research communications
Crystal structures of bis(phenoxy)silicon phthalocyanines: increasing π–π interactions, solubility and disorder and no halogen bonding observed
aUniversity of Toronto, Department of Chemical Engineering & Applied Chemistry, 200 College Street, Toronto, Ontario, M5S 3E5, Canada, bUniversity of Ottawa, Department of Chemical and Biological Engineering, 161 Louis Pasteur, Ottawa, Ontario, K1N 6N5, Canada, cUniversity of Toronto, Department of Chemistry, 80 St. George Street, Toronto, Ontario, M5S 3H6, Canada, and dUniversity of Toronto, Department of Materials Science and Engineering, 200 College Street, Toronto, Ontario, M5S 3E5, Canada
*Correspondence e-mail: tim.bender@utoronto.ca
We report the syntheses and characterization of three solution-processable phenoxy silicon phthalocyanines (SiPcs), namely bis(3-methylphenoxy)(phthalocyanine)silicon [(3MP)2-SiPc], C46H30N8O2Si, bis(2-sec-butylphenoxy)(phthalocyanine)silicon [(2secBP)2-SiPc], C44H24I2N8O2Si, and bis(3-iodophenoxy)(phthalocyanine)silicon [(3IP)2-SiPc], C52H42N8O2Si. Crystals grown of these compounds were characterized by single-crystal X-ray diffraction and the π–π interactions between the aromatic SiPc cores were studied. It was determined that (3MP)2-SiPc has similar interactions to previously reported bis(3,4,5-trifluorophenoxy)silicon phthalocyanines [(345 F)2-SiPc] with significant π–π interactions between the SiPc groups. (3IP)2-SiPc and (2secBP)2-SiPc both experienced a parallel stacking of two of the peripheral aromatic groups. In all three cases, the solubility of these molecules was increased by the addition of phenoxy groups while maintaining π–π interactions between the aromatic SiPc groups. The solubility of (2secBP)2-SiPc was significantly higher than other bis-phenoxy-SiPcs and this was exemplified by the higher observed disorder within the crystal structure.
Keywords: crystal structure; silicon; phthalocyanine; phenol; phenoxy; phenoxylation; interactions; halogen; bonds.
1. Chemical Context
Organic photovoltaic (OPV) devices represent an emerging technology with immense potential for inexpensive solar energy generation. The majority of these prototypes depend on et al., 2014; Eftaiha et al., 2014). Recently, examples have emerged where fullerene-free materials are being implemented into OPV devices reaching overall efficiencies of 5–7% (Li et al., 2014; Eftaiha et al., 2014; Cnops et al., 2014; Zhang et al., 2013). Among these emerging materials are the family of silicon phthalocyanines (SiPcs).
as acceptor molecules that are problematic due to their high manufacturing cost, low photovoltage generation and poor photochemical stability (LiMetalphthalocyanines (MPcs) are composed of a nitrogen-linked tetrameric diiminoisoindoline conjugated macrocycle that chelate a metal or metalloid through two covalent bonds and two coordination bonds (see Scheme 1). The resulting molecules are highly stable materials that have been used for a variety of applications including dyes and pigments for decades. Silicon phthalocyanines (SiPcs) are characterized by having an additional two axial bonds that are perpendicular to the SiPc macrocycle. These axial groups can serve as chemical handles for the functionalization of the base SiPc molecule. Such functionalizational groups can impart solubility as well as change the solid-state arrangement.
Honda et al. and our group have studied highly soluble tri-n-hexyl-silyl-SiPc [(3HS)2-SiPc] as ternary additives in bulk heterojunction (BHJ) OPV devices (Lessard et al., 2014; Honda et al., 2011, 2009). Our hypothesis was that the high solubility was also combined with a high tendency to crystallize into the solid state with high levels of order. As part of that study, (3HS)2-SiPc and an analog bis(3-pentadecylphenoxy)- SiPc [(PDP)2-SiPc] were found to have very few π–π interactions between the aromatic SiPc core due to the large alkyl substituents (Lessard et al., 2014). Our group recently reported that simple phenoxylation chemistry can be employed to enhance the π–π interactions present with the solid-state arrangement of the SiPc molecules, resulting in improved efficiency of planar heterojunction (PHJ) OPV devices (Lessard, White et al., 2015; Lessard, Grant et al., 2015). Our work on boron subphthalocyanines (BsubPcs) has also illustrated that a meta-methyl phenoxy group is a carbon-efficient method for significantly increasing the solubility of BsubPcs (Paton et al., 2012), a characteristic that is necessary for solution-processed OPVs and other characterization techniques. In addition, 3-iodo-phenoxy-BsubPc was found to exhibit halogen bonding between the iodo group and the BsubPc macrocycle and therefore resulting in a well-defined solid-state arrangement. The sum of these observations therefore lead our group to focus on the synthesis of soluble solution-processable phenoxy SiPcs that may have varying degrees of carbon-efficient solubilities and tendencies to crystallize with high order into the solid state. We therefore have synthesized three new derivatives: bis(3-methylphenoxy)silicon phthalocyanine [(3MP)2-SiPc], bis(2-sec-butylphenoxy)silicon phthalocyanine [(2secBP)2-SiPc] and bis(3-iodophenoxy)silicon phthalocyanine [(3IP)2-SiPc] (Fig. 1). We wished to investigate whether a 1- and 4-carbon solubilizing group would both enable solubility and facilitate more π–π interactions between the aromatic SiPc units compared to (3HS)2-SiPc and also to probe whether halogen bonding would be present in crystals grown of (3IP)2-SiPc (Virdo et al., 2013).
Single crystals of (3MP)2-SiPc, (3IP)2-SiPc and (2secBP)2-SiPc were grown by slow diffusion of heptane into THF and were characterized by single crystal X-ray diffraction. (3MP)2-SiPc was also grown by slow diffusion of pentane into benzene and evaporation form chloroform, resulting in identical crystals as identified by X-ray crystallography. Fig. 2 is a picture of actual crystals of (3MP)2-SiPc, roughly 1.5 mm in size, grown by slow evaporation.
2. Structural commentary
Of note at the structural level, when considering the three reported structures, is the relatively higher disorder observed for (2secBP)2-SiPc in the solid state (as indicted by the size of the ellipsoids, Fig. 1) compared to that of (3MP)2-SiPc, (3IP)2-SiPc and other known bis-phenoxy-SiPc structures (Lessard, Grant et al., 2015). This is consistent with the very high solubility observed for (2secBP)2-SiPc and in contrast to the low disorder observed for the also highly soluble (3HS)2-SiPc) (Lessard et al., 2014).
3. Supermolecular Features
The crystal structures were studied using Hirshfeld surface (HS) analysis (Spackman & Jayatilaka, 2009). All three crystals were mapped using (a) dnorm and (b) shape index in Fig. 3 for (3MP)2-SiPc, Fig. 4 for (3IP)2-SiPc and Fig. 5 for (2secBP)2-SiPc. In all three figures, the regions shaded in red correspond to the contacts at distances shorter than the sum of the van der Waals radii while the white to blue are for the distances longer than the sum of the van der Waals radii. In each crystal, the close contacts (and their symmetry equivalents) are readily identified on these maps and in all three cases they are different. For example for (3MP)2-SiPc (Fig. 3) one of the hydrogen atoms (H39C) of the 3-methyl group on the phenoxy group experiences a contact of a distance of 2.341 Å (C39—H39C⋯H3A—C3; Table 1). It is interesting to note that for (3IP)2-SiPc, the iodo group does not have any significant interactions with adjacent molecules (Fig. 2a). These observations are not consistent with our previous observations for various halo-phenoxy-BsubPcs such as 3-iodo-phenoxy BsubPc (Virdo et al., 2013). The shape index (Fig. 3b, 4b, 5b) is based on the two local principal curvatures of the HS, with concave regions shaded in red and convex regions shaded in blue (Spackman & Jayatilaka, 2009). Again, these plots illustrate the difference in the solid-state arrangement between all three molecules (Fig. 3b, 4b, 5b). Unfortunately, similarly to previously reported carbazole derivatives (Rozycka-Sokolowska et al., 2015), these plots do not generate further insight into the π–π interactions between molecules due to their relatively large distances of 3.5–4.0 Å.
|
Being interested in the stacking between aromatic macrocycles, we previously established (Lessard, Grant et al., 2015) criteria to compare the π–π interactions between neighboring Pc molecules for single crystals of SiPcs. Following these established criteria, the π–π interactions of (3MP)2-SiPc were identified and compared to previously published phenoxy SiPcs (Table 2). Fig. 6a illustrates the packing of (3MP)2-SiPc crystals which is very similar to the packing of previously reported bis(3,4,5-trifluorophenoxy) SiPc [(345F)2-SiPc; Lessard, Grant et al., 2015]. For example, both molecules experience a complete isoindoline stacking where the shortest molecular distances between isoindoline groups of (3MP)2-SiPc and (345FP)2-SiPc were determined to be 3.655 and 3.580 Å, respectively. In addition, the (3MP)2-SiPc exhibits a slip angle of 22.33/22.53° with a slight offset of 0.21° between the aromatic planes while (345F)2-SiPc has a less significant slip angle of 18.90° and exactly parallel (0° between planes) interacting isoindoline groups (Fig. 6b).
These results indicate that (3MP)2-SiPc has similar interactions to (345F)2-SiPc, which represents significant increases in π–π interaction between SiPc groups compared to the starting Cl2-SiPc molecule. (3IP)2-SiPc and (2secBP)2-SiPc on the other hand exhibit a parallel stacking of two of the peripheral aromatic groups. Of the SiPcs similar to (35F)2-SiPc and (246F)2-SiPc (Lessard, White et al., 2015; Lessard, Grant et al., 2015), for example, (3IP)2-SiPc experienced a similar stacking to (246F)2-SiPc (Lessard, Grant et al., 2015), both having a parallel stacking of two of the peripheral aromatic units of the SiPc chromophore, with very similar inter-ring distances of 3.716 and 3.860 Å, respectively, suggesting similar strength in π–π interactions between neighboring molecules for both (3IP)2-SiPc and (246F)2-SiPc (Fig. 6, Table 2). (3IP)2-SiPc has a slip angle of 17.55/14.60° with 10.99° between the aromatic planes while (246F)2-SiPc has a more significant slip angle of 30.08° and completely parallel (0° between planes) and interacting aromatic groups (Fig. 6, Table 2). (2secBP)2-SiPc has a unique two-dimensional stacking where two peripheral aromatic groups will stack with an adjacent SiPc molecule and one of the same peripheral aromatic groups along with a third one will stack in a similar fashion but at 90° from the first interaction (Fig. 6c, Table 2). In both cases a relatively large inter-ring distance of 3.947 Å was observed, suggesting a weak π-π interactions between neighboring (2secBP)2-SiPcs (Fig. 6, Table 2). This weak interaction is not a surprise due to the additional solubilizing groups (sec-butyl) which space out the molecules and increase the size of the unit cell.
4. Synthesis and crystallization
Materials
m-Cresol (>98%) 2-sec-butylphenol (98%) and 3-iodophenol (98%) were obtained from Sigma–Aldrich and chlorobenzene (99.5%) and chloroform (CHCl3, 99.8%) were obtained from Caledon Laboratories Ltd. All chemicals were used as received unless otherwise specified. Dichloro silicon phthalocyanine (Cl2-SiPc) was synthesized according to the literature (Lowery et al. 1965).
Synthesis of silicon phthalocyanine derivatives
The synthesis of (3MP)2-SiPc, (3IP)2-SiPcs and (2secBP)2-SiPcs were performed following the general procedure used to synthesize F10-SiPc·(Lessard, White, et al. 2015). For example, the synthesis of (3MP)2-SiPc was performed in a round-bottom flask equipped with a condenser and nitrogen purge, which was filled with a 10:1 molar excess of m-cresol (2.3g, 21 mol) to Cl2-SiPc (1.3g, 2.1 mol) in chlorobenzene (100 ml). The mixture was stirred and heated to 388 K overnight and cooled to room temperature. The product was then obtained by precipitation into isopropanol and filtered. The product was then dried in a vacuum oven overnight. Yield: 1.3g (80.2 mol%). DART calculated mass: 755.234, obtained mass: 755.236. (3IP)2-SiPcs and (2secBP)2-SiPcs were synthesized under similar conditions and crystals were again obtained by slow diffusion of heptane into a THF solution.
