research communications\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Trisodium citrate, Na3(C6H5O7)

CROSSMARK_Color_square_no_text.svg

aAtlantic International University, Honolulu, HI, USA, and bIllinois Institute of Technology, Chicago, IL, USA
*Correspondence e-mail: kaduk@polycrystallography.com

Edited by A. Van der Lee, Université de Montpellier II, France (Received 2 May 2016; accepted 4 May 2016; online 10 May 2016)

The crystal structure of anhydrous tris­odium citrate, Na3(C6H5O7), has been solved and refined using synchrotron X-ray powder diffraction data, and optimized using density functional theory (DFT). There are two independent five-coordinate Na+ and one six-coordinate Na+ cations in the asymmetric unit. The [NaO5] and [NaO6] polyhedra share edges and corners to form a three-dimensional framework. There are channels parallel to the a and b axes in which the remainder of the citrate anions reside. The only hydrogen bonds are an intra­molecular one between the hy­droxy group and one of the terminal carboxyl­ate O atoms and an intermolecular one between a methylene group and the hydroxyl O atom.

1. Chemical context

In the course of a systematic study of the crystal structures of Group 1 (alkali metal) citrate salts to understand the anion's conformational flexibility, ionization, coordination tendencies, and hydrogen bonding, we have determined several new crystal structures. Most of the new structures were solved using powder diffraction data (laboratory and/or synchrotron), but single crystals were used where available. The general trends and conclusions about the 16 new compounds and 12 previously characterized structures are being reported separately (Rammohan & Kaduk, 2016a[Rammohan, A. & Kaduk, J. A. (2016a). Acta Cryst. B. Submitted.]). Two of the new structures containing multiple Group 1 cations) – NaKHC6H5O7 and NaK2C6H5O7 – have been published recently (Rammohan & Kaduk, 2016b[Rammohan, A. & Kaduk, J. A. (2016b). Acta Cryst. E72, 170-173.],c[Rammohan, A. & Kaduk, J. A. (2016c). Acta Cryst. E72, 403-406.]).

[Scheme 1]

2. Structural commentary

The asymmetric unit of the title compound is shown in Fig. 1[link]. The root-mean-square deviation of the non-hydrogen atoms in the Rietveld refined and the optimized structure using density functional theory (DFT) is only 0.057 Å. The maximum deviation is 0.103 Å, at Na19. The excellent agreement between the two structures (Fig. 2[link]) is strong evidence that the experimental structure is correct (van de Streek & Neumann, 2014[Streek, J. van de & Neumann, M. A. (2014). Acta Cryst. B70, 1020-1032.]). This discussion uses the DFT-optimized structure. All of the bond lengths, bond angles, and torsion angles fall within the normal ranges indicated by a Mercury Mogul geometry check (Macrae et al., 2008[Macrae, C. F., Bruno, I. J., Chisholm, J. A., Edgington, P. R., McCabe, P., Pidcock, E., Rodriguez-Monge, L., Taylor, R., van de Streek, J. & Wood, P. A. (2008). J. Appl. Cryst. 41, 466-470.]). The hydroxyl group bridges atoms Na20 and Na21. The citrate anion occurs in the trans,trans-conformation (about C2—C3 and C3—C4), which is one of the two low-energy conformations of an isolated citrate. The central carboxyl­ate group and the hydroxyl group occur in the normal planar arrangement. The central carboxyl­ate group C6–O15–O16 chelates to Na19, and the terminal carboxyl­ate C5–O13–O14 chelates to Na21. The citrate chelates to Na20 through the hydroxyl group O17 and the terminal carboxyl­ate C1–O11–O12, and to a second Na19 through the terminal carboxyl­ate oxygen atom O14 and the central carboxyl­ate oxygen atom O16. Na19 is five-coordinate (irregular) with a bond-valence sum of 1.08. Na20 is six-coordinate (distorted octa­hedral) with a bond-valence sum of 1.14. Na21 is five-coordinate (trigonal–bipyramidal) with a bond-valence sum of 1.01. The metal–oxygen bonding is ionic, based on the cation charges and Mulliken overlap populations.

[Figure 1]
Figure 1
The asymmetric unit, showing the atom numbering. The atoms are represented by 50% probability spheroids.
[Figure 2]
Figure 2
Comparison of the refined and optimized structures of tris­odium citrate. The refined structure is in red, and the DFT-optimized structure is in blue.

3. Supra­molecular features

There are two independent five-coordinate and one six-coordinate Na+ cations in the asymmetric unit. The [NaO5] and [NaO6] polyhedra share edges and corners to form a three-dimensional framework (Fig. 3[link]). There are channels parallel to the a and b axes in which the remainder of the citrate anions reside. The only hydrogen bond is an intra­molecular O17–H18⋯O14 one between the hy­droxy group and one of the terminal carboxyl­ate O atoms (Table 1[link]). One inter­molecular C—H⋯O hydrogen bond also apparently contributes to the crystal packing.

