)° |
Monoclinic, C2/c | V = 2155.84 (12) Å3 |
a = 15.7057 (5) Å | Z = 2 |
b = 12.5045 (5) Å | T = 293 K |
x | y | z | Uiso*/Ueq | ||
C1 | 0.32032 | 0.26746 | −0.12039 | 0.025* | |
C2 | 0.40138 | 0.20513 | −0.13157 | 0.025* | |
H1 | 0.3843 | 0.132 | −0.1542 | 0.025* | |
H2 | 0.4238 | 0.236 | −0.1971 | 0.025* | |
C3 | 0.47454 | 0.20354 | −0.01659 | 0.025* | |
C4 | 0.54966 | 0.13205 | −0.03589 | 0.025* | |
H3 | 0.5241 | 0.0686 | −0.0795 | 0.025* | |
H4 | 0.5802 | 0.1701 | −0.0884 | 0.025* | |
C5 | 0.61747 | 0.09605 | 0.0773 | 0.025* | |
C6 | 0.5119 | 0.31612 | 0.01854 | 0.025* | |
Na1 | 0.39983 | 0.49615 | −0.10199 | 0.025* | |
Na2 | 0.38687 | 0.32751 | 0.17398 | 0.025* | |
Na3 | 0.31278 | 0.07827 | 0.12757 | 0.025* | |
O1 | 0.3292 | 0.34512 | −0.04739 | 0.025* | |
O2 | 0.24806 | 0.23955 | −0.18727 | 0.025* | |
O3 | 0.69001 | 0.06577 | 0.06113 | 0.025* | |
O4 | 0.59581 | 0.09256 | 0.17743 | 0.025* | |
O5 | 0.52668 | 0.37453 | −0.06565 | 0.025* | |
O6 | 0.52678 | 0.34375 | 0.12801 | 0.025* | |
O7 | 0.43809 | 0.16051 | 0.07907 | 0.025* | |
H5 | 0.4811 | 0.1391 | 0.13 | 0.025* | |
O8 | 0.35892 | 0.51957 | 0.1855 | 0.025* | |
H6 | 0.3903 | 0.5577 | 0.157 | 0.025* | |
H7 | 0.3062 | 0.534 | 0.153 | 0.025* | |
O9 | 0.23658 | −0.0877 | 0.13185 | 0.025* | |
H8 | 0.2578 | −0.105 | 0.0759 | 0.025* | |
H9 | 0.2422 | −0.1312 | 0.1864 | 0.025* |
C1—C2 | 1.5231 (1) | Na3—O2iii | 2.6193 (1) |
C1—O1 | 1.2602 (1) | Na3—O3v | 2.7829 (1) |
C1—O2 | 1.2557 (1) | Na3—O4iv | 2.3357 (2) |
C2—C1 | 1.5231 (1) | Na3—O7 | 2.3955 (1) |
C2—H1 | 0.9702 (1) | Na3—O9 | 2.4019 (1) |
C2—H2 | 0.9713 (1) | O1—C1 | 1.2602 (1) |
C2—C3 | 1.5182 (1) | O1—Na1 | 2.3451 (1) |
H1—C2 | 0.9702 (1) | O1—Na2 | 2.4606 (2) |
H1—H2 | 1.5660 (1) | O1—Na3iii | 2.4000 (1) |
H2—C2 | 0.9713 (1) | O2—C1 | 1.2557 (1) |
H2—H1 | 1.5660 (1) | O2—Na2iii | 2.3165 (1) |
C3—C2 | 1.5182 (1) | O2—Na3iii | 2.6193 (1) |
C3—C4 | 1.5361 (1) | O3—C5 | 1.2541 (1) |
C3—C6 | 1.5408 (1) | O3—Na3v | 2.7829 (1) |
C3—O7 | 1.4407 (1) | O4—C5 | 1.2561 (1) |
C4—C3 | 1.5361 (1) | O4—Na3iv | 2.3357 (2) |
C4—H3 | 0.9696 (1) | O5—C6 | 1.2631 (1) |
C4—H4 | 0.9706 (1) | O5—Na1 | 2.4628 (1) |
C4—C5 | 1.5266 (1) | O5—Na1i | 2.5502 (1) |
H3—C4 | 0.9696 (1) | O6—C6 | 1.2517 (1) |
H3—H4 | 1.5617 (1) | O6—Na1i | 2.3627 (1) |
H4—C4 | 0.9706 (1) | O6—Na2 | 2.3825 (1) |