5. Refinement
Crystal data collection and structure . H atoms were placed in calculated positions C—H = 0.94–0.98 Å and included in a riding-motion approximation with Uiso(H) = 1.2Ueq(C) or 1.5Ueq(Cmethyl).
details are summarized in Table 3
|
In (3MP)2-Si there appears to be with an approximate centre of symmetry. The c-glide reflections are weak but present and the P21/c structure refines only to ca R1 = 10% compared to 4.4% for the P21 structure. The crystal is an with a ratio of components of 0.51 (4):0.49 (4).
During the secBP)2-SiPc, electron density peaks were located that were believed to be highly disordered solvent molecules (possibly pentane/dichloromethane). Attempts made to model the solvent molecule were not successful. The SQUEEZE option (Spek, 2015) in PLATON (Spek, 2009) indicated there was a large solvent cavity 367 A3. In the final cycles of this contribution (99 electrons) to the electron density was removed from the observed data. The density, the F(000) value, the molecular weight and the formula are given without taking into account the results obtained with SQUEEZE. Similar treatments of disordered solvent molecules were carried out by Stähler et al. (2001), Cox et al. (2003), Mohamed et al. (2003) and Athimoolam et al. (2005).
of (2The crystal of (2secBP)2-SiPc was a non-merehedral twin with a determined by CELL_NOW (Bruker, 2011) of 0.1 0.0 0.0, 0.1 1.0 0.0, 0.3 0.0 1.0. The data were detwinned using TWINABS (Bruker, 2011) giving twin fractions in the ratio 0.92:0.08.
Supporting information
https://doi.org/10.1107/S205698901600935X/hb7581sup1.cif
contains datablocks 3MP2-SiPc, 3IP2-SiPc, 2secBP2-SiPc. DOI:Structure factors: contains datablock 3MP2-SiPc. DOI: https://doi.org/10.1107/S205698901600935X/hb75813MP2-SiPcsup3.hkl
Structure factors: contains datablock 3IP2-SiPc. DOI: https://doi.org/10.1107/S205698901600935X/hb75813IP2-SiPcsup2.hkl
Structure factors: contains datablock 2secBP2-SiPc. DOI: https://doi.org/10.1107/S205698901600935X/hb75812secBP2-SiPcsup4.hkl
Supporting information file. DOI: https://doi.org/10.1107/S205698901600935X/hb7581sup5.pdf
Supporting information file. DOI: https://doi.org/10.1107/S205698901600935X/hb7581sup6.tif
Supporting information file. DOI: https://doi.org/10.1107/S205698901600935X/hb7581sup7.tif
For all compounds, data collection: APEX2 (Bruker, 2011); cell
SAINT (Bruker, 2011); data reduction: SAINT (Bruker, 2011); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008). Program(s) used to refine structure: SHELXL97 (Sheldrick, 2008) for 3MP-SiPc, 2secBP2-SiPc; SHELXL2013 (Sheldrick, 2015) for 3IP2-SiPc. For all compounds, molecular graphics: Mercury (Macrae et al., 2006); software used to prepare material for publication: SHELXTL (Sheldrick, 2008).C46H30N8O2Si | F(000) = 784 |
Mr = 754.87 | Dx = 1.424 Mg m−3 |
Monoclinic, P21 | Cu Kα radiation, λ = 1.54178 Å |
Hall symbol: P 2yb | Cell parameters from 6829 reflections |
a = 10.2566 (4) Å | θ = 4.3–66.2° |
b = 16.5665 (8) Å | µ = 1.04 mm−1 |
c = 11.5120 (5) Å | T = 147 K |
β = 115.860 (3)° | Needle, blue |
V = 1760.20 (13) Å3 | 0.27 × 0.08 × 0.03 mm |
Z = 2 |
Bruker Kappa APEX DUO CCD diffractometer | 5548 independent reflections |
Radiation source: Bruker ImuS | 4909 reflections with I > 2σ(I) |
Multi-layer optics monochromator | Rint = 0.042 |
φ and ω scans | θmax = 66.5°, θmin = 4.3° |
Absorption correction: multi-scan (SADABS; Bruker, 2011) | h = −11→12 |
Tmin = 0.606, Tmax = 0.753 | k = −19→18 |
11133 measured reflections | l = −13→11 |
Refinement on F2 | Secondary atom site location: difference Fourier map |
Least-squares matrix: full | Hydrogen site location: inferred from neighbouring sites |
R[F2 > 2σ(F2)] = 0.044 | H-atom parameters constrained |
wR(F2) = 0.111 | w = 1/[σ2(Fo2) + (0.0535P)2 + 0.6078P] where P = (Fo2 + 2Fc2)/3 |
S = 1.03 | (Δ/σ)max = 0.001 |
5548 reflections | Δρmax = 0.20 e Å−3 |
516 parameters | Δρmin = −0.44 e Å−3 |
1 restraint | Absolute structure: Flack (1983), 2431 Friedel pairs |
Primary atom site location: structure-invariant direct methods | Absolute structure parameter: 0.51 (4) |
Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes. |
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > 2sigma(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger. |
x | y | z | Uiso*/Ueq | ||
Si1 | 0.25875 (11) | 0.47830 (9) | 0.25868 (9) | 0.02494 (17) | |
O1 | 0.2884 (3) | 0.39581 (16) | 0.1824 (2) | 0.0290 (6) | |
O2 | 0.2301 (2) | 0.56160 (17) | 0.33650 (19) | 0.0266 (6) | |
N1 | 0.4400 (3) | 0.5208 (2) | 0.2753 (2) | 0.0235 (7) | |
N2 | 0.3569 (3) | 0.5980 (2) | 0.0763 (3) | 0.0283 (7) | |
N3 | 0.1579 (3) | 0.5340 (2) | 0.0995 (3) | 0.0270 (7) | |
N4 | −0.0891 (3) | 0.4903 (2) | 0.0372 (2) | 0.0276 (7) | |
N5 | 0.0788 (3) | 0.4350 (2) | 0.2432 (2) | 0.0265 (7) | |
N6 | 0.1590 (3) | 0.3578 (2) | 0.4415 (3) | 0.0289 (7) | |
N7 | 0.3600 (3) | 0.4220 (2) | 0.4188 (2) | 0.0258 (7) | |
N8 | 0.6078 (3) | 0.4650 (2) | 0.4808 (3) | 0.0278 (7) | |
C1 | 0.5733 (4) | 0.5069 (2) | 0.3729 (3) | 0.0268 (9) | |
C2 | 0.6846 (4) | 0.5463 (2) | 0.3453 (3) | 0.0285 (9) | |
C3 | 0.8346 (4) | 0.5475 (3) | 0.4119 (3) | 0.0324 (9) | |
H3A | 0.8835 | 0.5218 | 0.4934 | 0.039* | |
C4 | 0.9092 (4) | 0.5869 (3) | 0.3555 (3) | 0.0369 (10) | |
H4A | 1.0120 | 0.5887 | 0.3985 | 0.044* | |
C5 | 0.8360 (4) | 0.6254 (3) | 0.2339 (4) | 0.0346 (10) | |
H5A | 0.8906 | 0.6520 | 0.1966 | 0.042* | |
C6 | 0.6871 (4) | 0.6248 (3) | 0.1691 (3) | 0.0313 (9) | |
H6A | 0.6376 | 0.6513 | 0.0883 | 0.038* | |
C7 | 0.6117 (4) | 0.5839 (2) | 0.2267 (3) | 0.0268 (9) | |
C8 | 0.4576 (4) | 0.5688 (2) | 0.1855 (3) | 0.0264 (8) | |
C9 | 0.2206 (4) | 0.5802 (3) | 0.0375 (3) | 0.0280 (9) | |
C10 | 0.1101 (4) | 0.6066 (3) | −0.0867 (3) | 0.0277 (8) | |
C11 | 0.1158 (4) | 0.6537 (3) | −0.1856 (3) | 0.0341 (10) | |
H11A | 0.2035 | 0.6783 | −0.1763 | 0.041* | |
C12 | −0.0104 (4) | 0.6629 (3) | −0.2966 (3) | 0.0346 (10) | |
H12A | −0.0090 | 0.6938 | −0.3656 | 0.042* | |
C13 | −0.1409 (4) | 0.6280 (3) | −0.3111 (3) | 0.0350 (10) | |
H13A | −0.2258 | 0.6353 | −0.3895 | 0.042* | |
C14 | −0.1475 (4) | 0.5829 (3) | −0.2121 (3) | 0.0301 (9) | |
H14A | −0.2361 | 0.5601 | −0.2205 | 0.036* | |
C15 | −0.0202 (4) | 0.5725 (3) | −0.1006 (3) | 0.0288 (9) | |
C16 | 0.0115 (4) | 0.5290 (3) | 0.0167 (3) | 0.0277 (9) | |
C17 | −0.0582 (4) | 0.4489 (2) | 0.1432 (3) | 0.0267 (9) | |
C18 | −0.1672 (4) | 0.4097 (2) | 0.1710 (3) | 0.0277 (9) | |
C19 | −0.3173 (4) | 0.4088 (2) | 0.1052 (3) | 0.0302 (9) | |
H19A | −0.3672 | 0.4354 | 0.0247 | 0.036* | |
C20 | −0.3912 (4) | 0.3666 (3) | 0.1636 (3) | 0.0328 (9) | |
H20A | −0.4939 | 0.3630 | 0.1207 | 0.039* | |
C21 | −0.3177 (4) | 0.3299 (3) | 0.2828 (4) | 0.0352 (10) | |
H21A | −0.3717 | 0.3032 | 0.3205 | 0.042* | |
C22 | −0.1689 (4) | 0.3310 (3) | 0.3483 (3) | 0.0307 (9) | |
H22A | −0.1198 | 0.3054 | 0.4299 | 0.037* | |
C23 | −0.0933 (4) | 0.3709 (2) | 0.2904 (3) | 0.0270 (8) | |
C24 | 0.0580 (4) | 0.3869 (2) | 0.3319 (3) | 0.0266 (8) | |