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
O17—H18⋯O14 0.987 1.805 2.671 144.0
C2—H8⋯O17i 1.086 2.356 3.355 152.2
Symmetry code: (i) x, y-1, z.
[Figure 3]
Figure 3
Crystal structure of Na3(C6H5O7), viewed down the b axis.

4. Database survey

Details of the comprehensive literature search for citrate structures are presented in Rammohan & Kaduk (2016a[Rammohan, A. & Kaduk, J. A. (2016a). Acta Cryst. B. Submitted.]). A reduced cell in the Cambridge Structural Database (Groom et al., 2016[Groom, C. R., Bruno, I. J., Lightfoot, M. P. & Ward, S. C. (2016). Acta Cryst. B72, 171-179.]) search (increasing the default tolerance from 1.5 to 2.0%) yielded 19 hits, but limiting the chemistry to C, H, Na, and O only resulted in no hits. The powder pattern matched no entry in the Powder Diffraction File (ICDD, 2015[ICDD (2015). PDF-4+ 2015 and PDF-4 Organics 2016 (Databases), edited by Dr Soorya Kabekkodu. International Centre for Diffraction Data, Newtown Square PA, USA.]).

5. Synthesis and crystallization

The sample was purchased from Sigma–Aldrich (lot #119K0107V) as anhydrous Na3(C6H5O7). A laboratory powder pattern confirmed its phase purity. In the one year between this measurement and the measurement of the synchrotron pattern, the sample had partially hydrated to contain Na3(C6H5O7)(H2O)2 (UMOGAE; Fischer & Palladino, 2003[Fischer, A. & Palladino, G. (2003). Acta Cryst. E59, m1080-m1082.]).

6. Refinement details

Both laboratory and synchrotron patterns could be indexed (DICVOL06; Louër & Boultif, 2007[Louër, D. & Boultif, A. (2007). Z. Kristallogr. Suppl. 2007, 191-196.]) on a primitive monoclinic cell having a = 7.34705 (5), b = 5.43481 (4), c = 11.03449 (7) Å, β = 103.8 (6)°, and V = 427.740 (5) Å3. The systematic absences were consistent with space group P21 (No. 4). All attempts to solve the structure using direct methods, charge flipping, and Monte Carlo simulated annealing (using a citrate and 3 Na) failed using this unit cell. Using the synchrotron pattern was complicated by the presence of 12.8 (1) wt% Na3(C6H5O7)(H2O)2 (UMOGAE; Fischer & Palladino, 2003[Fischer, A. & Palladino, G. (2003). Acta Cryst. E59, m1080-m1082.]). Since the cell of the anhydrous compound is approximately ½a, ½b, c that of the C2/c cell of UMOGAE, unsuccessful attempts to solve the structure were also made in 2× and 4× supercells of the observed cell. The powder pattern (Fig. 4[link]) was indexed using Jade 9.5 (MDI, 2012[MDI (2012). JADE. Materials Data Inc., Livermore, CA, USA.]). Pseudo-Voigt profile coefficients were as parameterized in Thompson et al. (1987[Thompson, P., Cox, D. E. & Hastings, J. B. (1987). J. Appl. Cryst. 20, 79-83.]), and the asymmetry correction of Finger et al. (1994[Finger, L. W., Cox, D. E. & Jephcoat, A. P. (1994). J. Appl. Cryst. 27, 892-900.]) was applied and microstrain broadening by Stephens (1999[Stephens, P. W. (1999). J. Appl. Cryst. 32, 281-289.]).

[Figure 4]
Figure 4
Rietveld plot for the refinement of Na3(C6H5O7). The red crosses represent the observed data points, and the green line is the calculated pattern. The magenta curve is the difference pattern, plotted at the same scale as the other patterns. The vertical scale has been multiplied by a factor of 5 for 2θ > 12.8°. The lower row of black tick marks indicates the reflection positions for the major phase and the upper row of red tick marks is for the dihydrate impurity.

The structure was ultimately solved with FOX (Favre-Nicolin & Černý, 2002[Favre-Nicolin, V. & Černý, R. (2002). J. Appl. Cryst. 35, 734-743.]) using laboratory data from a single-phase dehydrated sample. A single Na3(C6H5O7) fragment was derived from UMOGAE, with Na bound to the hydroxyl group, the central carboxyl group, and one of the terminal carboxyl groups. Attempts were made using both bump-check and bond-valence restraints, but the ultimate solution came without applying these restraints. This model refined reasonably well, but the bond-valence sums of the Na atom were unreasonable. A Hartree–Fock geometry optimization was carried out using CRYSTAL09 (Dovesi et al., 2005[Dovesi, R., Orlando, R., Civalleri, B., Roetti, C., Saunders, V. R. & Zicovich-Wilson, C. M. (2005). Z. Kristallogr. 220, 571-573.]), and the resulting model (which had Na bond-valence sums 2) led to a successful refinement. All C—C and C—O bond lengths were restrained, as were all bond angles. The hydrogen atoms were included at fixed positions, which were re-calculated using Materials Studio (Dassault Systemes, 2014[Dassault Systemes (2014). Materials Studio. BIOVIA, San Diego, CA, USA.]) during the course of the refinement. The Uiso of C2, C3, and C4 were constrained to be equal, and those of H7, H8, H9, and H10 were constrained to be 1.3 × that of these carbon atoms. The Uiso of C1, C5, C6 and the oxygen atoms were constrained to be equal, and that of H18 was constrained to be 1.3 × this value. Crystal data, data collection and structure refinement details are summarized in Table 2[link]. The structure of the UMOGAE impurity was not refined.