H4—H3 | 1.5617 (1) | O6—Na2iv | 2.3355 (2) |
C5—C4 | 1.5266 (1) | O7—C3 | 1.4407 (1) |
C5—O3 | 1.2541 (1) | O7—Na2 | 2.5618 (1) |
C5—O4 | 1.2561 (1) | O7—Na3 | 2.3955 (1) |
C6—C3 | 1.5408 (1) | O7—H5 | 0.8222 (1) |
C6—O5 | 1.2631 (1) | H5—O7 | 0.8222 (1) |
C6—O6 | 1.2517 (1) | O8—Na1vi | 2.3423 (2) |
Na1—O1 | 2.3451 (1) | O8—Na2 | 2.4504 (1) |
Na1—O5 | 2.4628 (1) | O8—H6 | 0.8053 (1) |
Na1—O5i | 2.5502 (1) | O8—H7 | 0.8425 (1) |
Na1—O6i | 2.3627 (1) | H6—O8 | 0.8053 (1) |
Na1—O8ii | 2.3423 (2) | H7—O8 | 0.8425 (1) |
Na1—O9iii | 2.3821 (1) | O9—Na1iii | 2.3821 (1) |
Na2—O1 | 2.4606 (2) | O9—Na3 | 2.4019 (1) |
Na2—O2iii | 2.3165 (1) | O9—H8 | 0.8101 (1) |
Na2—O6 | 2.3825 (1) | O9—H9 | 0.8110 (1) |
Na2—O6iv | 2.3355 (2) | H8—O9 | 0.8101 (1) |
Na2—O7 | 2.5618 (1) | H8—H9 | 1.3671 (1) |
Na2—O8 | 2.4504 (1) | H9—O9 | 0.8110 (1) |
Na3—O1iii | 2.4000 (1) | ||
C2—C1—O1 | 118.855 (3) | O1vii—Na3—O3v | 97.099 (4) |
C2—C1—O2 | 117.557 (3) | O1vii—Na3—O4iv | 129.465 (3) |
O1—C1—O2 | 123.567 (2) | O1vii—Na3—O7 | 118.866 (3) |
C1—C2—H1 | 108.632 (2) | O1vii—Na3—O9 | 85.950 (3) |
C1—C2—H2 | 108.650 (3) | O1vii—Na3—H8 | 92.239 (3) |
C1—C2—C3 | 114.514 (3) | O2vii—Na3—O3v | 144.9968 (19) |
H1—C2—H2 | 107.529 (3) | O2vii—Na3—O4iv | 82.602 (2) |
H1—C2—C3 | 108.6447 (14) | O2vii—Na3—O7 | 93.131 (3) |
H2—C2—C3 | 108.656 (4) | O2vii—Na3—O9 | 122.184 (3) |
C2—C3—C4 | 109.767 (3) | O2vii—Na3—H8 | 137.676 (2) |
C2—C3—C6 | 111.9638 (16) | O3v—Na3—O4iv | 131.841 (3) |
C2—C3—O7 | 106.981 (4) | O3v—Na3—O7 | 88.191 (4) |
C4—C3—C6 | 108.035 (3) | O3v—Na3—O9 | 62.487 (3) |
C4—C3—O7 | 110.065 (3) | O3v—Na3—H8 | 43.6914 (19) |
C6—C3—O7 | 110.033 (3) | O4iv—Na3—O7 | 80.039 (4) |
C3—C4—H3 | 107.956 (3) | O4iv—Na3—O9 | 104.225 (2) |
C3—C4—H4 | 107.935 (3) | O4iv—Na3—H8 | 113.3843 (12) |
C3—C4—C5 | 117.421 (3) | O7—Na3—O9 | 144.6477 (4) |
H3—C4—H4 | 107.204 (4) | O7—Na3—H8 | 127.2020 (15) |
H3—C4—C5 | 107.936 (3) | O9—Na3—H8 | 19.0777 (12) |
H4—C4—C5 | 107.973 (3) | C1—O1—Na1 | 115.778 (4) |
C4—C5—O3 | 116.471 (4) | C1—O1—Na2 | 123.604 (3) |
C4—C5—O4 | 118.742 (4) | C1—O1—Na3vii | 96.360 (4) |
O3—C5—O4 | 124.644 (4) | Na1—O1—Na2 | 104.803 (3) |
C3—C6—Na1i | 171.7217 (3) | Na1—O1—Na3vii | 91.967 (2) |
C3—C6—O5 | 117.438 (3) | Na2—O1—Na3vii | 120.418 (4) |
C3—C6—O6 | 118.5445 (15) | C1—O2—Na2vii | 140.595 (3) |