C25 | 0.2982 (4) | 0.3746 (3) | 0.4805 (3) | 0.0249 (8) | |
C26 | 0.4081 (4) | 0.3485 (3) | 0.6055 (3) | 0.0285 (8) | |
C27 | 0.4001 (4) | 0.3019 (3) | 0.7021 (3) | 0.0316 (9) | |
H27A | 0.3114 | 0.2785 | 0.6926 | 0.038* | |
C28 | 0.5274 (4) | 0.2911 (3) | 0.8131 (3) | 0.0352 (10) | |
H28A | 0.5264 | 0.2595 | 0.8815 | 0.042* | |
C29 | 0.6570 (4) | 0.3258 (3) | 0.8266 (3) | 0.0334 (9) | |
H29A | 0.7421 | 0.3179 | 0.9047 | 0.040* | |
C30 | 0.6654 (4) | 0.3713 (3) | 0.7299 (3) | 0.0320 (9) | |
H30A | 0.7544 | 0.3939 | 0.7390 | 0.038* | |
C31 | 0.5375 (4) | 0.3825 (3) | 0.6184 (3) | 0.0271 (9) | |
C32 | 0.5058 (4) | 0.4273 (2) | 0.5001 (3) | 0.0254 (8) | |
C33 | 0.1975 (4) | 0.3625 (3) | 0.0649 (3) | 0.0269 (9) | |
C34 | 0.1916 (4) | 0.3949 (3) | −0.0485 (3) | 0.0334 (9) | |
H34A | 0.2538 | 0.4385 | −0.0443 | 0.040* | |
C35 | 0.0947 (4) | 0.3641 (3) | −0.1699 (3) | 0.0369 (10) | |
C36 | 0.0095 (4) | 0.2991 (3) | −0.1735 (4) | 0.0413 (11) | |
H36A | −0.0568 | 0.2774 | −0.2541 | 0.050* | |
C37 | 0.0204 (4) | 0.2654 (3) | −0.0604 (4) | 0.0408 (11) | |
H37A | −0.0373 | 0.2195 | −0.0648 | 0.049* | |
C38 | 0.1119 (4) | 0.2957 (3) | 0.0591 (3) | 0.0314 (9) | |
H38A | 0.1165 | 0.2718 | 0.1357 | 0.038* | |
C39 | 0.0801 (5) | 0.4049 (3) | −0.2914 (3) | 0.0517 (13) | |
H39A | 0.0626 | 0.3642 | −0.3584 | 0.077* | |
H39B | 0.1695 | 0.4344 | −0.2744 | 0.077* | |
H39C | −0.0015 | 0.4428 | −0.3208 | 0.077* | |
C40 | 0.3230 (4) | 0.5949 (3) | 0.4516 (3) | 0.0275 (9) | |
C41 | 0.3322 (4) | 0.5644 (3) | 0.5675 (3) | 0.0300 (9) | |
H41A | 0.2701 | 0.5213 | 0.5656 | 0.036* | |
C42 | 0.4292 (4) | 0.5950 (3) | 0.6852 (3) | 0.0375 (10) | |
C43 | 0.5138 (4) | 0.6615 (3) | 0.6862 (3) | 0.0377 (10) | |
H43A | 0.5814 | 0.6836 | 0.7659 | 0.045* | |
C44 | 0.4987 (4) | 0.6952 (3) | 0.5704 (4) | 0.0346 (9) | |
H44A | 0.5532 | 0.7419 | 0.5720 | 0.042* | |
C45 | 0.4063 (4) | 0.6623 (3) | 0.4537 (3) | 0.0336 (9) | |
H45A | 0.3991 | 0.6851 | 0.3754 | 0.040* | |
C46 | 0.4508 (5) | 0.5569 (3) | 0.8108 (3) | 0.0514 (12) | |
H46A | 0.4249 | 0.4996 | 0.7968 | 0.077* | |
H46B | 0.3891 | 0.5840 | 0.8440 | 0.077* | |
H46C | 0.5525 | 0.5622 | 0.8734 | 0.077* |
U11 | U22 | U33 | U12 | U13 | U23 | |
Si1 | 0.0259 (4) | 0.0263 (4) | 0.0259 (4) | −0.0001 (3) | 0.0143 (3) | 0.0008 (3) |
O1 | 0.0319 (12) | 0.0291 (17) | 0.0296 (11) | −0.0004 (11) | 0.0167 (10) | −0.0026 (10) |
O2 | 0.0232 (11) | 0.0313 (17) | 0.0263 (11) | −0.0027 (10) | 0.0117 (10) | −0.0046 (10) |
N1 | 0.0230 (13) | 0.0267 (18) | 0.0247 (13) | −0.0033 (12) | 0.0141 (12) | −0.0011 (12) |
N2 | 0.0321 (15) | 0.025 (2) | 0.0295 (14) | −0.0007 (13) | 0.0154 (13) | 0.0011 (12) |
N3 | 0.0293 (15) | 0.028 (2) | 0.0296 (13) | −0.0007 (13) | 0.0181 (12) | −0.0044 (12) |
N4 | 0.0275 (14) | 0.032 (2) | 0.0247 (13) | 0.0007 (13) | 0.0125 (12) | −0.0017 (12) |
N5 | 0.0299 (14) | 0.0259 (19) | 0.0254 (13) | 0.0006 (13) | 0.0136 (12) | 0.0001 (12) |
N6 | 0.0329 (15) | 0.029 (2) | 0.0302 (14) | −0.0011 (13) | 0.0186 (13) | −0.0004 (12) |
N7 | 0.0296 (15) | 0.0260 (19) | 0.0264 (13) | 0.0007 (13) | 0.0166 (12) | 0.0047 (12) |
N8 | 0.0271 (14) | 0.029 (2) | 0.0320 (14) | −0.0009 (12) | 0.0173 (12) | 0.0016 (12) |
C1 | 0.0330 (18) | 0.027 (2) | 0.0253 (16) | −0.0025 (15) | 0.0177 (15) | −0.0053 (14) |
C2 | 0.0338 (18) | 0.024 (2) | 0.0359 (17) | −0.0014 (16) | 0.0230 (16) | −0.0017 (15) |
C3 | 0.0306 (18) | 0.036 (3) | 0.0338 (17) | −0.0027 (16) | 0.0167 (16) | −0.0024 (16) |
C4 | 0.0291 (18) | 0.041 (3) | 0.043 (2) | −0.0025 (16) | 0.0177 (17) | −0.0079 (17) |
C5 | 0.040 (2) | 0.032 (3) | 0.0430 (19) | −0.0036 (17) | 0.0284 (18) | 0.0026 (16) |
C6 | 0.0333 (19) | 0.031 (3) | 0.0369 (18) | −0.0015 (16) | 0.0218 (17) | 0.0027 (15) |
C7 | 0.0313 (18) | 0.025 (2) | 0.0281 (16) | −0.0010 (15) | 0.0162 (15) | −0.0013 (14) |
C8 | 0.0308 (17) | 0.023 (2) | 0.0327 (16) | −0.0013 (15) | 0.0206 (15) | −0.0071 (14) |
C9 | 0.0333 (19) | 0.026 (2) | 0.0334 (17) | 0.0006 (15) | 0.0221 (16) | −0.0040 (15) |
C10 | 0.0326 (18) | 0.026 (2) | 0.0246 (15) | 0.0015 (16) | 0.0120 (15) | 0.0011 (15) |
C11 | 0.0354 (19) | 0.035 (3) | 0.0378 (18) | −0.0009 (17) | 0.0216 (17) | 0.0033 (17) |
C12 | 0.042 (2) | 0.034 (3) | 0.0303 (17) | 0.0005 (17) | 0.0177 (17) | 0.0080 (16) |
C13 | 0.040 (2) | 0.035 (3) | 0.0295 (17) | 0.0091 (17) | 0.0150 (16) | 0.0040 (16) |
C14 | 0.0299 (17) | 0.026 (2) | 0.0345 (17) | 0.0033 (16) | 0.0145 (16) | −0.0014 (15) |
C15 | 0.0363 (19) | 0.026 (2) | 0.0279 (15) | 0.0045 (16) | 0.0173 (15) | −0.0027 (15) |
C16 | 0.0250 (17) | 0.030 (3) | 0.0297 (16) | 0.0028 (16) | 0.0138 (15) | −0.0011 (15) |
C17 | 0.0237 (17) | 0.026 (2) | 0.0297 (16) | 0.0031 (15) | 0.0114 (15) | −0.0018 (14) |
C18 | 0.0281 (17) | 0.027 (2) | 0.0305 (16) | −0.0011 (16) | 0.0155 (15) | −0.0064 (15) |
C19 | 0.0274 (17) | 0.029 (2) | 0.0354 (17) | −0.0008 (15) | 0.0145 (16) | −0.0080 (15) |
C20 | 0.0295 (18) | 0.033 (3) | 0.0403 (19) | −0.0044 (16) | 0.0195 (16) | −0.0083 (17) |
C21 | 0.0354 (19) | 0.033 (3) | 0.050 (2) | −0.0074 (18) | 0.0299 (18) | −0.0115 (17) |
C22 | 0.0373 (19) | 0.026 (2) | 0.0344 (18) | −0.0046 (16) | 0.0204 (16) | −0.0048 (15) |
C23 | 0.0281 (18) | 0.026 (2) | 0.0318 (16) | −0.0011 (15) | 0.0178 (15) | −0.0049 (15) |
C24 | 0.0341 (19) | 0.021 (2) | 0.0288 (16) | 0.0013 (16) | 0.0177 (15) | 0.0015 (14) |
C25 | 0.0251 (17) | 0.024 (2) | 0.0275 (15) | 0.0006 (14) | 0.0128 (14) | 0.0027 (14) |
C26 | 0.0352 (18) | 0.024 (2) | 0.0326 (17) | 0.0026 (16) | 0.0205 (16) | 0.0019 (15) |
C27 | 0.0373 (19) | 0.026 (2) | 0.0326 (18) | 0.0024 (16) | 0.0161 (17) | 0.0059 (16) |
C28 | 0.043 (2) | 0.030 (3) | 0.0352 (19) | 0.0047 (18) | 0.0188 (17) | 0.0020 (16) |
C29 | 0.0335 (19) | 0.034 (3) | 0.0288 (17) | 0.0014 (16) | 0.0099 (16) | 0.0000 (15) |
C30 | 0.0336 (19) | 0.035 (3) | 0.0278 (16) | 0.0002 (17) | 0.0138 (15) | 0.0005 (16) |
C31 | 0.0265 (17) | 0.030 (2) | 0.0265 (16) | 0.0019 (15) | 0.0135 (15) | 0.0021 (15) |
C32 | 0.0310 (17) | 0.022 (2) | 0.0270 (15) | −0.0004 (15) | 0.0162 (15) | −0.0009 (14) |
C33 | 0.0258 (17) | 0.028 (2) | 0.0266 (16) | 0.0010 (15) | 0.0114 (15) | −0.0017 (15) |
C34 | 0.0383 (19) | 0.033 (3) | 0.0378 (19) | 0.0046 (17) | 0.0245 (16) | −0.0002 (16) |
C35 | 0.045 (2) | 0.033 (3) | 0.0327 (18) | 0.0109 (18) | 0.0172 (17) | −0.0020 (17) |
C36 | 0.040 (2) | 0.037 (3) | 0.042 (2) | 0.0057 (18) | 0.0128 (18) | −0.0098 (18) |
C37 | 0.038 (2) | 0.033 (3) | 0.051 (2) | 0.0008 (17) | 0.0188 (19) | −0.0056 (19) |
C38 | 0.0345 (18) | 0.024 (2) | 0.044 (2) | 0.0034 (16) | 0.0249 (17) | 0.0016 (16) |
C39 | 0.075 (3) | 0.054 (3) | 0.0285 (17) | 0.016 (2) | 0.0245 (19) | 0.0034 (18) |
C40 | 0.0239 (16) | 0.029 (2) | 0.0314 (16) | 0.0067 (15) | 0.0138 (14) | 0.0010 (15) |
C41 | 0.0385 (19) | 0.024 (2) | 0.0309 (17) | −0.0026 (16) | 0.0186 (16) | −0.0013 (14) |
C42 | 0.041 (2) | 0.041 (3) | 0.0330 (17) | 0.0140 (18) | 0.0181 (16) | 0.0023 (17) |
C43 | 0.039 (2) | 0.034 (3) | 0.0355 (18) | 0.0060 (17) | 0.0115 (16) | −0.0079 (16) |
C44 | 0.0368 (19) | 0.024 (2) | 0.046 (2) | −0.0021 (16) | 0.0216 (18) | −0.0039 (17) |