Table 2
Experimental details

  Phase_1 Phase_2
Crystal data
Chemical formula Na3(C6H5O7) C6H5O7·2H2O
Mr 258.07 98.03
Crystal system, space group Monoclinic, P21 Monoclinic, C2/c
Temperature (K) 293 293
a, b, c (Å) 7.34705 (5), 5.43482 (4), 11.03447 (7) 15.7057 (5), 12.5045 (5), 11.2945 (8)
β (°) 103.8797 (6) 103.611 (4)
V3) 427.74 (1) 2155.84 (12)
Z 2 2
Radiation type Synchrotron, λ = 0.41307 Å Synchrotron, λ = 0.41307 Å
μ (mm−1) 0.02 0.02
Specimen shape, size (mm) Cylinder, 1.5 × 1.5 Cylinder, 1.5 × 1.5
 
Data collection
Diffractometer 11-BM APS 11-BM APS
Specimen mounting Kapton capillary Kapton capillary
Data collection mode Transmission Transmission
Scan method Step Step
2θ values (°) 2θmin = 0.5 2θmax = 50.0 2θstep = 0.001 2θmin = 0.5 2θmax = 50.0 2θstep = 0.001
 
Refinement
R factors and goodness of fit Rp = 0.059, Rwp = 0.073, Rexp = 0.062, R(F2) = 0.06382, χ2 = 1.416 Rp = 0.059, Rwp = 0.073, Rexp = 0.062, R(F2) = 0.06382, χ2 = 1.416
No. of parameters 73 73
No. of restraints 29 29
The same symmetry and lattice parameters were used for the DFT calculation. Computer programs: DIFFRAC (Bruker, 2009[Bruker (2009). DIFFRAC. Bruker AXS Inc., Madison, Wisconsin, USA.]), PowDLL (Kourkoumelis, 2013[Kourkoumelis, N. (2013). Powder Diffr. 28, 137-48.]), GSAS (Larson & Von Dreele, 2004[Larson, A. C. & Von Dreele, R. B. (2004). General Structure Analysis System, (GSAS). Report LAUR, 86-784 Los Alamos National Laboratory, New Mexico, USA.]), EXPGUI (Toby, 2001[Toby, B. H. (2001). J. Appl. Cryst. 34, 210-213.]), DIAMOND (Brandenburg, 2006[Brandenburg, K. (2006). DIAMOND. Crystal Impact GbR, Bonn, Germany.]) and publCIF (Westrip, 2010[Westrip, S. P. (2010). J. Appl. Cryst. 43, 920-925.]).

The Bravais–Friedel–Donnay–Harker (Bravais, 1866[Bravais, A. (1866). In Études Cristallographiques. Paris: Gauthier Villars.]; Friedel, 1907[Friedel, G. (1907). Bull. Soc. Fr. Mineral. 30, 326-455.]; Donnay & Harker, 1937[Donnay, J. D. H. & Harker, D. (1937). Am. Mineral. 22, 446-467.]) morphology suggests that we might expect platy morphology for tris­odium citrate, with {001} as the principal faces. No texture model was necessary in the refinement, showing that preferred orientation was not significant for the rotated capillary specimen.

7. DFT calculations

After the Rietveld refinement, a density functional geometry optimization (fixed experimental unit cell) was carried out using CRYSTAL09 (Dovesi et al., 2005[Dovesi, R., Orlando, R., Civalleri, B., Roetti, C., Saunders, V. R. & Zicovich-Wilson, C. M. (2005). Z. Kristallogr. 220, 571-573.]). The basis sets for the C, H, and O atoms were those of Gatti et al. (1994[Gatti, C., Saunders, V. R. & Roetti, C. (1994). J. Chem. Phys. 101, 10686-10696.]), and the basis set for Na was that of Dovesi et al. (1991[Dovesi, R., Roetti, C., Freyria-Fava, C., Prencipe, M. & Saunders, V. R. (1991). Chem. Phys. 156, 11-19.]). The calculation used 8 k-points and the B3LYP functional, and took about 42 h on a 2.8 GHz PC. The Uiso from the Rietveld refinement were assigned to the optimized fractional coordinates.