O5—C6—O6 | 124.011 (3) | C1—O2—Na3vii | 86.344 (2) |
O1—Na1—O5 | 82.707 (3) | Na2vii—O2—Na3vii | 84.459 (2) |
O1—Na1—O5i | 118.350 (4) | C5—O3—Na3v | 117.119 (3) |
O1—Na1—O6i | 171.8454 (5) | C5—O4—Na3iv | 127.955 (4) |
O1—Na1—O8vi | 99.742 (3) | C6—O5—Na1 | 101.406 (3) |
O1—Na1—O9vii | 87.646 (3) | C6—O5—Na1i | 86.502 (4) |
O5—Na1—O5i | 93.485 (4) | Na1—O5—Na1i | 86.515 (4) |
O5—Na1—O6i | 98.324 (3) | C6—O6—Na1i | 95.403 (3) |
O5—Na1—O8vi | 97.759 (4) | C6—O6—Na2 | 102.965 (4) |
O5—Na1—O9vii | 170.2946 (2) | C6—O6—Na2iv | 148.568 (2) |
O5i—Na1—O6i | 53.577 (3) | Na1i—O6—Na2 | 126.9628 (11) |
O5i—Na1—O8vi | 141.360 (2) | Na1i—O6—Na2iv | 90.140 (2) |
O5i—Na1—O9vii | 92.018 (4) | Na2—O6—Na2iv | 98.130 (4) |
O6i—Na1—O8vi | 88.158 (3) | C3—O7—Na2 | 103.220 (3) |
O6i—Na1—O9vii | 91.377 (3) | C3—O7—Na3 | 145.553 (3) |
O8vi—Na1—O9vii | 82.794 (4) | C3—O7—H5 | 103.901 (4) |
O1—Na2—O2vii | 88.547 (4) | Na2—O7—Na3 | 84.172 (3) |
O1—Na2—O6 | 84.765 (4) | Na2—O7—H5 | 105.063 (3) |
O1—Na2—O6iv | 163.1753 (13) | Na3—O7—H5 | 106.510 (3) |
O1—Na2—O7 | 74.009 (3) | Na1viii—O8—Na2 | 87.8676 (11) |
O1—Na2—O8 | 86.4762 (11) | Na1viii—O8—H6 | 114.405 (3) |
O2vii—Na2—O6 | 161.7469 (8) | Na1viii—O8—H7 | 117.962 (4) |
O2vii—Na2—O6iv | 107.659 (4) | Na2—O8—H6 | 115.146 (2) |
O2vii—Na2—O7 | 96.556 (3) | Na2—O8—H7 | 110.9005 (7) |
O2vii—Na2—O8 | 99.9795 (16) | H6—O8—H7 | 109.281 (3) |
O6—Na2—O6iv | 81.011 (4) | Na1vii—O9—Na3 | 91.014 (3) |
O6—Na2—O7 | 65.276 (2) | Na1vii—O9—H8 | 122.635 (4) |
O6—Na2—O8 | 96.5444 (9) | Na1vii—O9—H9 | 111.307 (3) |
O6iv—Na2—O7 | 107.626 (2) | Na3—O9—H8 | 85.218 (2) |
O6iv—Na2—O8 | 86.2643 (9) | Na3—O9—H9 | 128.990 (3) |
O7—Na2—O8 | 154.0227 (14) | H8—O9—H9 | 114.980 (4) |
O1vii—Na3—O2vii | 52.202 (2) |
Symmetry codes: (i) −x+1, −y+1, −z; (ii) x, −y+1, z−1/2; (iii) −x−1/2, −y−1/2, −z; (iv) −x+1, y, −z+1/2; (v) −x+1, −y, −z; (vi) x, −y+1, z+1/2; (vii) −x+1/2, −y+1/2, −z; (viii) x, −y+1, z+3/2. |
Na3C6H5O7 | β = 103.8797° |
Mr = 258.07 | V = 427.72 Å3 |
Monoclinic, P21 | Z = 2 |
a = 7.3471 Å | None radiation, λ = 1.5418 Å |
b = 5.4348 Å | T = 300 K |
c = 11.0345 Å |
x | y | z | Uiso*/Ueq | ||
C1 | 0.52139 | 0.36379 | 0.19408 | 0.01570* | |
C2 | 0.68978 | 0.38591 | 0.30743 | 0.00670* | |
C3 | 0.85441 | 0.53721 | 0.28438 | 0.00670* | |