C45 | 0.038 (2) | 0.029 (3) | 0.0331 (18) | −0.0027 (17) | 0.0149 (17) | −0.0001 (16) |
C46 | 0.068 (3) | 0.055 (3) | 0.0336 (19) | 0.013 (2) | 0.024 (2) | 0.0043 (19) |
Si1—O1 | 1.722 (3) | C18—C23 | 1.402 (5) |
Si1—O2 | 1.739 (3) | C19—C20 | 1.401 (6) |
Si1—N3 | 1.904 (3) | C19—H19A | 0.9500 |
Si1—N5 | 1.915 (3) | C20—C21 | 1.384 (6) |
Si1—N7 | 1.917 (3) | C20—H20A | 0.9500 |
Si1—N1 | 1.918 (3) | C21—C22 | 1.377 (5) |
O1—C33 | 1.379 (4) | C21—H21A | 0.9500 |
O2—C40 | 1.367 (4) | C22—C23 | 1.391 (6) |
N1—C1 | 1.358 (5) | C22—H22A | 0.9500 |
N1—C8 | 1.378 (5) | C23—C24 | 1.435 (5) |
N2—C9 | 1.302 (5) | C25—C26 | 1.453 (5) |
N2—C8 | 1.322 (5) | C26—C27 | 1.386 (6) |
N3—C9 | 1.382 (5) | C26—C31 | 1.389 (5) |
N3—C16 | 1.387 (5) | C27—C28 | 1.384 (5) |
N4—C17 | 1.313 (5) | C27—H27A | 0.9500 |
N4—C16 | 1.320 (5) | C28—C29 | 1.394 (6) |
N5—C24 | 1.383 (5) | C28—H28A | 0.9500 |
N5—C17 | 1.393 (4) | C29—C30 | 1.377 (6) |
N6—C25 | 1.325 (5) | C29—H29A | 0.9500 |
N6—C24 | 1.326 (4) | C30—C31 | 1.391 (5) |
N7—C32 | 1.378 (5) | C30—H30A | 0.9500 |
N7—C25 | 1.385 (5) | C31—C32 | 1.457 (5) |
N8—C32 | 1.318 (5) | C33—C34 | 1.389 (5) |
N8—C1 | 1.329 (5) | C33—C38 | 1.395 (6) |
C1—C2 | 1.464 (5) | C34—C35 | 1.410 (5) |
C2—C7 | 1.386 (5) | C34—H34A | 0.9500 |
C2—C3 | 1.388 (5) | C35—C36 | 1.377 (7) |
C3—C4 | 1.367 (6) | C35—C39 | 1.501 (6) |
C3—H3A | 0.9500 | C36—C37 | 1.376 (7) |
C4—C5 | 1.418 (6) | C36—H36A | 0.9500 |
C4—H4A | 0.9500 | C37—C38 | 1.378 (5) |
C5—C6 | 1.377 (5) | C37—H37A | 0.9500 |
C5—H5A | 0.9500 | C38—H38A | 0.9500 |
C6—C7 | 1.395 (5) | C39—H39A | 0.9800 |
C6—H6A | 0.9500 | C39—H39B | 0.9800 |
C7—C8 | 1.459 (5) | C39—H39C | 0.9800 |
C9—C10 | 1.451 (5) | C40—C41 | 1.391 (5) |
C10—C15 | 1.395 (6) | C40—C45 | 1.400 (6) |
C10—C11 | 1.402 (6) | C41—C42 | 1.381 (5) |
C11—C12 | 1.374 (5) | C41—H41A | 0.9500 |
C11—H11A | 0.9500 | C42—C43 | 1.399 (7) |
C12—C13 | 1.398 (6) | C42—C46 | 1.503 (6) |
C12—H12A | 0.9500 | C43—C44 | 1.390 (6) |
C13—C14 | 1.390 (6) | C43—H43A | 0.9500 |
C13—H13A | 0.9500 | C44—C45 | 1.374 (5) |
C14—C15 | 1.385 (5) | C44—H44A | 0.9500 |
C14—H14A | 0.9500 | C45—H45A | 0.9500 |
C15—C16 | 1.437 (5) | C46—H46A | 0.9800 |
C17—C18 | 1.444 (6) | C46—H46B | 0.9800 |
C18—C19 | 1.387 (5) | C46—H46C | 0.9800 |
O1—Si1—O2 | 179.59 (14) | C20—C19—H19A | 121.7 |
O1—Si1—N3 | 92.10 (13) | C21—C20—C19 | 121.3 (3) |
O2—Si1—N3 | 88.17 (13) | C21—C20—H20A | 119.4 |
O1—Si1—N5 | 91.88 (14) | C19—C20—H20A | 119.4 |
O2—Si1—N5 | 88.43 (13) | C22—C21—C20 | 122.2 (4) |
N3—Si1—N5 | 89.72 (13) | C22—C21—H21A | 118.9 |
O1—Si1—N7 | 87.84 (13) | C20—C21—H21A | 118.9 |
O2—Si1—N7 | 91.89 (13) | C21—C22—C23 | 117.4 (4) |
N3—Si1—N7 | 179.9 (2) | C21—C22—H22A | 121.3 |
N5—Si1—N7 | 90.18 (13) | C23—C22—H22A | 121.3 |
O1—Si1—N1 | 87.88 (13) | C22—C23—C18 | 120.7 (3) |
O2—Si1—N1 | 91.81 (14) | C22—C23—C24 | 132.5 (3) |
N3—Si1—N1 | 90.80 (13) | C18—C23—C24 | 106.6 (3) |
N5—Si1—N1 | 179.44 (19) | N6—C24—N5 | 127.2 (3) |
N7—Si1—N1 | 89.30 (13) | N6—C24—C23 | 122.2 (3) |
C33—O1—Si1 | 128.6 (2) | N5—C24—C23 | 110.6 (3) |
C40—O2—Si1 | 128.2 (2) | N6—C25—N7 | 127.7 (3) |
C1—N1—C8 | 107.7 (3) | N6—C25—C26 | 122.0 (3) |
C1—N1—Si1 | 127.1 (3) | N7—C25—C26 | 110.2 (3) |
C8—N1—Si1 | 125.2 (2) | C27—C26—C31 | 121.9 (3) |
C9—N2—C8 | 121.4 (3) | C27—C26—C25 | 131.9 (3) |
C9—N3—C16 | 106.6 (3) | C31—C26—C25 | 106.2 (3) |
C9—N3—Si1 | 125.9 (2) | C28—C27—C26 | 116.8 (4) |
C16—N3—Si1 | 127.1 (3) | C28—C27—H27A | 121.6 |
C17—N4—C16 | 122.0 (3) | C26—C27—H27A | 121.6 |
C24—N5—C17 | 106.3 (3) | C27—C28—C29 | 121.3 (4) |
C24—N5—Si1 | 126.8 (2) | C27—C28—H28A | 119.3 |
C17—N5—Si1 | 126.8 (3) | C29—C28—H28A | 119.3 |
C25—N6—C24 | 121.7 (3) | C30—C29—C28 | 121.9 (3) |
C32—N7—C25 | 106.9 (3) | C30—C29—H29A | 119.1 |
C32—N7—Si1 | 126.5 (3) | C28—C29—H29A | 119.1 |
C25—N7—Si1 | 126.3 (2) | C29—C30—C31 | 116.9 (4) |
C32—N8—C1 | 119.9 (3) | C29—C30—H30A | 121.5 |
N8—C1—N1 | 128.5 (4) | C31—C30—H30A | 121.5 |
N8—C1—C2 | 121.4 (3) | C26—C31—C30 | 121.1 (3) |
N1—C1—C2 | 110.1 (3) | C26—C31—C32 | 107.0 (3) |
C7—C2—C3 | 121.9 (4) | C30—C31—C32 | 131.8 (4) |
C7—C2—C1 | 106.1 (3) | N8—C32—N7 | 128.4 (3) |
C3—C2—C1 | 131.9 (3) | N8—C32—C31 | 121.9 (3) |
C4—C3—C2 | 117.4 (3) | N7—C32—C31 | 109.7 (3) |
C4—C3—H3A | 121.3 | O1—C33—C34 | 120.0 (4) |
C2—C3—H3A | 121.3 | O1—C33—C38 | 120.4 (3) |
C3—C4—C5 | 121.2 (3) | C34—C33—C38 | 119.5 (3) |
C3—C4—H4A | 119.4 | C33—C34—C35 | 121.0 (4) |
C5—C4—H4A | 119.4 | C33—C34—H34A | 119.5 |
C6—C5—C4 | 121.1 (4) | C35—C34—H34A | 119.5 |
C6—C5—H5A | 119.5 | C36—C35—C34 | 118.5 (4) |
C4—C5—H5A | 119.5 | C36—C35—C39 | 121.3 (4) |
C5—C6—C7 | 117.4 (3) | C34—C35—C39 | 120.1 (4) |
C5—C6—H6A | 121.3 | C37—C36—C35 | 120.1 (4) |
C7—C6—H6A | 121.3 | C37—C36—H36A | 120.0 |
C2—C7—C6 | 120.9 (3) | C35—C36—H36A | 120.0 |
C2—C7—C8 | 106.6 (3) | C36—C37—C38 | 122.3 (4) |
C6—C7—C8 | 132.4 (3) | C36—C37—H37A | 118.8 |
N2—C8—N1 | 128.4 (3) | C38—C37—H37A | 118.8 |
N2—C8—C7 | 122.2 (3) | C37—C38—C33 | 118.6 (4) |
N1—C8—C7 | 109.4 (3) | C37—C38—H38A | 120.7 |
N2—C9—N3 | 128.3 (3) | C33—C38—H38A | 120.7 |
N2—C9—C10 | 122.0 (4) | C35—C39—H39A | 109.5 |
N3—C9—C10 | 109.7 (3) | C35—C39—H39B | 109.5 |
C15—C10—C11 | 120.6 (3) | H39A—C39—H39B | 109.5 |
C15—C10—C9 | 106.8 (3) | C35—C39—H39C | 109.5 |
C11—C10—C9 | 132.6 (3) | H39A—C39—H39C | 109.5 |
C12—C11—C10 | 117.4 (4) | H39B—C39—H39C | 109.5 |
C12—C11—H11A | 121.3 | O2—C40—C41 | 120.7 (4) |
C10—C11—H11A | 121.3 | O2—C40—C45 | 120.1 (3) |
C11—C12—C13 | 122.0 (4) | C41—C40—C45 | 119.2 (3) |
C11—C12—H12A | 119.0 | C42—C41—C40 | 121.7 (4) |
C13—C12—H12A | 119.0 | C42—C41—H41A | 119.2 |
C14—C13—C12 | 120.7 (3) | C40—C41—H41A | 119.2 |
C14—C13—H13A | 119.6 | C41—C42—C43 | 118.5 (4) |
C12—C13—H13A | 119.6 | C41—C42—C46 | 122.0 (4) |
C15—C14—C13 | 117.6 (4) | C43—C42—C46 | 119.5 (4) |
C15—C14—H14A | 121.2 | C44—C43—C42 | 119.9 (3) |
C13—C14—H14A | 121.2 | C44—C43—H43A | 120.0 |
C14—C15—C10 | 121.6 (4) | C42—C43—H43A | 120.0 |
C14—C15—C16 | 131.9 (4) | C45—C44—C43 | 121.3 (4) |
C10—C15—C16 | 106.4 (3) | C45—C44—H44A | 119.4 |
N4—C16—N3 | 127.1 (3) | C43—C44—H44A | 119.4 |
N4—C16—C15 | 122.5 (3) | C44—C45—C40 | 119.2 (4) |
N3—C16—C15 | 110.4 (3) | C44—C45—H45A | 120.4 |
N4—C17—N5 | 127.0 (4) | C40—C45—H45A | 120.4 |
N4—C17—C18 | 123.0 (3) | C42—C46—H46A | 109.5 |
N5—C17—C18 | 110.0 (3) | C42—C46—H46B | 109.5 |
C19—C18—C23 | 121.8 (4) | H46A—C46—H46B | 109.5 |
C19—C18—C17 | 131.7 (4) | C42—C46—H46C | 109.5 |
C23—C18—C17 | 106.4 (3) | H46A—C46—H46C | 109.5 |
C18—C19—C20 | 116.6 (4) | H46B—C46—H46C | 109.5 |
C18—C19—H19A | 121.7 |
C44H24I2N8O2Si | F(000) = 960 |
Mr = 978.60 | Dx = 1.788 Mg m−3 |
Monoclinic, P21/c | Mo Kα radiation, λ = 0.71073 Å |
a = 12.6431 (6) Å | Cell parameters from 9148 reflections |
b = 19.587 (1) Å | θ = 2.7–27.5° |
c = 7.5403 (4) Å | µ = 1.82 mm−1 |
β = 103.222 (1)° | T = 147 K |
V = 1817.78 (16) Å3 | Plate, blue |
Z = 2 | 0.40 × 0.22 × 0.04 mm |
Bruker Kappa APEX DUO CCD diffractometer | 3721 reflections with I > 2σ(I) |