Supporting information


Computing details top

(Na3Citrate_phase_1) Trisodium citrate top
Crystal data top
Na3(C6H5O7)c = 11.03447 (7) Å
Mr = 258.07β = 103.8797 (6)°
Monoclinic, P21V = 427.74 (1) Å3
Hall symbol: P 2ybZ = 2
a = 7.34705 (5) ÅT = 293 K
b = 5.43482 (4) Å
Data collection top
2θmin = 0.5°, 2θmax = 50.0°, 2θstep = 0.001°
Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
C10.5224 (5)0.381750.1958 (4)0.0157 (4)*
C20.6922 (5)0.3880 (11)0.3074 (3)0.0067 (9)*
C30.8567 (5)0.5386 (10)0.2868 (3)0.0067 (9)*
C41.0366 (5)0.4640 (10)0.3842 (4)0.0067 (9)*
C51.2023 (5)0.6347 (10)0.3794 (4)0.0157 (4)*
C60.8848 (6)0.4726 (10)0.1548 (4)0.0157 (4)*
H70.64280.466640.385480.0087 (11)*
H80.740290.201950.335890.0087 (11)*
H91.008310.487990.47670.0087 (11)*
H101.080260.287770.372250.0087 (11)*
O110.4714 (5)0.5729 (8)0.1317 (3)0.0157 (4)*
O120.4413 (5)0.1760 (8)0.1782 (3)0.0157 (4)*
O131.3623 (4)0.5618 (9)0.4457 (3)0.0157 (4)*
O141.1800 (4)0.8466 (10)0.3267 (3)0.0157 (4)*
O150.8895 (5)0.2494 (9)0.1281 (3)0.0157 (4)*
O160.9014 (5)0.6501 (10)0.0875 (3)0.0157 (4)*
O170.8078 (4)0.7917 (8)0.2931 (3)0.0157 (4)*
H180.926010.879240.292560.0205 (5)*
Na190.1355 (3)0.5364 (7)0.10917 (18)0.0232 (4)*
Na200.3462 (3)0.0710 (8)0.07677 (18)0.0232 (4)*
Na210.5075 (3)0.0927 (8)0.35877 (15)0.0232 (4)*
Geometric parameters (Å, º) top
C1—C21.529 (3)O13—Na21i2.465 (4)
C1—O111.262 (4)O13—Na21iv2.299 (4)
C1—O121.260 (4)O14—C51.282 (4)
C2—C11.529 (3)O14—Na19v2.429 (3)
C2—C31.521 (3)O14—Na21i2.370 (3)
C2—H71.098 (4)O15—C61.251 (4)
C2—H81.092 (6)O15—Na19vi2.430 (4)
C3—C21.521 (3)O15—Na20iii2.425 (4)
C3—C41.544 (3)O16—C61.241 (4)
C3—C61.560 (3)O16—Na19i2.351 (3)
C3—O171.427 (4)O16—Na19v2.392 (4)
C4—C31.544 (3)O16—Na20i2.349 (4)
C4—C51.542 (3)O17—C31.427 (4)
C4—H91.097 (4)O17—H180.992 (3)
C4—H101.029 (5)O17—Na20i2.497 (4)
C5—C41.542 (3)O17—Na21vii2.561 (4)
C5—O131.289 (4)H18—O170.992 (3)
C5—O141.282 (4)Na19—O12viii2.478 (4)
C6—C31.560 (3)Na19—O14ix2.429 (3)
C6—O151.251 (4)Na19—O15x2.430 (4)
C6—O161.241 (4)Na19—O16xi2.351 (3)
H7—C21.098 (4)Na19—O16ix2.392 (4)
H8—C21.092 (6)Na20—O11xi2.509 (4)
H9—C41.097 (4)Na20—O11viii2.394 (4)
H10—C41.029 (5)Na20—O12xii2.516 (4)
O11—C11.262 (4)Na20—O15xii2.425 (4)
O11—Na20i2.509 (4)Na20—O16xi2.349 (4)
O11—Na20ii2.394 (4)Na20—O17xi2.497 (4)
O12—C11.260 (4)Na21—O122.424 (4)
O12—Na19ii2.478 (4)Na21—O13xi2.465 (4)
O12—Na20iii2.516 (4)Na21—O13xiii2.299 (4)
O12—Na212.424 (4)Na21—O14xi2.370 (3)
O13—C51.289 (4)Na21—O17xiv2.561 (4)
C2—C1—O11120.6 (4)C6—O16—Na19i102.2 (3)
C2—C1—O12114.1 (4)C6—O16—Na19v131.7 (3)
O11—C1—O12125.3 (4)C6—O16—Na20i110.2 (3)
C1—C2—C3114.5 (3)Na19i—O16—Na19v108.68 (13)
C1—C2—H7106.3 (3)Na19i—O16—Na20i108.37 (18)
C1—C2—H8110.9 (4)Na19v—O16—Na20i94.30 (16)
C3—C2—H7109.4 (4)C3—O17—H18103.4 (3)
C3—C2—H8109.1 (3)C3—O17—Na20i107.7 (2)
H7—C2—H8106.2 (3)C3—O17—Na21vii119.6 (3)
C2—C3—C4109.4 (3)H18—O17—Na20i92.7 (2)