C4 | 1.03620 | 0.47678 | 0.38367 | 0.00670* | |
C5 | 1.20386 | 0.64379 | 0.38297 | 0.01570* | |
C6 | 0.88406 | 0.47193 | 0.15320 | 0.01570* | |
H7 | 0.64280 | 0.46663 | 0.38548 | 0.00870* | |
H8 | 0.74029 | 0.20195 | 0.33589 | 0.00870* | |
H9 | 1.00831 | 0.48799 | 0.47670 | 0.00870* | |
H10 | 1.08026 | 0.28777 | 0.37225 | 0.00870* | |
O11 | 0.47255 | 0.54929 | 0.12466 | 0.01570* | |
O12 | 0.44290 | 0.15314 | 0.17676 | 0.01570* | |
O13 | 1.36310 | 0.57603 | 0.44517 | 0.01570* | |
O14 | 1.17738 | 0.84623 | 0.32240 | 0.01570* | |
O15 | 0.88375 | 0.24614 | 0.12627 | 0.01570* | |
O16 | 0.90355 | 0.64680 | 0.08168 | 0.01570* | |
O17 | 0.80788 | 0.79240 | 0.29212 | 0.01570* | |
H18 | 0.92601 | 0.87924 | 0.29256 | 0.02050* | |
Na19 | −0.12326 | 0.46644 | −0.11139 | 0.02321* | |
Na20 | −0.35267 | −0.09861 | 0.07904 | 0.02321* | |
Na21 | 0.50371 | −0.08736 | 0.36215 | 0.02321* |
C1—C2 | 1.539 | C4—C5 | 1.532 |
C1—O11 | 1.265 | C4—H9 | 1.096 |
C1—O12 | 1.276 | C4—H10 | 1.093 |
C2—C3 | 1.533 | C5—O13 | 1.261 |
C2—H7 | 1.094 | C5—O14 | 1.278 |
C2—H8 | 1.086 | C6—O15 | 1.262 |
C3—C4 | 1.546 | C6—O16 | 1.265 |
C3—C6 | 1.556 | O17—H18 | 0.987 |
C3—O17 | 1.436 |
D—H···A | D—H | H···A | D···A | D—H···A |
O17—H18···O14 | 0.987 | 1.805 | 2.671 | 144.0 |
C2—H8···O17i | 1.086 | 2.356 | 3.355 | 152.2 |
Symmetry code: (i) x, y−1, z. |
References
Brandenburg, K. (2006). DIAMOND. Crystal Impact GbR, Bonn, Germany. Google Scholar
Bravais, A. (1866). In Études Cristallographiques. Paris: Gauthier Villars. Google Scholar
Bruker (2009). DIFFRAC. Bruker AXS Inc., Madison, Wisconsin, USA. Google Scholar
Dassault Systemes (2014). Materials Studio. BIOVIA, San Diego, CA, USA. Google Scholar
Donnay, J. D. H. & Harker, D. (1937). Am. Mineral. 22, 446–467. CAS Google Scholar
Dovesi, R., Orlando, R., Civalleri, B., Roetti, C., Saunders, V. R. & Zicovich-Wilson, C. M. (2005). Z. Kristallogr. 220, 571–573. Web of Science CrossRef CAS Google Scholar
Dovesi, R., Roetti, C., Freyria-Fava, C., Prencipe, M. & Saunders, V. R. (1991). Chem. Phys. 156, 11–19. CrossRef CAS Web of Science Google Scholar
Favre-Nicolin, V. & Černý, R. (2002). J. Appl. Cryst. 35, 734–743. Web of Science CrossRef CAS IUCr Journals Google Scholar
Finger, L. W., Cox, D. E. & Jephcoat, A. P. (1994). J. Appl. Cryst. 27, 892–900. CrossRef CAS Web of Science IUCr Journals Google Scholar
Fischer, A. & Palladino, G. (2003). Acta Cryst. E59, m1080–m1082. Web of Science CSD CrossRef IUCr Journals Google Scholar
Friedel, G. (1907). Bull. Soc. Fr. Mineral. 30, 326–455. Google Scholar
Gatti, C., Saunders, V. R. & Roetti, C. (1994). J. Chem. Phys. 101, 10686–10696. CrossRef CAS Web of Science Google Scholar
Groom, C. R., Bruno, I. J., Lightfoot, M. P. & Ward, S. C. (2016). Acta Cryst. B72, 171–179. Web of Science CSD CrossRef IUCr Journals Google Scholar
ICDD (2015). PDF-4+ 2015 and PDF-4 Organics 2016 (Databases), edited by Dr Soorya Kabekkodu. International Centre for Diffraction Data, Newtown Square PA, USA. Google Scholar
Kourkoumelis, N. (2013). Powder Diffr. 28, 137–48. Google Scholar
Larson, A. C. & Von Dreele, R. B. (2004). General Structure Analysis System, (GSAS). Report LAUR, 86–784 Los Alamos National Laboratory, New Mexico, USA. Google Scholar
Louër, D. & Boultif, A. (2007). Z. Kristallogr. Suppl. 2007, 191–196. Google Scholar
Macrae, C. F., Bruno, I. J., Chisholm, J. A., Edgington, P. R., McCabe, P., Pidcock, E., Rodriguez-Monge, L., Taylor, R., van de Streek, J. & Wood, P. A. (2008). J. Appl. Cryst. 41, 466–470. Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
MDI (2012). JADE. Materials Data Inc., Livermore, CA, USA. Google Scholar
Rammohan, A. & Kaduk, J. A. (2016a). Acta Cryst. B. Submitted. Google Scholar
Rammohan, A. & Kaduk, J. A. (2016b). Acta Cryst. E72, 170–173. Web of Science CSD CrossRef IUCr Journals Google Scholar
Rammohan, A. & Kaduk, J. A. (2016c). Acta Cryst. E72, 403–406. Web of Science CSD CrossRef IUCr Journals Google Scholar
Stephens, P. W. (1999). J. Appl. Cryst. 32, 281–289. Web of Science CrossRef CAS IUCr Journals Google Scholar
Streek, J. van de & Neumann, M. A. (2014). Acta Cryst. B70, 1020–1032. Web of Science CrossRef IUCr Journals Google Scholar
Thompson, P., Cox, D. E. & Hastings, J. B. (1987). J. Appl. Cryst. 20, 79–83. CrossRef CAS Web of Science IUCr Journals Google Scholar
Toby, B. H. (2001). J. Appl. Cryst. 34, 210–213. Web of Science CrossRef CAS IUCr Journals Google Scholar
Westrip, S. P. (2010). J. Appl. Cryst. 43, 920–925. Web of Science CrossRef CAS IUCr Journals Google Scholar
This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.