Radiation source: sealed tube with Bruker Triumph monocnromator | Rint = 0.024 |
φ and ω scans | θmax = 27.5°, θmin = 1.7° |
Absorption correction: multi-scan (SADABS; Bruker, 2011) | h = −16→16 |
Tmin = 0.635, Tmax = 0.746 | k = −25→25 |
31089 measured reflections | l = −9→7 |
4119 independent reflections |
Refinement on F2 | 0 restraints |
Least-squares matrix: full | Hydrogen site location: inferred from neighbouring sites |
R[F2 > 2σ(F2)] = 0.037 | H-atom parameters constrained |
wR(F2) = 0.101 | w = 1/[σ2(Fo2) + (0.0505P)2 + 4.7192P] where P = (Fo2 + 2Fc2)/3 |
S = 1.07 | (Δ/σ)max < 0.001 |
4119 reflections | Δρmax = 2.25 e Å−3 |
259 parameters | Δρmin = −1.33 e Å−3 |
Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes. |
x | y | z | Uiso*/Ueq | ||
I1 | 0.58373 (2) | 0.18313 (2) | 0.00675 (4) | 0.03731 (10) | |
Si1 | 1.0000 | 0.0000 | 0.0000 | 0.0150 (2) | |
O1 | 0.95195 (16) | 0.07333 (10) | −0.1198 (3) | 0.0179 (4) | |
N1 | 0.88930 (19) | 0.00288 (12) | 0.1341 (3) | 0.0169 (4) | |
N2 | 0.9741 (2) | 0.07375 (12) | 0.3918 (3) | 0.0193 (5) | |
N3 | 1.09243 (18) | 0.05331 (12) | 0.1863 (3) | 0.0165 (4) | |
N4 | 1.25478 (19) | 0.06065 (12) | 0.0671 (3) | 0.0195 (5) | |
C1 | 0.8921 (2) | 0.03894 (14) | 0.2930 (4) | 0.0176 (5) | |
C2 | 1.0663 (2) | 0.07947 (14) | 0.3410 (4) | 0.0179 (5) | |
C3 | 1.1573 (2) | 0.11803 (14) | 0.4453 (4) | 0.0201 (5) | |
C4 | 1.1716 (3) | 0.15271 (16) | 0.6108 (4) | 0.0254 (6) | |
H4A | 1.1165 | 0.1537 | 0.6778 | 0.031* | |
C5 | 1.2702 (3) | 0.18575 (16) | 0.6727 (5) | 0.0298 (7) | |
H5A | 1.2828 | 0.2102 | 0.7843 | 0.036* | |
C6 | 1.3518 (3) | 0.18382 (16) | 0.5743 (5) | 0.0293 (7) | |
H6A | 1.4180 | 0.2074 | 0.6208 | 0.035* | |
C7 | 1.3387 (3) | 0.14851 (15) | 0.4112 (4) | 0.0248 (6) | |
H7A | 1.3945 | 0.1468 | 0.3455 | 0.030* | |
C8 | 1.2387 (2) | 0.11562 (14) | 0.3486 (4) | 0.0196 (5) | |
C9 | 1.1969 (2) | 0.07466 (14) | 0.1873 (4) | 0.0180 (5) | |
C10 | 1.2146 (2) | 0.02365 (14) | −0.0789 (4) | 0.0179 (5) | |
C11 | 1.2804 (2) | 0.00286 (14) | −0.2035 (4) | 0.0199 (5) | |
C12 | 1.3895 (2) | 0.01224 (16) | −0.2023 (4) | 0.0238 (6) | |
H12A | 1.4349 | 0.0400 | −0.1130 | 0.029* | |
C13 | 1.4293 (3) | −0.02018 (18) | −0.3354 (5) | 0.0289 (7) | |
H13A | 1.5042 | −0.0163 | −0.3348 | 0.035* | |
C14 | 1.3613 (3) | −0.05895 (17) | −0.4722 (4) | 0.0280 (6) | |
H14A | 1.3911 | −0.0802 | −0.5630 | 0.034* | |
C15 | 1.2519 (3) | −0.06679 (15) | −0.4774 (4) | 0.0227 (6) | |
H15A | 1.2054 | −0.0918 | −0.5719 | 0.027* | |
C16 | 1.2129 (2) | −0.03648 (14) | −0.3382 (4) | 0.0193 (5) | |
C17 | 0.9045 (2) | 0.12947 (14) | −0.0640 (4) | 0.0180 (5) | |
C18 | 0.7937 (2) | 0.12940 (14) | −0.0651 (4) | 0.0192 (5) | |
H18A | 0.7506 | 0.0901 | −0.1044 | 0.023* | |
C19 | 0.7474 (2) | 0.18679 (15) | −0.0088 (4) | 0.0223 (6) | |
C20 | 0.8061 (3) | 0.24578 (17) | 0.0427 (5) | 0.0317 (7) | |
H20A | 0.7728 | 0.2848 | 0.0816 | 0.038* | |
C21 | 0.9147 (3) | 0.24686 (17) | 0.0365 (5) | 0.0342 (7) | |
H21A | 0.9555 | 0.2876 | 0.0667 | 0.041* | |
C22 | 0.9651 (3) | 0.18879 (15) | −0.0136 (4) | 0.0246 (6) | |
H22A | 1.0402 | 0.1897 | −0.0134 | 0.030* |
U11 | U22 | U33 | U12 | U13 | U23 | |
I1 | 0.02480 (14) | 0.04162 (16) | 0.04785 (17) | 0.00971 (8) | 0.01317 (10) | 0.00607 (10) |
Si1 | 0.0145 (5) | 0.0154 (5) | 0.0134 (5) | 0.0021 (4) | −0.0001 (4) | −0.0025 (4) |
O1 | 0.0204 (9) | 0.0172 (9) | 0.0149 (9) | 0.0057 (7) | 0.0016 (7) | −0.0005 (7) |
N1 | 0.0174 (11) | 0.0157 (11) | 0.0159 (10) | 0.0014 (8) | 0.0000 (8) | −0.0015 (8) |
N2 | 0.0215 (12) | 0.0198 (11) | 0.0155 (11) | 0.0030 (9) | 0.0016 (9) | −0.0022 (8) |
N3 | 0.0158 (10) | 0.0175 (11) | 0.0145 (10) | 0.0018 (8) | 0.0000 (8) | −0.0026 (8) |
N4 | 0.0190 (11) | 0.0189 (11) | 0.0196 (11) | −0.0014 (9) | 0.0021 (9) | −0.0002 (9) |
C1 | 0.0211 (13) | 0.0153 (12) | 0.0157 (12) | 0.0043 (10) | 0.0029 (10) | 0.0002 (9) |
C2 | 0.0209 (13) | 0.0153 (12) | 0.0149 (12) | 0.0025 (10) | −0.0014 (10) | −0.0026 (9) |
C3 | 0.0229 (14) | 0.0169 (13) | 0.0170 (13) | 0.0025 (10) | −0.0025 (10) | −0.0008 (10) |
C4 | 0.0295 (15) | 0.0222 (14) | 0.0205 (14) | 0.0033 (12) | −0.0026 (11) | −0.0052 (11) |
C5 | 0.0363 (18) | 0.0219 (15) | 0.0243 (15) | −0.0023 (12) | −0.0074 (13) | −0.0073 (11) |
C6 | 0.0322 (17) | 0.0227 (15) | 0.0266 (16) | −0.0081 (12) | −0.0065 (13) | −0.0014 (11) |
C7 | 0.0247 (15) | 0.0194 (14) | 0.0261 (15) | −0.0028 (11) | −0.0027 (11) | 0.0008 (11) |
C8 | 0.0218 (13) | 0.0153 (12) | 0.0180 (13) | 0.0010 (10) | −0.0031 (10) | −0.0012 (10) |
C9 | 0.0165 (12) | 0.0166 (12) | 0.0180 (13) | 0.0004 (10) | −0.0024 (10) | −0.0012 (10) |
C10 | 0.0185 (13) | 0.0162 (12) | 0.0182 (12) | 0.0010 (10) | 0.0028 (10) | 0.0016 (10) |
C11 | 0.0231 (14) | 0.0175 (13) | 0.0189 (13) | 0.0009 (10) | 0.0043 (11) | 0.0027 (10) |
C12 | 0.0231 (14) | 0.0264 (15) | 0.0219 (14) | −0.0049 (11) | 0.0053 (11) | 0.0017 (11) |
C13 | 0.0243 (15) | 0.0351 (17) | 0.0305 (16) | −0.0032 (13) | 0.0128 (12) | 0.0025 (13) |
C14 | 0.0333 (17) | 0.0305 (16) | 0.0246 (15) | 0.0005 (13) | 0.0159 (13) | −0.0009 (12) |
C15 | 0.0280 (15) | 0.0212 (14) | 0.0199 (13) | −0.0016 (11) | 0.0078 (11) | −0.0007 (10) |
C16 | 0.0222 (13) | 0.0170 (13) | 0.0183 (13) | 0.0009 (10) | 0.0040 (10) | 0.0025 (10) |
C17 | 0.0222 (13) | 0.0165 (12) | 0.0144 (12) | 0.0024 (10) | 0.0021 (10) | −0.0007 (9) |
C18 | 0.0217 (13) | 0.0182 (13) | 0.0159 (12) | −0.0006 (10) | 0.0008 (10) | 0.0027 (10) |
C19 | 0.0200 (14) | 0.0256 (15) | 0.0217 (14) | 0.0035 (11) | 0.0054 (11) | 0.0039 (10) |
C20 | 0.0393 (19) | 0.0215 (15) | 0.0365 (18) | 0.0048 (13) | 0.0132 (14) | −0.0069 (13) |
C21 | 0.0388 (19) | 0.0211 (15) | 0.0426 (19) | −0.0084 (13) | 0.0092 (15) | −0.0101 (13) |
C22 | 0.0216 (15) | 0.0233 (15) | 0.0282 (16) | −0.0027 (11) | 0.0041 (12) | −0.0017 (11) |
I1—C19 | 2.100 (3) | C7—C8 | 1.401 (4) |
Si1—O1i | 1.7314 (19) | C7—H7A | 0.9500 |
Si1—O1 | 1.7314 (19) | C8—C9 | 1.452 (4) |
Si1—N1 | 1.906 (2) | C10—N1i | 1.385 (4) |
Si1—N1i | 1.906 (2) | C10—C11 | 1.449 (4) |
Si1—N3i | 1.918 (2) | C11—C12 | 1.389 (4) |
Si1—N3 | 1.918 (2) | C11—C16 | 1.399 (4) |
O1—C17 | 1.364 (3) | C12—C13 | 1.376 (4) |
N1—C1 | 1.385 (3) | C12—H12A | 0.9500 |
N1—C10i | 1.385 (4) | C13—C14 | 1.405 (5) |
N2—C2 | 1.313 (4) | C13—H13A | 0.9500 |
N2—C1 | 1.319 (4) | C14—C15 | 1.383 (4) |
N3—C2 | 1.381 (3) | C14—H14A | 0.9500 |
N3—C9 | 1.384 (4) | C15—C16 | 1.390 (4) |
N4—C9 | 1.317 (4) | C15—H15A | 0.9500 |
N4—C10 | 1.319 (4) | C16—C1i | 1.444 (4) |
C1—C16i | 1.444 (4) | C17—C22 | 1.396 (4) |
C2—C3 | 1.449 (4) | C17—C18 | 1.399 (4) |
C3—C8 | 1.392 (4) | C18—C19 | 1.378 (4) |
C3—C4 | 1.396 (4) | C18—H18A | 0.9500 |
C4—C5 | 1.388 (5) | C19—C20 | 1.381 (5) |
C4—H4A | 0.9500 | C20—C21 | 1.384 (5) |
C5—C6 | 1.401 (5) | C20—H20A | 0.9500 |
C5—H5A | 0.9500 | C21—C22 | 1.397 (5) |
C6—C7 | 1.388 (4) | C21—H21A | 0.9500 |
C6—H6A | 0.9500 | C22—H22A | 0.9500 |
O1i—Si1—O1 | 180.0 | C3—C8—C7 | 121.8 (3) |
O1i—Si1—N1 | 87.72 (9) | C3—C8—C9 | 106.6 (2) |
O1—Si1—N1 | 92.28 (9) | C7—C8—C9 | 131.6 (3) |