C2—C3—C6107.7 (3)H18—O17—Na21vii134.4 (3)
C2—C3—O17107.0 (3)Na20i—O17—Na21vii88.49 (12)
C4—C3—C6107.9 (3)O12viii—Na19—O14ix85.47 (12)
C4—C3—O17113.8 (3)O12viii—Na19—O15x108.30 (14)
C6—C3—O17111.0 (3)O12viii—Na19—O16xi88.75 (14)
C3—C4—C5111.7 (3)O12viii—Na19—O16ix160.03 (14)
C3—C4—H9107.2 (3)O14ix—Na19—O15x90.50 (12)
C3—C4—H10113.4 (4)O14ix—Na19—O16xi169.63 (18)
C5—C4—H9106.7 (4)O14ix—Na19—O16ix80.52 (13)
C5—C4—H10106.4 (4)O15x—Na19—O16xi83.13 (14)
H9—C4—H10111.4 (4)O15x—Na19—O16ix86.11 (13)
C4—C5—O13114.6 (4)O16xi—Na19—O16ix107.09 (11)
C4—C5—O14122.7 (4)O11xi—Na20—O11viii112.30 (11)
O13—C5—O14122.2 (4)O11xi—Na20—O12xii83.09 (12)
C3—C6—O15117.4 (4)O11xi—Na20—O15xii152.88 (15)
C3—C6—O16115.7 (3)O11xi—Na20—O16xi86.68 (13)
O15—C6—O16126.9 (4)O11xi—Na20—O17xi71.61 (12)
C2—H7—Na21vii117.5 (3)O11viii—Na20—O12xii96.69 (13)
C2—H8—Na21117.30 (18)O11viii—Na20—O15xii94.48 (13)
C1—O11—Na20i131.8 (3)O11viii—Na20—O16xi111.95 (14)
C1—O11—Na20ii105.3 (3)O11viii—Na20—O17xi175.68 (13)
Na20i—O11—Na20ii97.15 (12)O12xii—Na20—O15xii89.86 (13)
C1—O12—Na19ii145.2 (3)O12xii—Na20—O16xi151.35 (15)
C1—O12—Na20iii102.8 (3)O12xii—Na20—O17xi85.50 (13)
C1—O12—Na21114.5 (3)O15xii—Na20—O16xi87.17 (12)
Na19ii—O12—Na20iii103.21 (13)O15xii—Na20—O17xi81.78 (12)
Na19ii—O12—Na2187.73 (12)O16xi—Na20—O17xi65.87 (12)
Na20iii—O12—Na2191.19 (13)O12—Na21—O13xi139.35 (12)
C5—O13—Na21i88.0 (3)O12—Na21—O13xiii120.53 (15)
C5—O13—Na21iv139.7 (3)O12—Na21—O14xi88.00 (12)
Na21i—O13—Na21iv121.45 (13)O12—Na21—O17xiv86.08 (13)
C5—O14—Na19v130.9 (4)O13xi—Na21—O13xiii91.98 (9)
C5—O14—Na21i92.4 (2)O13xi—Na21—O14xi55.47 (10)
Na19v—O14—Na21i90.11 (11)O13xi—Na21—O17xiv113.94 (16)
C6—O15—Na19vi134.7 (4)O13xiii—Na21—O14xi111.71 (13)
C6—O15—Na20iii133.8 (4)O13xiii—Na21—O17xiv99.35 (12)
Na19vi—O15—Na20iii91.44 (12)O14xi—Na21—O17xiv146.79 (15)
Symmetry codes: (i) x+1, y+1, z; (ii) x, y+1/2, z; (iii) x+1, y, z; (iv) x+2, y+1/2, z+1; (v) x+1, y+3/2, z; (vi) x+1, y+1/2, z; (vii) x, y+1, z; (viii) x, y1/2, z; (ix) x+1, y3/2, z; (x) x+1, y1/2, z; (xi) x1, y1, z; (xii) x1, y, z; (xiii) x+2, y1/2, z+1; (xiv) x, y1, z.
(Na3Citrate_phase_2) top
Crystal data top
C6H5O7(H2O)2c = 11.2945 (8) Å
Mr = 98.03β = 103.611 (4)°
Monoclinic, C2/cV = 2155.84 (12) Å3
a = 15.7057 (5) ÅZ = 2
b = 12.5045 (5) ÅT = 293 K
Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
C10.320320.267460.120390.025*
C20.401380.205130.131570.025*
H10.38430.1320.15420.025*
H20.42380.2360.19710.025*
C30.474540.203540.016590.025*
C40.549660.132050.035890.025*
H30.52410.06860.07950.025*
H40.58020.17010.08840.025*
C50.617470.096050.07730.025*
C60.51190.316120.018540.025*
Na10.399830.496150.101990.025*
Na20.386870.327510.173980.025*
Na30.312780.078270.127570.025*
O10.32920.345120.047390.025*
O20.248060.239550.187270.025*
O30.690010.065770.061130.025*
O40.595810.092560.177430.025*
O50.526680.374530.065650.025*
O60.526780.343750.128010.025*
O70.438090.160510.079070.025*
H50.48110.13910.130.025*
O80.358920.519570.18550.025*
H60.39030.55770.1570.025*
H70.30620.5340.1530.025*
O90.236580.08770.131850.025*
H80.25780.1050.07590.025*
H90.24220.13120.18640.025*
Geometric parameters (Å, º) top
C1—C21.5231 (1)Na3—O2iii2.6193 (1)
C1—O11.2602 (1)Na3—O3v2.7829 (1)
C1—O21.2557 (1)Na3—O4iv2.3357 (2)
C2—C11.5231 (1)Na3—O72.3955 (1)
C2—H10.9702 (1)Na3—O92.4019 (1)
C2—H20.9713 (1)O1—C11.2602 (1)
C2—C31.5182 (1)O1—Na12.3451 (1)
H1—C20.9702 (1)O1—Na22.4606 (2)
H1—H21.5660 (1)O1—Na3iii2.4000 (1)
H2—C20.9713 (1)O2—C11.2557 (1)
H2—H11.5660 (1)O2—Na2iii2.3165 (1)
C3—C21.5182 (1)O2—Na3iii2.6193 (1)
C3—C41.5361 (1)O3—C51.2541 (1)
C3—C61.5408 (1)O3—Na3v2.7829 (1)
C3—O71.4407 (1)O4—C51.2561 (1)
C4—C31.5361 (1)O4—Na3iv2.3357 (2)
C4—H30.9696 (1)O5—C61.2631 (1)
C4—H40.9706 (1)O5—Na12.4628 (1)
C4—C51.5266 (1)O5—Na1i2.5502 (1)
H3—C40.9696 (1)O6—C61.2517 (1)
H3—H41.5617 (1)O6—Na1i2.3627 (1)
H4—C40.9706 (1)O6—Na22.3825 (1)
H4—H31.5617 (1)O6—Na2iv2.3355 (2)
C5—C41.5266 (1)O7—C31.4407 (1)
C5—O31.2541 (1)O7—Na22.5618 (1)
C5—O41.2561 (1)O7—Na32.3955 (1)
C6—C31.5408 (1)O7—H50.8222 (1)
C6—O51.2631 (1)H5—O70.8222 (1)
C6—O61.2517 (1)O8—Na1vi2.3423 (2)
Na1—O12.3451 (1)O8—Na22.4504 (1)
Na1—O52.4628 (1)O8—H60.8053 (1)
Na1—O5i2.5502 (1)O8—H70.8425 (1)
Na1—O6i2.3627 (1)H6—O80.8053 (1)
Na1—O8ii2.3423 (2)H7—O80.8425 (1)
Na1—O9iii2.3821 (1)O9—Na1iii2.3821 (1)
Na2—O12.4606 (2)O9—Na32.4019 (1)
Na2—O2iii2.3165 (1)O9—H80.8101 (1)
Na2—O62.3825 (1)O9—H90.8110 (1)
Na2—O6iv2.3355 (2)H8—O90.8101 (1)
Na2—O72.5618 (1)H8—H91.3671 (1)
Na2—O82.4504 (1)H9—O90.8110 (1)
Na3—O1iii2.4000 (1)
C2—C1—O1118.855 (3)O1vii—Na3—O3v97.099 (4)
C2—C1—O2117.557 (3)O1vii—Na3—O4iv129.465 (3)
O1—C1—O2123.567 (2)O1vii—Na3—O7118.866 (3)
C1—C2—H1108.632 (2)O1vii—Na3—O985.950 (3)
C1—C2—H2108.650 (3)O1vii—Na3—H892.239 (3)
C1—C2—C3114.514 (3)O2vii—Na3—O3v144.9968 (19)
H1—C2—H2107.529 (3)O2vii—Na3—O4iv82.602 (2)
H1—C2—C3108.6447 (14)O2vii—Na3—O793.131 (3)
H2—C2—C3108.656 (4)O2vii—Na3—O9122.184 (3)
C2—C3—C4109.767 (3)O2vii—Na3—H8137.676 (2)
C2—C3—C6111.9638 (16)O3v—Na3—O4iv131.841 (3)
C2—C3—O7106.981 (4)O3v—Na3—O788.191 (4)
C4—C3—C6108.035 (3)O3v—Na3—O962.487 (3)
C4—C3—O7110.065 (3)O3v—Na3—H843.6914 (19)
C6—C3—O7110.033 (3)O4iv—Na3—O780.039 (4)
C3—C4—H3107.956 (3)O4iv—Na3—O9104.225 (2)
C3—C4—H4107.935 (3)O4iv—Na3—H8113.3843 (12)
C3—C4—C5117.421 (3)O7—Na3—O9144.6477 (4)
H3—C4—H4107.204 (4)O7—Na3—H8127.2020 (15)
H3—C4—C5107.936 (3)O9—Na3—H819.0777 (12)
H4—C4—C5107.973 (3)C1—O1—Na1115.778 (4)
C4—C5—O3116.471 (4)C1—O1—Na2123.604 (3)
C4—C5—O4118.742 (4)C1—O1—Na3vii96.360 (4)
O3—C5—O4124.644 (4)Na1—O1—Na2104.803 (3)
C3—C6—Na1i171.7217 (3)Na1—O1—Na3vii91.967 (2)
C3—C6—O5117.438 (3)Na2—O1—Na3vii120.418 (4)
C3—C6—O6118.5445 (15)C1—O2—Na2vii140.595 (3)
O5—C6—O6124.011 (3)C1—O2—Na3vii86.344 (2)