O1i—Si1—N1i | 92.28 (9) | N4—C9—N3 | 127.8 (2) |
O1—Si1—N1i | 87.72 (9) | N4—C9—C8 | 122.6 (3) |
N1—Si1—N1i | 180.0 | N3—C9—C8 | 109.6 (2) |
O1i—Si1—N3i | 90.74 (9) | N4—C10—N1i | 127.9 (3) |
O1—Si1—N3i | 89.26 (9) | N4—C10—C11 | 121.8 (3) |
N1—Si1—N3i | 90.37 (10) | N1i—C10—C11 | 110.2 (2) |
N1i—Si1—N3i | 89.63 (10) | C12—C11—C16 | 121.2 (3) |
O1i—Si1—N3 | 89.26 (9) | C12—C11—C10 | 132.5 (3) |
O1—Si1—N3 | 90.74 (9) | C16—C11—C10 | 106.3 (2) |
N1—Si1—N3 | 89.63 (10) | C13—C12—C11 | 117.5 (3) |
N1i—Si1—N3 | 90.37 (10) | C13—C12—H12A | 121.2 |
N3i—Si1—N3 | 180.0 | C11—C12—H12A | 121.2 |
C17—O1—Si1 | 129.36 (17) | C12—C13—C14 | 121.4 (3) |
C1—N1—C10i | 106.6 (2) | C12—C13—H13A | 119.3 |
C1—N1—Si1 | 126.73 (19) | C14—C13—H13A | 119.3 |
C10i—N1—Si1 | 126.19 (18) | C15—C14—C13 | 121.4 (3) |
C2—N2—C1 | 121.0 (2) | C15—C14—H14A | 119.3 |
C2—N3—C9 | 107.2 (2) | C13—C14—H14A | 119.3 |
C2—N3—Si1 | 126.65 (19) | C14—C15—C16 | 117.1 (3) |
C9—N3—Si1 | 126.11 (19) | C14—C15—H15A | 121.4 |
C9—N4—C10 | 121.4 (2) | C16—C15—H15A | 121.4 |
N2—C1—N1 | 127.8 (3) | C15—C16—C11 | 121.3 (3) |
N2—C1—C16i | 122.0 (2) | C15—C16—C1i | 131.9 (3) |
N1—C1—C16i | 110.1 (2) | C11—C16—C1i | 106.7 (2) |
N2—C2—N3 | 127.9 (2) | O1—C17—C22 | 120.2 (3) |
N2—C2—C3 | 122.3 (3) | O1—C17—C18 | 120.5 (2) |
N3—C2—C3 | 109.8 (2) | C22—C17—C18 | 119.2 (3) |
C8—C3—C4 | 121.6 (3) | C19—C18—C17 | 119.5 (3) |
C8—C3—C2 | 106.8 (2) | C19—C18—H18A | 120.2 |
C4—C3—C2 | 131.6 (3) | C17—C18—H18A | 120.2 |
C5—C4—C3 | 116.8 (3) | C18—C19—C20 | 122.0 (3) |
C5—C4—H4A | 121.6 | C18—C19—I1 | 118.9 (2) |
C3—C4—H4A | 121.6 | C20—C19—I1 | 119.1 (2) |
C4—C5—C6 | 121.5 (3) | C19—C20—C21 | 118.5 (3) |
C4—C5—H5A | 119.2 | C19—C20—H20A | 120.7 |
C6—C5—H5A | 119.2 | C21—C20—H20A | 120.7 |
C7—C6—C5 | 122.0 (3) | C20—C21—C22 | 120.9 (3) |
C7—C6—H6A | 119.0 | C20—C21—H21A | 119.5 |
C5—C6—H6A | 119.0 | C22—C21—H21A | 119.5 |
C6—C7—C8 | 116.3 (3) | C17—C22—C21 | 119.7 (3) |
C6—C7—H7A | 121.9 | C17—C22—H22A | 120.1 |
C8—C7—H7A | 121.9 | C21—C22—H22A | 120.1 |
N1—Si1—O1—C17 | 34.0 (2) | C2—N3—C9—C8 | 0.2 (3) |
N1i—Si1—O1—C17 | −146.0 (2) | Si1—N3—C9—C8 | 178.24 (18) |
N3i—Si1—O1—C17 | 124.3 (2) | C3—C8—C9—N4 | −178.4 (3) |
N3—Si1—O1—C17 | −55.7 (2) | C7—C8—C9—N4 | 1.3 (5) |
C2—N2—C1—N1 | 2.3 (4) | C3—C8—C9—N3 | 0.4 (3) |
C2—N2—C1—C16i | −174.9 (3) | C7—C8—C9—N3 | −179.9 (3) |
C10i—N1—C1—N2 | −178.7 (3) | C9—N4—C10—N1i | 3.0 (4) |
Si1—N1—C1—N2 | −6.1 (4) | C9—N4—C10—C11 | −174.4 (3) |
C10i—N1—C1—C16i | −1.2 (3) | N4—C10—C11—C12 | 2.4 (5) |
Si1—N1—C1—C16i | 171.45 (18) | N1i—C10—C11—C12 | −175.4 (3) |
C1—N2—C2—N3 | 1.0 (4) | N4—C10—C11—C16 | 178.7 (3) |
C1—N2—C2—C3 | 179.2 (3) | N1i—C10—C11—C16 | 0.8 (3) |
C9—N3—C2—N2 | 177.7 (3) | C16—C11—C12—C13 | −1.8 (4) |
Si1—N3—C2—N2 | −0.4 (4) | C10—C11—C12—C13 | 174.0 (3) |
C9—N3—C2—C3 | −0.7 (3) | C11—C12—C13—C14 | 2.7 (5) |
Si1—N3—C2—C3 | −178.75 (18) | C12—C13—C14—C15 | −0.8 (5) |
N2—C2—C3—C8 | −177.5 (3) | C13—C14—C15—C16 | −2.0 (5) |
N3—C2—C3—C8 | 1.0 (3) | C14—C15—C16—C11 | 2.9 (4) |
N2—C2—C3—C4 | 2.8 (5) | C14—C15—C16—C1i | −174.1 (3) |
N3—C2—C3—C4 | −178.7 (3) | C12—C11—C16—C15 | −1.0 (4) |
C8—C3—C4—C5 | 1.2 (4) | C10—C11—C16—C15 | −177.7 (3) |
C2—C3—C4—C5 | −179.2 (3) | C12—C11—C16—C1i | 176.7 (3) |
C3—C4—C5—C6 | −0.5 (5) | C10—C11—C16—C1i | −0.1 (3) |
C4—C5—C6—C7 | −0.5 (5) | Si1—O1—C17—C22 | 100.8 (3) |
C5—C6—C7—C8 | 0.9 (5) | Si1—O1—C17—C18 | −82.4 (3) |
C4—C3—C8—C7 | −0.8 (4) | O1—C17—C18—C19 | −179.8 (2) |
C2—C3—C8—C7 | 179.5 (3) | C22—C17—C18—C19 | −2.9 (4) |
C4—C3—C8—C9 | 178.9 (3) | C17—C18—C19—C20 | 2.5 (4) |
C2—C3—C8—C9 | −0.8 (3) | C17—C18—C19—I1 | −175.6 (2) |
C6—C7—C8—C3 | −0.3 (4) | C18—C19—C20—C21 | 0.2 (5) |
C6—C7—C8—C9 | −179.9 (3) | I1—C19—C20—C21 | 178.3 (3) |
C10—N4—C9—N3 | 1.9 (4) | C19—C20—C21—C22 | −2.6 (6) |
C10—N4—C9—C8 | −179.6 (3) | O1—C17—C22—C21 | 177.5 (3) |
C2—N3—C9—N4 | 178.9 (3) | C18—C17—C22—C21 | 0.6 (5) |
Si1—N3—C9—N4 | −3.1 (4) | C20—C21—C22—C17 | 2.1 (5) |
Symmetry code: (i) −x+2, −y, −z. |
C52H42N8O2Si | F(000) = 3520 |
Mr = 839.03 | Dx = 1.194 Mg m−3 |
Orthorhombic, Ibca | Cu Kα radiation, λ = 1.54178 Å |
Hall symbol: -I 2b 2c | Cell parameters from 586 reflections |
a = 10.9239 (3) Å | θ = 4.4–35.1° |
b = 25.7282 (7) Å | µ = 0.83 mm−1 |
c = 33.2065 (8) Å | T = 220 K |
V = 9332.8 (4) Å3 | Plate, blue |
Z = 8 | 0.12 × 0.12 × 0.01 mm |
Bruker Kappa APEX DUO CCD diffractometer | 4085 independent reflections |
Radiation source: fine-focus sealed tube | 2969 reflections with I > 2σ(I) |
Multi-layer optics monochromator | Rint = 0.104 |
φ and ω scans | θmax = 66.8°, θmin = 3.4° |
Absorption correction: multi-scan (TWINABS; Bruker, 2007) | h = −12→12 |
Tmin = 0.621, Tmax = 0.753 | k = −30→30 |
120855 measured reflections | l = −38→38 |
Refinement on F2 | Primary atom site location: structure-invariant direct methods |
Least-squares matrix: full | Secondary atom site location: difference Fourier map |
R[F2 > 2σ(F2)] = 0.066 | Hydrogen site location: inferred from neighbouring sites |
wR(F2) = 0.208 | H-atom parameters constrained |
S = 1.08 | w = 1/[σ2(Fo2) + (0.1166P)2 + 6.9892P] where P = (Fo2 + 2Fc2)/3 |
4085 reflections | (Δ/σ)max < 0.001 |
287 parameters | Δρmax = 0.40 e Å−3 |
4 restraints | Δρmin = −0.36 e Å−3 |
Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes. |
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > 2sigma(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger. |
x | y | z | Uiso*/Ueq | ||
Si1 | 0.0000 | 0.2500 | 0.14722 (3) | 0.0424 (3) | |
O1 | 0.10423 (18) | 0.30013 (7) | 0.15037 (5) | 0.0502 (5) | |
N1 | 0.0000 | 0.2500 | 0.09000 (10) | 0.0477 (8) | |
N2 | 0.1543 (2) | 0.18453 (10) | 0.07595 (7) | 0.0557 (6) | |
N3 | 0.1325 (2) | 0.20136 (9) | 0.14701 (6) | 0.0469 (6) | |
N4 | 0.1747 (2) | 0.19492 (9) | 0.21844 (7) | 0.0467 (6) | |
N5 | 0.0000 | 0.2500 | 0.20454 (8) | 0.0414 (7) | |
C1 | 0.0427 (3) | 0.22952 (14) | −0.04755 (9) | 0.0655 (9) | |
H1 | 0.0707 | 0.2161 | −0.0722 | 0.079* | |
C2 | 0.0858 (3) | 0.20892 (13) | −0.01231 (8) | 0.0600 (8) | |
H2 | 0.1428 | 0.1816 | −0.0123 | 0.072* | |
C3 | 0.0421 (3) | 0.22993 (12) | 0.02363 (8) | 0.0527 (7) | |
C4 | 0.0689 (3) | 0.21830 (11) | 0.06512 (8) | 0.0484 (7) | |
C5 | 0.1844 (3) | 0.17777 (11) | 0.11392 (8) | 0.0535 (7) | |
C6 | 0.2850 (3) | 0.14513 (12) | 0.12648 (9) | 0.0586 (8) | |
C7 | 0.3677 (3) | 0.11427 (14) | 0.10481 (11) | 0.0758 (11) | |
H7A | 0.3629 | 0.1112 | 0.0767 | 0.091* | |
C8 | 0.4562 (4) | 0.08877 (15) | 0.12662 (12) | 0.0847 (12) | |
H8A | 0.5136 | 0.0681 | 0.1129 | 0.102* | |
C9 | 0.4635 (4) | 0.09263 (15) | 0.16849 (12) | 0.0799 (11) | |
H9A | 0.5243 | 0.0740 | 0.1823 | 0.096* | |
C10 | 0.3830 (3) | 0.12339 (12) | 0.18996 (10) | 0.0623 (8) | |
H10A | 0.3883 | 0.1265 | 0.2181 | 0.075* | |
C11 | 0.2936 (3) | 0.14950 (11) | 0.16799 (9) | 0.0536 (7) | |
C12 | 0.1969 (2) | 0.18421 (11) | 0.18043 (8) | 0.0473 (6) | |
C13 | 0.0820 (2) | 0.22489 (10) | 0.22928 (8) | 0.0433 (6) | |
C14 | 0.0520 (2) | 0.23430 (10) | 0.27105 (8) | 0.0447 (6) | |
C15 | 0.1064 (3) | 0.21848 (12) | 0.30650 (8) | 0.0540 (7) | |
H15 | 0.1773 | 0.1978 | 0.3065 | 0.065* | |
C16 | 0.0525 (3) | 0.23430 (13) | 0.34196 (9) | 0.0597 (8) | |
H16 | 0.0867 | 0.2238 | 0.3666 | 0.072* | |
C17 | 0.1460 (3) | 0.33683 (12) | 0.12375 (9) | 0.0561 (7) | |
C18 | 0.2136 (3) | 0.32242 (15) | 0.09020 (9) | 0.0658 (9) | |
H18A | 0.2303 | 0.2871 | 0.0854 | 0.079* | |
C19 | 0.2570 (4) | 0.3601 (2) | 0.06368 (12) | 0.0995 (15) | |
H19A | 0.3009 | 0.3505 | 0.0405 | 0.119* | |
C20 | 0.2341 (5) | 0.4119 (2) | 0.07211 (19) | 0.123 (2) | |
H20A | 0.2588 | 0.4378 | 0.0538 | 0.147* | |
C21 | 0.1763 (5) | 0.42528 (19) | 0.10666 (19) | 0.126 (2) | |
H21A | 0.1681 | 0.4607 | 0.1130 | 0.151* | |
C22 | 0.1292 (4) | 0.38908 (15) | 0.13276 (15) | 0.0906 (13) | |
C23 | 0.0718 (5) | 0.40626 (17) | 0.17334 (18) | 0.128 (2) | |
H23A | 0.0410 | 0.3745 | 0.1867 | 0.154* | |
C24 | 0.1738 (8) | 0.4300 (3) | 0.20158 (18) | 0.179 (3) | |
H24A | 0.2376 | 0.4044 | 0.2059 | 0.269* | |
H24B | 0.1377 | 0.4395 | 0.2272 | 0.269* | |
H24C | 0.2085 | 0.4606 | 0.1890 | 0.269* | |
C25 | −0.0369 (6) | 0.4412 (2) | 0.1666 (3) | 0.181 (4) | |
H25A | −0.0956 | 0.4249 | 0.1482 | 0.218* | |
H25B | −0.0110 | 0.4745 | 0.1551 | 0.218* | |
C26 | −0.0956 (8) | 0.4494 (3) | 0.2095 (3) | 0.226 (4) | |
H26A | −0.1689 | 0.4704 | 0.2070 | 0.339* | |
H26B | −0.0374 | 0.4668 | 0.2269 | 0.339* | |
H26C | −0.1168 | 0.4159 | 0.2210 | 0.339* |
U11 | U22 | U33 | U12 | U13 | U23 | |
Si1 | 0.0459 (6) | 0.0491 (6) | 0.0323 (5) | 0.0052 (4) | 0.000 | 0.000 |
O1 | 0.0573 (12) | 0.0531 (11) | 0.0402 (11) | −0.0034 (9) | −0.0045 (8) | 0.0066 (8) |
N1 | 0.0552 (19) | 0.0534 (18) | 0.0344 (16) | 0.0052 (14) | 0.000 | 0.000 |
N2 | 0.0658 (15) | 0.0622 (14) | 0.0390 (13) | 0.0115 (12) | 0.0092 (11) | 0.0023 (11) |
N3 | 0.0516 (13) | 0.0526 (13) | 0.0366 (12) | 0.0080 (10) | 0.0062 (10) | 0.0035 (9) |
N4 | 0.0455 (12) | 0.0558 (13) | 0.0387 (12) | 0.0043 (10) | 0.0028 (10) | 0.0038 (9) |
N5 | 0.0434 (16) | 0.0514 (17) | 0.0295 (15) | 0.0019 (13) | 0.000 | 0.000 |
C1 | 0.066 (2) | 0.097 (2) | 0.0342 (15) | 0.0023 (16) | 0.0047 (14) | −0.0033 (15) |
C2 | 0.0594 (18) | 0.080 (2) | 0.0410 (16) | 0.0041 (15) | 0.0065 (14) | −0.0070 (14) |
C3 | 0.0555 (16) | 0.0632 (17) | 0.0395 (15) | −0.0014 (13) | −0.0014 (13) | −0.0007 (12) |
C4 | 0.0522 (15) | 0.0568 (16) | 0.0363 (14) | 0.0049 (13) | 0.0058 (12) | −0.0003 (11) |
C5 | 0.0628 (18) | 0.0565 (16) | 0.0411 (16) | 0.0103 (14) | 0.0108 (13) | 0.0017 (12) |
C6 | 0.0665 (19) | 0.0603 (17) | 0.0490 (17) | 0.0188 (14) | 0.0146 (14) | 0.0095 (13) |
C7 | 0.091 (3) | 0.077 (2) | 0.059 (2) | 0.032 (2) | 0.0247 (18) | 0.0101 (17) |
C8 | 0.088 (3) | 0.080 (2) | 0.086 (3) | 0.039 (2) | 0.024 (2) | 0.016 (2) |
C9 | 0.075 (2) | 0.080 (2) | 0.084 (3) | 0.034 (2) | 0.007 (2) | 0.0160 (19) |
C10 | 0.0606 (18) | 0.0678 (19) | 0.0586 (18) | 0.0153 (15) | 0.0047 (15) | 0.0135 (15) |
C11 | 0.0535 (16) | 0.0553 (16) | 0.0518 (18) | 0.0100 (13) | 0.0095 (13) | 0.0102 (13) |
C12 | 0.0447 (14) | 0.0535 (15) | 0.0437 (15) | 0.0061 (12) | 0.0029 (12) | 0.0086 (12) |
C13 | 0.0395 (13) | 0.0524 (14) | 0.0379 (14) | −0.0013 (11) | −0.0006 (11) | 0.0006 (11) |
C14 | 0.0406 (13) | 0.0557 (15) | 0.0379 (14) | −0.0030 (11) | 0.0018 (11) | 0.0012 (11) |
C15 | 0.0486 (15) | 0.0730 (19) | 0.0403 (15) | 0.0000 (13) | −0.0051 (13) | 0.0035 (13) |
C16 | 0.0605 (18) | 0.082 (2) | 0.0365 (14) | −0.0010 (15) | −0.0072 (14) | 0.0028 (14) |
C17 | 0.0517 (16) | 0.0635 (18) | 0.0530 (17) | −0.0010 (13) | 0.0000 (14) | 0.0167 (14) |
C18 | 0.0513 (17) | 0.098 (2) | 0.0487 (18) | −0.0062 (16) | −0.0014 (14) | 0.0108 (17) |
C19 | 0.072 (2) | 0.159 (5) | 0.068 (3) | −0.022 (3) | 0.008 (2) | 0.037 (3) |
C20 | 0.117 (4) | 0.122 (4) | 0.129 (4) | −0.012 (3) | 0.013 (3) | 0.076 (4) |
C21 | 0.127 (4) | 0.085 (3) | 0.164 (5) | 0.008 (3) | 0.054 (4) | 0.058 (3) |
C22 | 0.092 (3) | 0.059 (2) | 0.120 (3) | 0.000 (2) | 0.033 (2) | 0.022 (2) |
C23 | 0.155 (5) | 0.059 (2) | 0.171 (5) | −0.016 (3) | 0.082 (4) | −0.007 (3) |
C24 | 0.259 (8) | 0.144 (5) | 0.135 (5) | −0.085 (6) | 0.066 (5) | −0.030 (4) |
C25 | 0.143 (5) | 0.085 (3) | 0.316 (9) | −0.011 (4) | 0.099 (6) | −0.056 (5) |
C26 | 0.183 (7) | 0.172 (7) | 0.324 (11) | 0.024 (6) | 0.067 (8) | −0.090 (8) |
Si1—O1 | 1.7236 (19) | C10—C11 | 1.391 (4) |
Si1—O1i | 1.7237 (19) | C10—H10A | 0.9400 |
Si1—N1 | 1.900 (3) | C11—C12 | 1.444 (4) |
Si1—N5 | 1.904 (3) | C13—C14 | 1.446 (4) |
Si1—N3 | 1.913 (2) | C14—C15 | 1.380 (4) |
Si1—N3i | 1.913 (2) | C14—C14i | 1.394 (5) |
O1—C17 | 1.372 (3) | C15—C16 | 1.378 (4) |
N1—C4i | 1.384 (3) | C15—H15 | 0.9400 |
N1—C4 | 1.384 (3) | C16—C16i | 1.403 (6) |
N2—C5 | 1.315 (4) | C16—H16 | 0.9400 |
N2—C4 | 1.324 (4) | C17—C18 | 1.387 (4) |
N3—C5 | 1.378 (3) | C17—C22 | 1.390 (5) |
N3—C12 | 1.386 (3) | C18—C19 | 1.392 (5) |
N4—C12 | 1.314 (4) | C18—H18A | 0.9400 |
N4—C13 | 1.323 (3) | C19—C20 | 1.385 (8) |
N5—C13i | 1.376 (3) | C19—H19A | 0.9400 |
N5—C13 | 1.376 (3) | C20—C21 | 1.354 (7) |
C1—C2 | 1.368 (4) | C20—H20A | 0.9400 |
C1—C1i | 1.408 (7) | C21—C22 | 1.372 (6) |
C1—H1 | 0.9400 | C21—H21A | 0.9400 |
C2—C3 | 1.394 (4) | C22—C23 | 1.550 (7) |
C2—H2 | 0.9400 | C23—C25 | 1.506 (9) |
C3—C3i | 1.383 (6) | C23—C24 | 1.578 (7) |
C3—C4 | 1.440 (4) | C23—H23A | 0.9900 |
C5—C6 | 1.445 (4) | C24—H24A | 0.9700 |
C6—C11 | 1.386 (4) | C24—H24B | 0.9700 |
C6—C7 | 1.401 (4) | C24—H24C | 0.9700 |
C7—C8 | 1.375 (5) | C25—C26 | 1.577 (7) |
C7—H7A | 0.9400 | C25—H25A | 0.9800 |
C8—C9 | 1.396 (6) | C25—H25B | 0.9800 |
C8—H8A | 0.9400 | C26—H26A | 0.9700 |
C9—C10 | 1.381 (5) | C26—H26B | 0.9700 |
C9—H9A | 0.9400 | C26—H26C | 0.9700 |
O1—Si1—O1i | 173.03 (13) | C10—C11—C12 | 131.4 (3) |
O1—Si1—N1 | 93.48 (7) | N4—C12—N3 | 127.5 (2) |
O1i—Si1—N1 | 93.49 (7) | N4—C12—C11 | 122.6 (2) |
O1—Si1—N5 | 86.52 (7) | N3—C12—C11 | 109.8 (2) |
O1i—Si1—N5 | 86.51 (7) | N4—C13—N5 | 127.6 (2) |
N1—Si1—N5 | 180.0 | N4—C13—C14 | 122.2 (2) |
O1—Si1—N3 | 89.42 (10) | N5—C13—C14 | 110.3 (2) |
O1i—Si1—N3 | 90.61 (10) | C15—C14—C14i | 121.46 (17) |
N1—Si1—N3 | 89.79 (7) | C15—C14—C13 | 132.2 (3) |
N5—Si1—N3 | 90.21 (7) | C14i—C14—C13 | 106.38 (15) |
O1—Si1—N3i | 90.61 (10) | C16—C15—C14 | 117.2 (3) |
O1i—Si1—N3i | 89.42 (10) | C16—C15—H15 | 121.4 |
N1—Si1—N3i | 89.79 (7) | C14—C15—H15 | 121.4 |
N5—Si1—N3i | 90.21 (7) | C15—C16—C16i | 121.30 (18) |
N3—Si1—N3i | 179.58 (14) | C15—C16—H16 | 119.3 |
C17—O1—Si1 | 134.08 (18) | C16i—C16—H16 | 119.3 |
C4i—N1—C4 | 106.7 (3) | O1—C17—C18 | 120.7 (3) |
C4i—N1—Si1 | 126.66 (15) | O1—C17—C22 | 118.9 (3) |
C4—N1—Si1 | 126.66 (15) | C18—C17—C22 | 120.1 (3) |
C5—N2—C4 | 121.6 (2) | C17—C18—C19 | 120.2 (4) |
C5—N3—C12 | 106.8 (2) | C17—C18—H18A | 119.9 |
C5—N3—Si1 | 127.05 (19) | C19—C18—H18A | 119.9 |
C12—N3—Si1 | 126.11 (18) | C20—C19—C18 | 118.7 (4) |
C12—N4—C13 | 121.6 (2) | C20—C19—H19A | 120.6 |
C13i—N5—C13 | 106.7 (3) | C18—C19—H19A | 120.6 |
C13i—N5—Si1 | 126.63 (14) | C21—C20—C19 | 120.0 (4) |
C13—N5—Si1 | 126.63 (14) | C21—C20—H20A | 120.0 |
C2—C1—C1i | 121.19 (19) | C19—C20—H20A | 120.0 |
C2—C1—H1 | 119.4 | C20—C21—C22 | 122.5 (5) |
C1i—C1—H1 | 119.4 | C20—C21—H21A | 118.8 |
C1—C2—C3 | 117.7 (3) | C22—C21—H21A | 118.8 |
C1—C2—H2 | 121.2 | C21—C22—C17 | 118.1 (4) |
C3—C2—H2 | 121.2 | C21—C22—C23 | 120.5 (4) |
C3i—C3—C2 | 121.13 (18) | C17—C22—C23 | 121.1 (3) |
C3i—C3—C4 | 106.89 (16) | C25—C23—C22 | 111.1 (5) |
C2—C3—C4 | 132.0 (3) | C25—C23—C24 | 114.5 (5) |
N2—C4—N1 | 127.4 (2) | C22—C23—C24 | 109.9 (4) |
N2—C4—C3 | 122.6 (2) | C25—C23—H23A | 107.0 |
N1—C4—C3 | 109.8 (2) | C22—C23—H23A | 107.0 |
N2—C5—N3 | 127.1 (3) | C24—C23—H23A | 107.0 |
N2—C5—C6 | 123.0 (3) | C23—C24—H24A | 109.5 |
N3—C5—C6 | 109.8 (2) | C23—C24—H24B | 109.5 |
C11—C6—C7 | 120.9 (3) | H24A—C24—H24B | 109.5 |
C11—C6—C5 | 106.9 (2) | C23—C24—H24C | 109.5 |
C7—C6—C5 | 132.2 (3) | H24A—C24—H24C | 109.5 |
C8—C7—C6 | 116.9 (3) | H24B—C24—H24C | 109.5 |
C8—C7—H7A | 121.5 | C23—C25—C26 | 105.4 (6) |
C6—C7—H7A | 121.5 | C23—C25—H25A | 110.7 |
C7—C8—C9 | 122.0 (3) | C26—C25—H25A | 110.7 |
C7—C8—H8A | 119.0 | C23—C25—H25B | 110.7 |
C9—C8—H8A | 119.0 | C26—C25—H25B | 110.7 |
C10—C9—C8 | 121.3 (3) | H25A—C25—H25B | 108.8 |
C10—C9—H9A | 119.4 | C25—C26—H26A | 109.5 |
C8—C9—H9A | 119.4 | C25—C26—H26B | 109.5 |
C9—C10—C11 | 116.9 (3) | H26A—C26—H26B | 109.5 |
C9—C10—H10A | 121.6 | C25—C26—H26C | 109.5 |
C11—C10—H10A | 121.6 | H26A—C26—H26C | 109.5 |
C6—C11—C10 | 122.0 (3) | H26B—C26—H26C | 109.5 |
C6—C11—C12 | 106.6 (2) |
Symmetry code: (i) −x, −y+1/2, z. |
Molecule | C(K)-H(L)—H(M)-C(N) | distance | X···X |
(3MP)2-SiPc | C4—H4A···O2—Si1 | 2.67 | H···O |
(3MP)2-SiPc | C46—H46B···H11—C11 | 2.39 | H···H |
(3MP)2-SiPc | C39—H39C···H3A—C3 | 2.34 | H···H |
(3MP)2-SiPc | C42—C43···H21A—C21 | 2.75 | C···H |
(3IP)2-SiPc | C4—H1···H11—C21 | 2.32 | H···H |
(2secBP)2-SiPc | C24—H16···H19—C26 | 2.30 | H···H |
Slip angle between Pc aromatic = angle between centroid-to-centroid and normal of each aromatic Pc benzene; angle between aromatic planes = smallest angle between both planes that contain the stacking aromatic benzene rings. |
Compound | details of packing | shortest distance between Pc aromatic | slip angle between Pc aromatic | angle between aromatic planes | Ref. |
Cl2-SiPc | dual benzene ring stacking | 4.172,4.172 | 34.87 / 36.59 | 1.72 | Lessard, White et al. (2015) |
(3MP)2-SiPc | isoindoline stacking | 3.794, 3.655, 3.794 | 22.33 / 22.53 | 0.21 | This work |
(345F)2-SiPc | isoindoline stacking | 3.716, 3.580, 3.716 | 18.90 / 18.90 | 0 | Lessard, Grant et al., (2015) |
(246F)2-SiPc | dual benzene ring stacking | 3.860, 3.860 | 30.08 / 30.08 | 0 | Lessard, Grant et al. (2015) |
(3IP)2-SiPc | dual benzene ring stacking | 3.716, 3.716 | 17.55/14.60 | 10.9 | This work |
(2secBP)2-SiPc | dual benzene ring stacking | 3.947, 3.947 | 32.53/26.02 | 6.5 | This work |
Notes: in all cases the single crystals were grown by slow diffusion of heptane into a THF solution of the respective compound. Identical crystals of (3MP)2-SiPc were also grown by diffusion of pentane into a solution of benzene as well as from slow evaporation of a chloroform solution. |
Acknowledgements
This work was supported by a Natural Sciences and Engineer Research Council (NSERC) Banting Post-Doctoral fellowship to BHL and a Discovery Grant to TPB. The authors would also like to acknowledge financial support from Saudi Basic Industries (SABIC). We would also like to thank Dr Alan Lough for his help performing the single-crystal X-ray diffractions.
References
Athimoolam, S., Kumar, J., Ramakrishnan, V. & Rajaram, R. K. (2005). Acta Cryst. E61, m2014–m2017. Web of Science CSD CrossRef IUCr Journals Google Scholar
Bruker (2011). APEX2, SAINT, SADABS and TWINABS. Bruker AXS Inc., Madison, Wisconsin, USA. Google Scholar
Cnops, K., Rand, B. P., Cheyns, D., Verreet, B., Empl, M. & Heremans, P. (2014). Nat. Commun. 5, 3406. CrossRef PubMed Google Scholar
Cox, P. J., Kumarasamy, Y., Nahar, L., Sarker, S. D. & Shoeb, M. (2003). Acta Cryst. E59, o975–o977. Web of Science CSD CrossRef IUCr Journals Google Scholar
Lessard, B. H., Dang, J. D., Grant, T. M., Gao, D., Seferos, D. S. & Bender, T. P. (2014). Appl. Mater. Interfaces, 6, 15040–15051. CAS Google Scholar
Eftaiha, A. F., Sun, J.-P., Hill, I. G. & Welch, G. C. (2014). J. Mater. Chem. A, 2, 1201–1213. CrossRef CAS Google Scholar
Flack, H. D. (1983). Acta Cryst. A39, 876–881. CrossRef CAS Web of Science IUCr Journals Google Scholar
Honda, S., Nogami, T., Ohkita, H., Benten, H. & Ito, S. (2009). Appl. Mater. Interfaces, 1, 804–810. CrossRef CAS Google Scholar
Honda, S., Ohkita, H., Benten, H. & Ito, S. (2011). Adv. Energ. Mater. 1, 588–598. CrossRef CAS Google Scholar
Lessard, B. H., Grant, T. M., White, R., Thibau, E., Lu, Z.-H. & Bender, T. P. (2015). J. Mater. Chem. A, 3, 24512–24524. CSD CrossRef CAS Google Scholar
Lessard, B. H., White, R. T., AL-Amar, M., Plint, T., Castrucci, J. S., Josey, D. S., Lu, Z.-H. & Bender, T. P. (2015). Appl. Mater. Interfaces, 7, 5076–5088. CrossRef CAS Google Scholar
Li, H., Earmme, T., Ren, G., Saeki, A., Yoshikawa, S., Murari, N. M., Subramaniyan, S., Crane, M. J., Seki, S. & Jenekhe, S. (2014). J. Am. Chem. Soc. 136, 14589–14597. CrossRef CAS PubMed Google Scholar
Lowery, M. K., Starshak, A. J., Esposito, J. N., Krueger, P. C. & Kenney, M. E. (1965). Inorg. Chem. 4, 128. CrossRef Google Scholar
Macrae, C. F., Edgington, P. R., McCabe, P., Pidcock, E., Shields, G. P., Taylor, R., Towler, M. & van de Streek, J. (2006). J. Appl. Cryst. 39, 453–457. Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
Mohamed, A. A., Krause Bauer, J. A., Bruce, A. E. & Bruce, M. R. M. (2003). Acta Cryst. C59, m84–m86. Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
Paton, A. S., Lough, A. J. & Bender, T. P. (2012). Ind. Eng. Chem. Res. 51, 6290–6296. CSD CrossRef CAS Google Scholar
Rozycka-Sokolowska, E., Marciniak, B., Kosik, S., Dondela, B. & Bak, Z. (2015). Struct. Chem. 26, 873–886. CAS Google Scholar
Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. Web of Science CrossRef CAS IUCr Journals Google Scholar
Sheldrick, G. M. (2015). Acta Cryst. C71, 3–8. Web of Science CrossRef IUCr Journals Google Scholar
Spackman, M. & Jayatilaka, D. (2009). CrystEngComm, 11, 19–32. Web of Science CrossRef CAS Google Scholar
Spek, A. L. (2009). Acta Cryst. D65, 148–155. Web of Science CrossRef CAS IUCr Journals Google Scholar
Spek, A. L. (2015). Acta Cryst. C71, 9–18. Web of Science CrossRef IUCr Journals Google Scholar
Stähler, R., Näther, C. & Bensch, W. (2001). Acta Cryst. C57, 26–27. Web of Science CSD CrossRef IUCr Journals Google Scholar
Virdo, J. D., Kawar, Y. H., Lough, A. J. & Bender, T. P. (2013). CrystEngComm, 15, 3187–3199. CSD CrossRef CAS Google Scholar
Zhang, X., Lu, Z., Ye, L., Zhan, C., Hou, J., Zhang, S., Jiang, B., Zhao, Y., Huang, J., Zhang, S., Liu, Y., Shi, Q., Liu, Y. & Yao, J. (2013). Adv. Mater. 25, 5791–5797. CrossRef CAS PubMed Google Scholar
This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.