O1—Na1—O582.707 (3)Na2vii—O2—Na3vii84.459 (2)
O1—Na1—O5i118.350 (4)C5—O3—Na3v117.119 (3)
O1—Na1—O6i171.8454 (5)C5—O4—Na3iv127.955 (4)
O1—Na1—O8vi99.742 (3)C6—O5—Na1101.406 (3)
O1—Na1—O9vii87.646 (3)C6—O5—Na1i86.502 (4)
O5—Na1—O5i93.485 (4)Na1—O5—Na1i86.515 (4)
O5—Na1—O6i98.324 (3)C6—O6—Na1i95.403 (3)
O5—Na1—O8vi97.759 (4)C6—O6—Na2102.965 (4)
O5—Na1—O9vii170.2946 (2)C6—O6—Na2iv148.568 (2)
O5i—Na1—O6i53.577 (3)Na1i—O6—Na2126.9628 (11)
O5i—Na1—O8vi141.360 (2)Na1i—O6—Na2iv90.140 (2)
O5i—Na1—O9vii92.018 (4)Na2—O6—Na2iv98.130 (4)
O6i—Na1—O8vi88.158 (3)C3—O7—Na2103.220 (3)
O6i—Na1—O9vii91.377 (3)C3—O7—Na3145.553 (3)
O8vi—Na1—O9vii82.794 (4)C3—O7—H5103.901 (4)
O1—Na2—O2vii88.547 (4)Na2—O7—Na384.172 (3)
O1—Na2—O684.765 (4)Na2—O7—H5105.063 (3)
O1—Na2—O6iv163.1753 (13)Na3—O7—H5106.510 (3)
O1—Na2—O774.009 (3)Na1viii—O8—Na287.8676 (11)
O1—Na2—O886.4762 (11)Na1viii—O8—H6114.405 (3)
O2vii—Na2—O6161.7469 (8)Na1viii—O8—H7117.962 (4)
O2vii—Na2—O6iv107.659 (4)Na2—O8—H6115.146 (2)
O2vii—Na2—O796.556 (3)Na2—O8—H7110.9005 (7)
O2vii—Na2—O899.9795 (16)H6—O8—H7109.281 (3)
O6—Na2—O6iv81.011 (4)Na1vii—O9—Na391.014 (3)
O6—Na2—O765.276 (2)Na1vii—O9—H8122.635 (4)
O6—Na2—O896.5444 (9)Na1vii—O9—H9111.307 (3)
O6iv—Na2—O7107.626 (2)Na3—O9—H885.218 (2)
O6iv—Na2—O886.2643 (9)Na3—O9—H9128.990 (3)
O7—Na2—O8154.0227 (14)H8—O9—H9114.980 (4)
O1vii—Na3—O2vii52.202 (2)
Symmetry codes: (i) x+1, y+1, z; (ii) x, y+1, z1/2; (iii) x1/2, y1/2, z; (iv) x+1, y, z+1/2; (v) x+1, y, z; (vi) x, y+1, z+1/2; (vii) x+1/2, y+1/2, z; (viii) x, y+1, z+3/2.
(Na3Citrate_DFT) top
Crystal data top
Na3C6H5O7β = 103.8797°
Mr = 258.07V = 427.72 Å3
Monoclinic, P21Z = 2
a = 7.3471 ÅNone radiation, λ = 1.5418 Å
b = 5.4348 ÅT = 300 K
c = 11.0345 Å
Data collection top
Density functional calculationk =
h = l =
Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
C10.521390.363790.194080.01570*
C20.689780.385910.307430.00670*
C30.854410.537210.284380.00670*
C41.036200.476780.383670.00670*
C51.203860.643790.382970.01570*
C60.884060.471930.153200.01570*
H70.642800.466630.385480.00870*
H80.740290.201950.335890.00870*
H91.008310.487990.476700.00870*
H101.080260.287770.372250.00870*
O110.472550.549290.124660.01570*
O120.442900.153140.176760.01570*
O131.363100.576030.445170.01570*
O141.177380.846230.322400.01570*
O150.883750.246140.126270.01570*
O160.903550.646800.081680.01570*
O170.807880.792400.292120.01570*
H180.926010.879240.292560.02050*
Na190.123260.466440.111390.02321*
Na200.352670.098610.079040.02321*
Na210.503710.087360.362150.02321*
Bond lengths (Å) top
C1—C21.539C4—C51.532
C1—O111.265C4—H91.096
C1—O121.276C4—H101.093
C2—C31.533C5—O131.261
C2—H71.094C5—O141.278
C2—H81.086C6—O151.262
C3—C41.546C6—O161.265
C3—C61.556O17—H180.987
C3—O171.436
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O17—H18···O140.9871.8052.671144.0
C2—H8···O17i1.0862.3563.355152.2
Symmetry code: (i) x, y1, z.
 

References

First citationBrandenburg, K. (2006). DIAMOND. Crystal Impact GbR, Bonn, Germany.  Google Scholar
First citationBravais, A. (1866). In Études Cristallographiques. Paris: Gauthier Villars.  Google Scholar
First citationBruker (2009). DIFFRAC. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationDassault Systemes (2014). Materials Studio. BIOVIA, San Diego, CA, USA.  Google Scholar
First citationDonnay, J. D. H. & Harker, D. (1937). Am. Mineral. 22, 446–467.  CAS Google Scholar
First citationDovesi, R., Orlando, R., Civalleri, B., Roetti, C., Saunders, V. R. & Zicovich-Wilson, C. M. (2005). Z. Kristallogr. 220, 571–573.  Web of Science CrossRef CAS Google Scholar
First citationDovesi, R., Roetti, C., Freyria-Fava, C., Prencipe, M. & Saunders, V. R. (1991). Chem. Phys. 156, 11–19.  CrossRef CAS Web of Science Google Scholar
First citationFavre-Nicolin, V. & Černý, R. (2002). J. Appl. Cryst. 35, 734–743.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationFinger, L. W., Cox, D. E. & Jephcoat, A. P. (1994). J. Appl. Cryst. 27, 892–900.  CrossRef CAS Web of Science IUCr Journals Google Scholar
First citationFischer, A. & Palladino, G. (2003). Acta Cryst. E59, m1080–m1082.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationFriedel, G. (1907). Bull. Soc. Fr. Mineral. 30, 326–455.  Google Scholar
First citationGatti, C., Saunders, V. R. & Roetti, C. (1994). J. Chem. Phys. 101, 10686–10696.  CrossRef CAS Web of Science Google Scholar
First citationGroom, C. R., Bruno, I. J., Lightfoot, M. P. & Ward, S. C. (2016). Acta Cryst. B72, 171–179.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationICDD (2015). PDF-4+ 2015 and PDF-4 Organics 2016 (Databases), edited by Dr Soorya Kabekkodu. International Centre for Diffraction Data, Newtown Square PA, USA.  Google Scholar
First citationKourkoumelis, N. (2013). Powder Diffr. 28, 137–48.  Google Scholar
First citationLarson, A. C. & Von Dreele, R. B. (2004). General Structure Analysis System, (GSAS). Report LAUR, 86–784 Los Alamos National Laboratory, New Mexico, USA.  Google Scholar
First citationLouër, D. & Boultif, A. (2007). Z. Kristallogr. Suppl. 2007, 191–196.  Google Scholar
First citationMacrae, C. F., Bruno, I. J., Chisholm, J. A., Edgington, P. R., McCabe, P., Pidcock, E., Rodriguez-Monge, L., Taylor, R., van de Streek, J. & Wood, P. A. (2008). J. Appl. Cryst. 41, 466–470.  Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
First citationMDI (2012). JADE. Materials Data Inc., Livermore, CA, USA.  Google Scholar
First citationRammohan, A. & Kaduk, J. A. (2016a). Acta Cryst. B. Submitted.  Google Scholar
First citationRammohan, A. & Kaduk, J. A. (2016b). Acta Cryst. E72, 170–173.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationRammohan, A. & Kaduk, J. A. (2016c). Acta Cryst. E72, 403–406.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationStephens, P. W. (1999). J. Appl. Cryst. 32, 281–289.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationStreek, J. van de & Neumann, M. A. (2014). Acta Cryst. B70, 1020–1032.  Web of Science CrossRef IUCr Journals Google Scholar
First citationThompson, P., Cox, D. E. & Hastings, J. B. (1987). J. Appl. Cryst. 20, 79–83.  CrossRef CAS Web of Science IUCr Journals Google Scholar
First citationToby, B. H. (2001). J. Appl. Cryst. 34, 210–213.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationWestrip, S. P. (2010). J. Appl. Cryst. 43, 920–925.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds