research communications\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Crystal structures of bis­­(phen­­oxy)silicon phthalocyanines: increasing ππ inter­actions, solubility and disorder and no halogen bonding observed

CROSSMARK_Color_square_no_text.svg

aUniversity of Toronto, Department of Chemical Engineering & Applied Chemistry, 200 College Street, Toronto, Ontario, M5S 3E5, Canada, bUniversity of Ottawa, Department of Chemical and Biological Engineering, 161 Louis Pasteur, Ottawa, Ontario, K1N 6N5, Canada, cUniversity of Toronto, Department of Chemistry, 80 St. George Street, Toronto, Ontario, M5S 3H6, Canada, and dUniversity of Toronto, Department of Materials Science and Engineering, 200 College Street, Toronto, Ontario, M5S 3E5, Canada
*Correspondence e-mail: tim.bender@utoronto.ca

Edited by W. T. A. Harrison, University of Aberdeen, Scotland (Received 24 April 2016; accepted 8 June 2016; online 21 June 2016)

We report the syntheses and characterization of three solution-processable phen­oxy silicon phthalocyanines (SiPcs), namely bis­(3-methyl­phen­oxy)(phthalocyanine)silicon [(3MP)2-SiPc], C46H30N8O2Si, bis­(2-sec-butyl­phen­oxy)(phthalocyanine)silicon [(2secBP)2-SiPc], C44H24I2N8O2Si, and bis­(3-iodo­phen­oxy)(phthalocyanine)silicon [(3IP)2-SiPc], C52H42N8O2Si. Crystals grown of these compounds were characterized by single-crystal X-ray diffraction and the ππ inter­actions between the aromatic SiPc cores were studied. It was determined that (3MP)2-SiPc has similar inter­actions to previously reported bis­(3,4,5-tri­fluoro­phen­oxy)silicon phthalocyanines [(345 F)2-SiPc] with significant ππ inter­actions between the SiPc groups. (3IP)2-SiPc and (2secBP)2-SiPc both experienced a parallel stacking of two of the peripheral aromatic groups. In all three cases, the solubility of these mol­ecules was increased by the addition of phen­oxy groups while maintaining ππ inter­actions between the aromatic SiPc groups. The solubility of (2secBP)2-SiPc was significantly higher than other bis-phen­oxy-SiPcs and this was exemplified by the higher observed disorder within the crystal structure.

1. Chemical Context

Organic photovoltaic (OPV) devices represent an emerging technology with immense potential for inexpensive solar energy generation. The majority of these prototypes depend on fullerenes as acceptor mol­ecules that are problematic due to their high manufacturing cost, low photovoltage generation and poor photochemical stability (Li et al., 2014[Li, H., Earmme, T., Ren, G., Saeki, A., Yoshikawa, S., Murari, N. M., Subramaniyan, S., Crane, M. J., Seki, S. & Jenekhe, S. (2014). J. Am. Chem. Soc. 136, 14589-14597.]; Eftaiha et al., 2014[Eftaiha, A. F., Sun, J.-P., Hill, I. G. & Welch, G. C. (2014). J. Mater. Chem. A, 2, 1201-1213.]). Recently, examples have emerged where fullerene-free materials are being implemented into OPV devices reaching overall efficiencies of 5–7% (Li et al., 2014[Li, H., Earmme, T., Ren, G., Saeki, A., Yoshikawa, S., Murari, N. M., Subramaniyan, S., Crane, M. J., Seki, S. & Jenekhe, S. (2014). J. Am. Chem. Soc. 136, 14589-14597.]; Eftaiha et al., 2014[Eftaiha, A. F., Sun, J.-P., Hill, I. G. & Welch, G. C. (2014). J. Mater. Chem. A, 2, 1201-1213.]; Cnops et al., 2014[Cnops, K., Rand, B. P., Cheyns, D., Verreet, B., Empl, M. & Heremans, P. (2014). Nat. Commun. 5, 3406.]; Zhang et al., 2013[Zhang, X., Lu, Z., Ye, L., Zhan, C., Hou, J., Zhang, S., Jiang, B., Zhao, Y., Huang, J., Zhang, S., Liu, Y., Shi, Q., Liu, Y. & Yao, J. (2013). Adv. Mater. 25, 5791-5797.]). Among these emerging materials are the family of silicon phthalocyanines (SiPcs).

Metalphthalocyanines (MPcs) are composed of a nitro­gen-linked tetra­meric di­imino­isoindoline conjugated macrocycle that chelate a metal or metalloid through two covalent bonds and two coordination bonds (see Scheme 1[link]). The resulting mol­ecules are highly stable materials that have been used for a variety of applications including dyes and pigments for decades. Silicon phthalocyanines (SiPcs) are characterized by having an additional two axial bonds that are perpendicular to the SiPc macrocycle. These axial groups can serve as chemical handles for the functionalization of the base SiPc mol­ecule. Such functionalizational groups can impart solubility as well as change the solid-state arrangement.

[Scheme 1]

Honda et al. and our group have studied highly soluble tri-n-hexyl-silyl-SiPc [(3HS)2-SiPc] as ternary additives in bulk heterojunction (BHJ) OPV devices (Lessard et al., 2014[Lessard, B. H., Dang, J. D., Grant, T. M., Gao, D., Seferos, D. S. & Bender, T. P. (2014). Appl. Mater. Interfaces, 6, 15040-15051.]; Honda et al., 2011[Honda, S., Ohkita, H., Benten, H. & Ito, S. (2011). Adv. Energ. Mater. 1, 588-598.], 2009[Honda, S., Nogami, T., Ohkita, H., Benten, H. & Ito, S. (2009). Appl. Mater. Interfaces, 1, 804-810.]). Our hypothesis was that the high solubility was also combined with a high tendency to crystallize into the solid state with high levels of order. As part of that study, (3HS)2-SiPc and an analog bis­(3-penta­decyl­phen­oxy)- SiPc [(PDP)2-SiPc] were found to have very few ππ inter­actions between the aromatic SiPc core due to the large alkyl substituents (Lessard et al., 2014[Lessard, B. H., Dang, J. D., Grant, T. M., Gao, D., Seferos, D. S. & Bender, T. P. (2014). Appl. Mater. Interfaces, 6, 15040-15051.]). Our group recently reported that simple phen­oxy­lation chemistry can be employed to enhance the ππ inter­actions present with the solid-state arrangement of the SiPc mol­ecules, resulting in improved efficiency of planar heterojunction (PHJ) OPV devices (Lessard, White et al., 2015[Lessard, B. H., White, R. T., AL-Amar, M., Plint, T., Castrucci, J. S., Josey, D. S., Lu, Z.-H. & Bender, T. P. (2015). Appl. Mater. Interfaces, 7, 5076-5088.]; Lessard, Grant et al., 2015[Lessard, B. H., Grant, T. M., White, R., Thibau, E., Lu, Z.-H. & Bender, T. P. (2015). J. Mater. Chem. A, 3, 24512-24524.]). Our work on boron subphthalocyanines (BsubPcs) has also illustrated that a meta-methyl phen­oxy group is a carbon-efficient method for significantly increasing the solubility of BsubPcs (Paton et al., 2012[Paton, A. S., Lough, A. J. & Bender, T. P. (2012). Ind. Eng. Chem. Res. 51, 6290-6296.]), a characteristic that is necessary for solution-processed OPVs and other characterization techniques. In addition, 3-iodo-phen­oxy-BsubPc was found to exhibit halogen bonding between the iodo group and the BsubPc macrocycle and therefore resulting in a well-defined solid-state arrangement. The sum of these observations therefore lead our group to focus on the synthesis of soluble solution-processable phen­oxy SiPcs that may have varying degrees of carbon-efficient solubilities and tendencies to crystallize with high order into the solid state. We therefore have synthesized three new derivatives: bis­(3-methyl­phen­oxy)silicon phthalocyanine [(3MP)2-SiPc], bis­(2-sec-butyl­phen­oxy)silicon phthalo­cyanine [(2secBP)2-SiPc] and bis­(3-iodo­phen­oxy)silicon phthalocyanine [(3IP)2-SiPc] (Fig. 1[link]). We wished to investigate whether a 1- and 4-carbon solubilizing group would both enable solubility and facilitate more ππ inter­actions between the aromatic SiPc units compared to (3HS)2-SiPc and also to probe whether halogen bonding would be present in crystals grown of (3IP)2-SiPc (Virdo et al., 2013[Virdo, J. D., Kawar, Y. H., Lough, A. J. & Bender, T. P. (2013). CrystEngComm, 15, 3187-3199.]).

[Figure 1]
Figure 1
(a) Chemical schemes and (b) mol­ecular structures showing 50% probability displacement ellipsoids of (3MP)2-SiPc (left), (3IP)2-SiPc (middle) and (2secBP)2-SiPc (right). H atoms omitted for clarity.

Single crystals of (3MP)2-SiPc, (3IP)2-SiPc and (2secBP)2-SiPc were grown by slow diffusion of heptane into THF and were characterized by single crystal X-ray diffraction. (3MP)2-SiPc was also grown by slow diffusion of pentane into benzene and evaporation form chloro­form, resulting in identical crystals as identified by X-ray crystallography. Fig. 2[link] is a picture of actual crystals of (3MP)2-SiPc, roughly 1.5 mm in size, grown by slow evaporation.

[Figure 2]
Figure 2
An optical microscope image of (3MP)2-SiPc grown by slow diffusion of heptane into THF.

2. Structural commentary

Of note at the structural level, when considering the three reported structures, is the relatively higher disorder observed for (2secBP)2-SiPc in the solid state (as indicted by the size of the ellipsoids, Fig. 1[link]) compared to that of (3MP)2-SiPc, (3IP)2-SiPc and other known bis-phen­oxy-SiPc structures (Lessard, Grant et al., 2015[Lessard, B. H., Grant, T. M., White, R., Thibau, E., Lu, Z.-H. & Bender, T. P. (2015). J. Mater. Chem. A, 3, 24512-24524.]). This is consistent with the very high solubility observed for (2secBP)2-SiPc and in contrast to the low disorder observed for the also highly soluble (3HS)2-SiPc) (Lessard et al., 2014[Lessard, B. H., Dang, J. D., Grant, T. M., Gao, D., Seferos, D. S. & Bender, T. P. (2014). Appl. Mater. Interfaces, 6, 15040-15051.]).

3. Supermolecular Features

The crystal structures were studied using Hirshfeld surface (HS) analysis (Spackman & Jayatilaka, 2009[Spackman, M. & Jayatilaka, D. (2009). CrystEngComm, 11, 19-32.]). All three crystals were mapped using (a) dnorm and (b) shape index in Fig. 3[link] for (3MP)2-SiPc, Fig. 4[link] for (3IP)2-SiPc and Fig. 5[link] for (2secBP)2-SiPc. In all three figures, the regions shaded in red correspond to the contacts at distances shorter than the sum of the van der Waals radii while the white to blue are for the distances longer than the sum of the van der Waals radii. In each crystal, the close contacts (and their symmetry equivalents) are readily identified on these maps and in all three cases they are different. For example for (3MP)2-SiPc (Fig. 3[link]) one of the hydrogen atoms (H39C) of the 3-methyl group on the phen­oxy group experiences a contact of a distance of 2.341 Å (C39—H39CH3A—C3; Table 1[link]). It is inter­esting to note that for (3IP)2-SiPc, the iodo group does not have any significant inter­actions with adjacent mol­ecules (Fig. 2[link]a). These observations are not consistent with our previous observations for various halo-phen­oxy-BsubPcs such as 3-iodo-phen­oxy BsubPc (Virdo et al., 2013[Virdo, J. D., Kawar, Y. H., Lough, A. J. & Bender, T. P. (2013). CrystEngComm, 15, 3187-3199.]). The shape index (Fig. 3[link]b, 4b, 5b) is based on the two local principal curvatures of the HS, with concave regions shaded in red and convex regions shaded in blue (Spackman & Jayatilaka, 2009[Spackman, M. & Jayatilaka, D. (2009). CrystEngComm, 11, 19-32.]). Again, these plots illustrate the difference in the solid-state arrangement between all three mol­ecules (Fig. 3[link]b, 4b, 5b). Unfortunately, similarly to previously reported carbazole derivatives (Rozycka-Sokolowska et al., 2015[Rozycka-Sokolowska, E., Marciniak, B., Kosik, S., Dondela, B. & Bak, Z. (2015). Struct. Chem. 26, 873-886.]), these plots do not generate further insight into the ππ inter­actions between mol­ecules due to their relatively large distances of 3.5–4.0 Å.

Table 1
Comparison of contacts (Å) less than the sum of the van der Waals radii for various meta-functional bis­(meta-functional phen­oxy) silicon phthalocyanines

Mol­ecule C(K)-H(L)—H(M)—C(N) distance XX
(3MP)2-SiPc C4—H4A⋯O2—Si1 2.67 H⋯O
(3MP)2-SiPc C46—H46B⋯H11—C11 2.39 H⋯H
(3MP)2-SiPc C39—H39C⋯H3A—C3 2.34 H⋯H
(3MP)2-SiPc C42—C43⋯H21A—C21 2.75 C⋯H
(3IP)2-SiPc C4—H1⋯H11—C21 2.32 H⋯H
(2secBP)2-SiPc C24—H16⋯H19—C26 2.30 H⋯H
[Figure 3]
Figure 3
Hirshfeld surface analysis of (3MP)2-SiPc mapped with (a) dnorm and (b) shape index. Red spots on the dnorm surface indicate contacts at distances closer than the sum of the corresponding van der Waals radii. Significant ππ inter­actions between (3MP)2-SiPc are outlined by the dashed black circle.
[Figure 4]
Figure 4
Hirshfeld surface analysis of (2secBP)2-SiPc mapped with (a) dnorm and (b) shape index. Red spots on the dnorm surface indicate contacts at distances closer than the sum of the corresponding van der Waals radii. Significant ππ inter­actions between (2secBP)2-SiPc are outlined by the dashed black circle.
[Figure 5]
Figure 5
Hirshfeld surface analysis of (3IP)2-SiPc mapped with (a) dnorm and (b) shape index. Red spots on the dnorm surface indicate contacts at distances closer than the sum of the corresponding van der Waals radii. Significant ππ inter­actions between (3IP)2-SiPc are outlined by the dashed black circle.

Being inter­ested in the stacking between aromatic macrocycles, we previously established (Lessard, Grant et al., 2015[Lessard, B. H., Grant, T. M., White, R., Thibau, E., Lu, Z.-H. & Bender, T. P. (2015). J. Mater. Chem. A, 3, 24512-24524.]) criteria to compare the ππ inter­actions between neighboring Pc mol­ecules for single crystals of SiPcs. Following these established criteria, the ππ inter­actions of (3MP)2-SiPc were identified and compared to previously published phen­oxy SiPcs (Table 2[link]). Fig. 6[link]a illustrates the packing of (3MP)2-SiPc crystals which is very similar to the packing of previously reported bis­(3,4,5-tri­fluoro­phen­oxy) SiPc [(345F)2-SiPc; Lessard, Grant et al., 2015[Lessard, B. H., Grant, T. M., White, R., Thibau, E., Lu, Z.-H. & Bender, T. P. (2015). J. Mater. Chem. A, 3, 24512-24524.]]. For example, both mol­ecules experience a complete isoindoline stacking where the shortest mol­ecular distances between isoindoline groups of (3MP)2-SiPc and (345FP)2-SiPc were determined to be 3.655 and 3.580 Å, respectively. In addition, the (3MP)2-SiPc exhibits a slip angle of 22.33/22.53° with a slight offset of 0.21° between the aromatic planes while (345F)2-SiPc has a less significant slip angle of 18.90° and exactly parallel (0° between planes) inter­acting isoindoline groups (Fig. 6[link]b).

Table 2
Summary of single-crystal X-ray diffraction data (Å, °)

Slip angle between Pc aromatic = angle between centroid-to-centroid and normal of each aromatic Pc benzene; angle between aromatic planes = smallest angle between both planes that contain the stacking aromatic benzene rings.

Compound details of packing shortest distance between Pc aromatic slip angle between Pc aromatic angle between aromatic planes Reference
Cl2—SiPc dual benzene ring stacking 4.172, 4.172 34.87 / 36.59 1.72 Lessard, White et al. (2015[Lessard, B. H., White, R. T., AL-Amar, M., Plint, T., Castrucci, J. S., Josey, D. S., Lu, Z.-H. & Bender, T. P. (2015). Appl. Mater. Interfaces, 7, 5076-5088.])
(3MP)2-SiPc isoindoline stacking 3.794, 3.655, 3.794 22.33 / 22.53 0.21 This work
(345F)2-SiPc isoindoline stacking 3.716, 3.580, 3.716 18.90 / 18.90 0 Lessard, Grant et al., (2015[Lessard, B. H., Grant, T. M., White, R., Thibau, E., Lu, Z.-H. & Bender, T. P. (2015). J. Mater. Chem. A, 3, 24512-24524.])
(246F)2-SiPc dual benzene ring stacking 3.860, 3.860 30.08 / 30.08 0 Lessard, Grant et al. (2015[Lessard, B. H., Grant, T. M., White, R., Thibau, E., Lu, Z.-H. & Bender, T. P. (2015). J. Mater. Chem. A, 3, 24512-24524.])
(3IP)2-SiPc dual benzene ring stacking 3.716, 3.716 17.55/14.60 10.9 This work
(2secBP)2—SiPc dual benzene ring stacking 3.947, 3.947 32.53/26.02 6.5 This work
Notes: in all cases the single crystals were grown by slow diffusion of heptane into a THF solution of the respective compound. Identical crystals of (3MP)2-SiPc were also grown by diffusion of pentane into a solution of benzene as well as from slow evaporation of a chloro­form solution.
[Figure 6]
Figure 6
Part of the crystal structure of (a) (3MP)2-SiPc, (b) (3IP)2-SiPc and (c) (2secBP)2-SiPc. The dotted green lines represent significant ππ inter­actions with a centroid–centroid distance < 4.0 Å. Details on the π-π inter­actions are tabulated in Table 3[link].

These results indicate that (3MP)2-SiPc has similar inter­actions to (345F)2-SiPc, which represents significant increases in ππ inter­action between SiPc groups compared to the starting Cl2-SiPc mol­ecule. (3IP)2-SiPc and (2secBP)2-SiPc on the other hand exhibit a parallel stacking of two of the peripheral aromatic groups. Of the SiPcs similar to (35F)2-SiPc and (246F)2-SiPc (Lessard, White et al., 2015[Lessard, B. H., White, R. T., AL-Amar, M., Plint, T., Castrucci, J. S., Josey, D. S., Lu, Z.-H. & Bender, T. P. (2015). Appl. Mater. Interfaces, 7, 5076-5088.]; Lessard, Grant et al., 2015[Lessard, B. H., Grant, T. M., White, R., Thibau, E., Lu, Z.-H. & Bender, T. P. (2015). J. Mater. Chem. A, 3, 24512-24524.]), for example, (3IP)2-SiPc experienced a similar stacking to (246F)2-SiPc (Lessard, Grant et al., 2015[Lessard, B. H., Grant, T. M., White, R., Thibau, E., Lu, Z.-H. & Bender, T. P. (2015). J. Mater. Chem. A, 3, 24512-24524.]), both having a parallel stacking of two of the peripheral aromatic units of the SiPc chromophore, with very similar inter-ring distances of 3.716 and 3.860 Å, respectively, suggesting similar strength in ππ inter­actions between neighboring mol­ecules for both (3IP)2-SiPc and (246F)2-SiPc (Fig. 6[link], Table 2[link]). (3IP)2-SiPc has a slip angle of 17.55/14.60° with 10.99° between the aromatic planes while (246F)2-SiPc has a more significant slip angle of 30.08° and completely parallel (0° between planes) and inter­acting aromatic groups (Fig. 6[link], Table 2[link]). (2secBP)2-SiPc has a unique two-dimensional stacking where two peripheral aromatic groups will stack with an adjacent SiPc mol­ecule and one of the same peripheral aromatic groups along with a third one will stack in a similar fashion but at 90° from the first inter­action (Fig. 6[link]c, Table 2[link]). In both cases a relatively large inter-ring distance of 3.947 Å was observed, suggesting a weak π-π inter­actions between neighboring (2secBP)2-SiPcs (Fig. 6[link], Table 2[link]). This weak inter­action is not a surprise due to the additional solubilizing groups (sec-but­yl) which space out the mol­ecules and increase the size of the unit cell.

4. Synthesis and crystallization

Materials

m-Cresol (>98%) 2-sec-butyl­phenol (98%) and 3-iodo­phenol (98%) were obtained from Sigma–Aldrich and chloro­benzene (99.5%) and chloro­form (CHCl3, 99.8%) were obtained from Caledon Laboratories Ltd. All chemicals were used as received unless otherwise specified. Di­chloro silicon phthalocyanine (Cl2-SiPc) was synthesized according to the literature (Lowery et al. 1965[Lowery, M. K., Starshak, A. J., Esposito, J. N., Krueger, P. C. & Kenney, M. E. (1965). Inorg. Chem. 4, 128.]).

Synthesis of silicon phthalocyanine derivatives

The synthesis of (3MP)2-SiPc, (3IP)2-SiPcs and (2secBP)2-SiPcs were performed following the general procedure used to synthesize F10-SiPc·(Lessard, White, et al. 2015[Lessard, B. H., White, R. T., AL-Amar, M., Plint, T., Castrucci, J. S., Josey, D. S., Lu, Z.-H. & Bender, T. P. (2015). Appl. Mater. Interfaces, 7, 5076-5088.]). For example, the synthesis of (3MP)2-SiPc was performed in a round-bottom flask equipped with a condenser and nitro­gen purge, which was filled with a 10:1 molar excess of m-cresol (2.3g, 21 mol) to Cl2-SiPc (1.3g, 2.1 mol) in chloro­benzene (100 ml). The mixture was stirred and heated to 388 K overnight and cooled to room temperature. The product was then obtained by precipitation into iso­propanol and filtered. The product was then dried in a vacuum oven overnight. Yield: 1.3g (80.2 mol%). DART Mass spectroscopy: calculated mass: 755.234, obtained mass: 755.236. (3IP)2-SiPcs and (2secBP)2-SiPcs were synthesized under similar conditions and crystals were again obtained by slow diffusion of heptane into a THF solution.

5. Refinement

Crystal data collection and structure refinement details are summarized in Table 3[link]. H atoms were placed in calculated positions C—H = 0.94–0.98 Å and included in a riding-motion approximation with Uiso(H) = 1.2Ueq(C) or 1.5Ueq(Cmeth­yl).

Table 3
Experimental details

  3MP2-SiPc 3IP2-SiPc 2secBP2-SiPc
Crystal data
Chemical formula C46H30N8O2Si C44H24I2N8O2Si C52H42N8O2Si
Mr 754.87 978.60 839.03
Crystal system, space group Monoclinic, P21 Monoclinic, P21/c Orthorhombic, Ibca
Temperature (K) 147 147 220
a, b, c (Å) 10.2566 (4), 16.5665 (8), 11.5120 (5) 12.6431 (6), 19.587 (1), 7.5403 (4) 10.9239 (3), 25.7282 (7), 33.2065 (8)
α, β, γ (°) 90, 115.860 (3), 90 90, 103.222 (1), 90 90, 90, 90
V3) 1760.20 (13) 1817.78 (16) 9332.8 (4)
Z 2 2 8
Radiation type Cu Kα Mo Kα Cu Kα
μ (mm−1) 1.04 1.82 0.83
Crystal size (mm) 0.27 × 0.08 × 0.03 0.40 × 0.22 × 0.04 0.12 × 0.12 × 0.01
 
Data collection
Diffractometer Bruker Kappa APEX DUO CCD Bruker Kappa APEX DUO CCD Bruker Kappa APEX DUO CCD
Absorption correction Multi-scan (SADABS; Bruker, 2011[Bruker (2011). APEX2, SAINT, SADABS and TWINABS. Bruker AXS Inc., Madison, Wisconsin, USA.]) Multi-scan (SADABS; Bruker, 2011[Bruker (2011). APEX2, SAINT, SADABS and TWINABS. Bruker AXS Inc., Madison, Wisconsin, USA.]) Multi-scan (TWINABS; Bruker, 2007[Lessard, B. H., White, R. T., AL-Amar, M., Plint, T., Castrucci, J. S., Josey, D. S., Lu, Z.-H. & Bender, T. P. (2015). Appl. Mater. Interfaces, 7, 5076-5088.])
Tmin, Tmax 0.606, 0.753 0.635, 0.746 0.621, 0.753
No. of measured, independent and observed [I > 2σ(I)] reflections 11133, 5548, 4909 31089, 4119, 3721 120855, 4085, 2969
Rint 0.042 0.024 0.104
(sin θ/λ)max−1) 0.595 0.650 0.596
 
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.044, 0.111, 1.03 0.037, 0.101, 1.07 0.066, 0.208, 1.08
No. of reflections 5548 4119 4085
No. of parameters 516 259 287
No. of restraints 1 0 4
H-atom treatment H-atom parameters constrained H-atom parameters constrained H-atom parameters constrained
Δρmax, Δρmin (e Å−3) 0.20, −0.44 2.25, −1.33 0.40, −0.36
Absolute structure Flack (1983[Flack, H. D. (1983). Acta Cryst. A39, 876-881.]), 2431 Friedel pairs
Absolute structure parameter 0.51 (4)
Computer programs: APEX2 and SAINT (Bruker, 2011[Bruker (2011). APEX2, SAINT, SADABS and TWINABS. Bruker AXS Inc., Madison, Wisconsin, USA.]), SHELXS97, SHELXL97 and SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]), SHELXL2013 (Sheldrick, 2015[Sheldrick, G. M. (2015). Acta Cryst. C71, 3-8.]) and Mercury (Macrae et al., 2006[Macrae, C. F., Edgington, P. R., McCabe, P., Pidcock, E., Shields, G. P., Taylor, R., Towler, M. & van de Streek, J. (2006). J. Appl. Cryst. 39, 453-457.]).

In (3MP)2-Si there appears to be pseudosymmetry with an approximate centre of symmetry. The c-glide reflections are weak but present and the P21/c structure refines only to ca R1 = 10% compared to 4.4% for the P21 structure. The crystal is an inversion twin with a ratio of components of 0.51 (4):0.49 (4).

During the refinement of (2secBP)2-SiPc, electron density peaks were located that were believed to be highly disordered solvent mol­ecules (possibly penta­ne/di­chloro­methane). Attempts made to model the solvent mol­ecule were not successful. The SQUEEZE option (Spek, 2015[Spek, A. L. (2015). Acta Cryst. C71, 9-18.]) in PLATON (Spek, 2009[Spek, A. L. (2009). Acta Cryst. D65, 148-155.]) indicated there was a large solvent cavity 367 A3. In the final cycles of refinement, this contribution (99 electrons) to the electron density was removed from the observed data. The density, the F(000) value, the mol­ecular weight and the formula are given without taking into account the results obtained with SQUEEZE. Similar treatments of disordered solvent mol­ecules were carried out by Stähler et al. (2001[Stähler, R., Näther, C. & Bensch, W. (2001). Acta Cryst. C57, 26-27.]), Cox et al. (2003[Cox, P. J., Kumarasamy, Y., Nahar, L., Sarker, S. D. & Shoeb, M. (2003). Acta Cryst. E59, o975-o977.]), Mohamed et al. (2003[Mohamed, A. A., Krause Bauer, J. A., Bruce, A. E. & Bruce, M. R. M. (2003). Acta Cryst. C59, m84-m86.]) and Athimoolam et al. (2005[Athimoolam, S., Kumar, J., Ramakrishnan, V. & Rajaram, R. K. (2005). Acta Cryst. E61, m2014-m2017.]).

The crystal of (2secBP)2-SiPc was a non-merehedral twin with a twin law determined by CELL_NOW (Bruker, 2011[Bruker (2011). APEX2, SAINT, SADABS and TWINABS. Bruker AXS Inc., Madison, Wisconsin, USA.]) of 0.1 0.0 0.0, 0.1 1.0 0.0, 0.3 0.0 1.0. The data were detwinned using TWINABS (Bruker, 2011[Bruker (2011). APEX2, SAINT, SADABS and TWINABS. Bruker AXS Inc., Madison, Wisconsin, USA.]) giving twin fractions in the ratio 0.92:0.08.

Supporting information


Computing details top

For all compounds, data collection: APEX2 (Bruker, 2011); cell refinement: SAINT (Bruker, 2011); data reduction: SAINT (Bruker, 2011); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008). Program(s) used to refine structure: SHELXL97 (Sheldrick, 2008) for 3MP-SiPc, 2secBP2-SiPc; SHELXL2013 (Sheldrick, 2015) for 3IP2-SiPc. For all compounds, molecular graphics: Mercury (Macrae et al., 2006); software used to prepare material for publication: SHELXTL (Sheldrick, 2008).

(3MP-SiPc) Bis(3-methylphenoxy)(phthalocyanine)silicon top
Crystal data top
C46H30N8O2SiF(000) = 784
Mr = 754.87Dx = 1.424 Mg m3
Monoclinic, P21Cu Kα radiation, λ = 1.54178 Å
Hall symbol: P 2ybCell parameters from 6829 reflections
a = 10.2566 (4) Åθ = 4.3–66.2°
b = 16.5665 (8) ŵ = 1.04 mm1
c = 11.5120 (5) ÅT = 147 K
β = 115.860 (3)°Needle, blue
V = 1760.20 (13) Å30.27 × 0.08 × 0.03 mm
Z = 2
Data collection top
Bruker Kappa APEX DUO CCD
diffractometer
5548 independent reflections
Radiation source: Bruker ImuS4909 reflections with I > 2σ(I)
Multi-layer optics monochromatorRint = 0.042
φ and ω scansθmax = 66.5°, θmin = 4.3°
Absorption correction: multi-scan
(SADABS; Bruker, 2011)
h = 1112
Tmin = 0.606, Tmax = 0.753k = 1918
11133 measured reflectionsl = 1311
Refinement top
Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.044H-atom parameters constrained
wR(F2) = 0.111 w = 1/[σ2(Fo2) + (0.0535P)2 + 0.6078P]
where P = (Fo2 + 2Fc2)/3
S = 1.03(Δ/σ)max = 0.001
5548 reflectionsΔρmax = 0.20 e Å3
516 parametersΔρmin = 0.44 e Å3
1 restraintAbsolute structure: Flack (1983), 2431 Friedel pairs
Primary atom site location: structure-invariant direct methodsAbsolute structure parameter: 0.51 (4)
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > 2sigma(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Si10.25875 (11)0.47830 (9)0.25868 (9)0.02494 (17)
O10.2884 (3)0.39581 (16)0.1824 (2)0.0290 (6)
O20.2301 (2)0.56160 (17)0.33650 (19)0.0266 (6)
N10.4400 (3)0.5208 (2)0.2753 (2)0.0235 (7)
N20.3569 (3)0.5980 (2)0.0763 (3)0.0283 (7)
N30.1579 (3)0.5340 (2)0.0995 (3)0.0270 (7)
N40.0891 (3)0.4903 (2)0.0372 (2)0.0276 (7)
N50.0788 (3)0.4350 (2)0.2432 (2)0.0265 (7)
N60.1590 (3)0.3578 (2)0.4415 (3)0.0289 (7)
N70.3600 (3)0.4220 (2)0.4188 (2)0.0258 (7)
N80.6078 (3)0.4650 (2)0.4808 (3)0.0278 (7)
C10.5733 (4)0.5069 (2)0.3729 (3)0.0268 (9)
C20.6846 (4)0.5463 (2)0.3453 (3)0.0285 (9)
C30.8346 (4)0.5475 (3)0.4119 (3)0.0324 (9)
H3A0.88350.52180.49340.039*
C40.9092 (4)0.5869 (3)0.3555 (3)0.0369 (10)
H4A1.01200.58870.39850.044*
C50.8360 (4)0.6254 (3)0.2339 (4)0.0346 (10)
H5A0.89060.65200.19660.042*
C60.6871 (4)0.6248 (3)0.1691 (3)0.0313 (9)
H6A0.63760.65130.08830.038*
C70.6117 (4)0.5839 (2)0.2267 (3)0.0268 (9)
C80.4576 (4)0.5688 (2)0.1855 (3)0.0264 (8)
C90.2206 (4)0.5802 (3)0.0375 (3)0.0280 (9)
C100.1101 (4)0.6066 (3)0.0867 (3)0.0277 (8)
C110.1158 (4)0.6537 (3)0.1856 (3)0.0341 (10)
H11A0.20350.67830.17630.041*
C120.0104 (4)0.6629 (3)0.2966 (3)0.0346 (10)
H12A0.00900.69380.36560.042*
C130.1409 (4)0.6280 (3)0.3111 (3)0.0350 (10)
H13A0.22580.63530.38950.042*
C140.1475 (4)0.5829 (3)0.2121 (3)0.0301 (9)
H14A0.23610.56010.22050.036*
C150.0202 (4)0.5725 (3)0.1006 (3)0.0288 (9)
C160.0115 (4)0.5290 (3)0.0167 (3)0.0277 (9)
C170.0582 (4)0.4489 (2)0.1432 (3)0.0267 (9)
C180.1672 (4)0.4097 (2)0.1710 (3)0.0277 (9)
C190.3173 (4)0.4088 (2)0.1052 (3)0.0302 (9)
H19A0.36720.43540.02470.036*
C200.3912 (4)0.3666 (3)0.1636 (3)0.0328 (9)
H20A0.49390.36300.12070.039*
C210.3177 (4)0.3299 (3)0.2828 (4)0.0352 (10)
H21A0.37170.30320.32050.042*
C220.1689 (4)0.3310 (3)0.3483 (3)0.0307 (9)
H22A0.11980.30540.42990.037*
C230.0933 (4)0.3709 (2)0.2904 (3)0.0270 (8)
C240.0580 (4)0.3869 (2)0.3319 (3)0.0266 (8)
C250.2982 (4)0.3746 (3)0.4805 (3)0.0249 (8)
C260.4081 (4)0.3485 (3)0.6055 (3)0.0285 (8)
C270.4001 (4)0.3019 (3)0.7021 (3)0.0316 (9)
H27A0.31140.27850.69260.038*
C280.5274 (4)0.2911 (3)0.8131 (3)0.0352 (10)
H28A0.52640.25950.88150.042*
C290.6570 (4)0.3258 (3)0.8266 (3)0.0334 (9)
H29A0.74210.31790.90470.040*
C300.6654 (4)0.3713 (3)0.7299 (3)0.0320 (9)
H30A0.75440.39390.73900.038*
C310.5375 (4)0.3825 (3)0.6184 (3)0.0271 (9)
C320.5058 (4)0.4273 (2)0.5001 (3)0.0254 (8)
C330.1975 (4)0.3625 (3)0.0649 (3)0.0269 (9)
C340.1916 (4)0.3949 (3)0.0485 (3)0.0334 (9)
H34A0.25380.43850.04430.040*
C350.0947 (4)0.3641 (3)0.1699 (3)0.0369 (10)
C360.0095 (4)0.2991 (3)0.1735 (4)0.0413 (11)
H36A0.05680.27740.25410.050*
C370.0204 (4)0.2654 (3)0.0604 (4)0.0408 (11)
H37A0.03730.21950.06480.049*
C380.1119 (4)0.2957 (3)0.0591 (3)0.0314 (9)
H38A0.11650.27180.13570.038*
C390.0801 (5)0.4049 (3)0.2914 (3)0.0517 (13)
H39A0.06260.36420.35840.077*
H39B0.16950.43440.27440.077*
H39C0.00150.44280.32080.077*
C400.3230 (4)0.5949 (3)0.4516 (3)0.0275 (9)
C410.3322 (4)0.5644 (3)0.5675 (3)0.0300 (9)
H41A0.27010.52130.56560.036*
C420.4292 (4)0.5950 (3)0.6852 (3)0.0375 (10)
C430.5138 (4)0.6615 (3)0.6862 (3)0.0377 (10)
H43A0.58140.68360.76590.045*
C440.4987 (4)0.6952 (3)0.5704 (4)0.0346 (9)
H44A0.55320.74190.57200.042*
C450.4063 (4)0.6623 (3)0.4537 (3)0.0336 (9)
H45A0.39910.68510.37540.040*
C460.4508 (5)0.5569 (3)0.8108 (3)0.0514 (12)
H46A0.42490.49960.79680.077*
H46B0.38910.58400.84400.077*
H46C0.55250.56220.87340.077*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Si10.0259 (4)0.0263 (4)0.0259 (4)0.0001 (3)0.0143 (3)0.0008 (3)
O10.0319 (12)0.0291 (17)0.0296 (11)0.0004 (11)0.0167 (10)0.0026 (10)
O20.0232 (11)0.0313 (17)0.0263 (11)0.0027 (10)0.0117 (10)0.0046 (10)
N10.0230 (13)0.0267 (18)0.0247 (13)0.0033 (12)0.0141 (12)0.0011 (12)
N20.0321 (15)0.025 (2)0.0295 (14)0.0007 (13)0.0154 (13)0.0011 (12)
N30.0293 (15)0.028 (2)0.0296 (13)0.0007 (13)0.0181 (12)0.0044 (12)
N40.0275 (14)0.032 (2)0.0247 (13)0.0007 (13)0.0125 (12)0.0017 (12)
N50.0299 (14)0.0259 (19)0.0254 (13)0.0006 (13)0.0136 (12)0.0001 (12)
N60.0329 (15)0.029 (2)0.0302 (14)0.0011 (13)0.0186 (13)0.0004 (12)
N70.0296 (15)0.0260 (19)0.0264 (13)0.0007 (13)0.0166 (12)0.0047 (12)
N80.0271 (14)0.029 (2)0.0320 (14)0.0009 (12)0.0173 (12)0.0016 (12)
C10.0330 (18)0.027 (2)0.0253 (16)0.0025 (15)0.0177 (15)0.0053 (14)
C20.0338 (18)0.024 (2)0.0359 (17)0.0014 (16)0.0230 (16)0.0017 (15)
C30.0306 (18)0.036 (3)0.0338 (17)0.0027 (16)0.0167 (16)0.0024 (16)
C40.0291 (18)0.041 (3)0.043 (2)0.0025 (16)0.0177 (17)0.0079 (17)
C50.040 (2)0.032 (3)0.0430 (19)0.0036 (17)0.0284 (18)0.0026 (16)
C60.0333 (19)0.031 (3)0.0369 (18)0.0015 (16)0.0218 (17)0.0027 (15)
C70.0313 (18)0.025 (2)0.0281 (16)0.0010 (15)0.0162 (15)0.0013 (14)
C80.0308 (17)0.023 (2)0.0327 (16)0.0013 (15)0.0206 (15)0.0071 (14)
C90.0333 (19)0.026 (2)0.0334 (17)0.0006 (15)0.0221 (16)0.0040 (15)
C100.0326 (18)0.026 (2)0.0246 (15)0.0015 (16)0.0120 (15)0.0011 (15)
C110.0354 (19)0.035 (3)0.0378 (18)0.0009 (17)0.0216 (17)0.0033 (17)
C120.042 (2)0.034 (3)0.0303 (17)0.0005 (17)0.0177 (17)0.0080 (16)
C130.040 (2)0.035 (3)0.0295 (17)0.0091 (17)0.0150 (16)0.0040 (16)
C140.0299 (17)0.026 (2)0.0345 (17)0.0033 (16)0.0145 (16)0.0014 (15)
C150.0363 (19)0.026 (2)0.0279 (15)0.0045 (16)0.0173 (15)0.0027 (15)
C160.0250 (17)0.030 (3)0.0297 (16)0.0028 (16)0.0138 (15)0.0011 (15)
C170.0237 (17)0.026 (2)0.0297 (16)0.0031 (15)0.0114 (15)0.0018 (14)
C180.0281 (17)0.027 (2)0.0305 (16)0.0011 (16)0.0155 (15)0.0064 (15)
C190.0274 (17)0.029 (2)0.0354 (17)0.0008 (15)0.0145 (16)0.0080 (15)
C200.0295 (18)0.033 (3)0.0403 (19)0.0044 (16)0.0195 (16)0.0083 (17)
C210.0354 (19)0.033 (3)0.050 (2)0.0074 (18)0.0299 (18)0.0115 (17)
C220.0373 (19)0.026 (2)0.0344 (18)0.0046 (16)0.0204 (16)0.0048 (15)
C230.0281 (18)0.026 (2)0.0318 (16)0.0011 (15)0.0178 (15)0.0049 (15)
C240.0341 (19)0.021 (2)0.0288 (16)0.0013 (16)0.0177 (15)0.0015 (14)
C250.0251 (17)0.024 (2)0.0275 (15)0.0006 (14)0.0128 (14)0.0027 (14)
C260.0352 (18)0.024 (2)0.0326 (17)0.0026 (16)0.0205 (16)0.0019 (15)
C270.0373 (19)0.026 (2)0.0326 (18)0.0024 (16)0.0161 (17)0.0059 (16)
C280.043 (2)0.030 (3)0.0352 (19)0.0047 (18)0.0188 (17)0.0020 (16)
C290.0335 (19)0.034 (3)0.0288 (17)0.0014 (16)0.0099 (16)0.0000 (15)
C300.0336 (19)0.035 (3)0.0278 (16)0.0002 (17)0.0138 (15)0.0005 (16)
C310.0265 (17)0.030 (2)0.0265 (16)0.0019 (15)0.0135 (15)0.0021 (15)
C320.0310 (17)0.022 (2)0.0270 (15)0.0004 (15)0.0162 (15)0.0009 (14)
C330.0258 (17)0.028 (2)0.0266 (16)0.0010 (15)0.0114 (15)0.0017 (15)
C340.0383 (19)0.033 (3)0.0378 (19)0.0046 (17)0.0245 (16)0.0002 (16)
C350.045 (2)0.033 (3)0.0327 (18)0.0109 (18)0.0172 (17)0.0020 (17)
C360.040 (2)0.037 (3)0.042 (2)0.0057 (18)0.0128 (18)0.0098 (18)
C370.038 (2)0.033 (3)0.051 (2)0.0008 (17)0.0188 (19)0.0056 (19)
C380.0345 (18)0.024 (2)0.044 (2)0.0034 (16)0.0249 (17)0.0016 (16)
C390.075 (3)0.054 (3)0.0285 (17)0.016 (2)0.0245 (19)0.0034 (18)
C400.0239 (16)0.029 (2)0.0314 (16)0.0067 (15)0.0138 (14)0.0010 (15)
C410.0385 (19)0.024 (2)0.0309 (17)0.0026 (16)0.0186 (16)0.0013 (14)
C420.041 (2)0.041 (3)0.0330 (17)0.0140 (18)0.0181 (16)0.0023 (17)
C430.039 (2)0.034 (3)0.0355 (18)0.0060 (17)0.0115 (16)0.0079 (16)
C440.0368 (19)0.024 (2)0.046 (2)0.0021 (16)0.0216 (18)0.0039 (17)
C450.038 (2)0.029 (3)0.0331 (18)0.0027 (17)0.0149 (17)0.0001 (16)
C460.068 (3)0.055 (3)0.0336 (19)0.013 (2)0.024 (2)0.0043 (19)
Geometric parameters (Å, º) top
Si1—O11.722 (3)C18—C231.402 (5)
Si1—O21.739 (3)C19—C201.401 (6)
Si1—N31.904 (3)C19—H19A0.9500
Si1—N51.915 (3)C20—C211.384 (6)
Si1—N71.917 (3)C20—H20A0.9500
Si1—N11.918 (3)C21—C221.377 (5)
O1—C331.379 (4)C21—H21A0.9500
O2—C401.367 (4)C22—C231.391 (6)
N1—C11.358 (5)C22—H22A0.9500
N1—C81.378 (5)C23—C241.435 (5)
N2—C91.302 (5)C25—C261.453 (5)
N2—C81.322 (5)C26—C271.386 (6)
N3—C91.382 (5)C26—C311.389 (5)
N3—C161.387 (5)C27—C281.384 (5)
N4—C171.313 (5)C27—H27A0.9500
N4—C161.320 (5)C28—C291.394 (6)
N5—C241.383 (5)C28—H28A0.9500
N5—C171.393 (4)C29—C301.377 (6)
N6—C251.325 (5)C29—H29A0.9500
N6—C241.326 (4)C30—C311.391 (5)
N7—C321.378 (5)C30—H30A0.9500
N7—C251.385 (5)C31—C321.457 (5)
N8—C321.318 (5)C33—C341.389 (5)
N8—C11.329 (5)C33—C381.395 (6)
C1—C21.464 (5)C34—C351.410 (5)
C2—C71.386 (5)C34—H34A0.9500
C2—C31.388 (5)C35—C361.377 (7)
C3—C41.367 (6)C35—C391.501 (6)
C3—H3A0.9500C36—C371.376 (7)
C4—C51.418 (6)C36—H36A0.9500
C4—H4A0.9500C37—C381.378 (5)
C5—C61.377 (5)C37—H37A0.9500
C5—H5A0.9500C38—H38A0.9500
C6—C71.395 (5)C39—H39A0.9800
C6—H6A0.9500C39—H39B0.9800
C7—C81.459 (5)C39—H39C0.9800
C9—C101.451 (5)C40—C411.391 (5)
C10—C151.395 (6)C40—C451.400 (6)
C10—C111.402 (6)C41—C421.381 (5)
C11—C121.374 (5)C41—H41A0.9500
C11—H11A0.9500C42—C431.399 (7)
C12—C131.398 (6)C42—C461.503 (6)
C12—H12A0.9500C43—C441.390 (6)
C13—C141.390 (6)C43—H43A0.9500
C13—H13A0.9500C44—C451.374 (5)
C14—C151.385 (5)C44—H44A0.9500
C14—H14A0.9500C45—H45A0.9500
C15—C161.437 (5)C46—H46A0.9800
C17—C181.444 (6)C46—H46B0.9800
C18—C191.387 (5)C46—H46C0.9800
O1—Si1—O2179.59 (14)C20—C19—H19A121.7
O1—Si1—N392.10 (13)C21—C20—C19121.3 (3)
O2—Si1—N388.17 (13)C21—C20—H20A119.4
O1—Si1—N591.88 (14)C19—C20—H20A119.4
O2—Si1—N588.43 (13)C22—C21—C20122.2 (4)
N3—Si1—N589.72 (13)C22—C21—H21A118.9
O1—Si1—N787.84 (13)C20—C21—H21A118.9
O2—Si1—N791.89 (13)C21—C22—C23117.4 (4)
N3—Si1—N7179.9 (2)C21—C22—H22A121.3
N5—Si1—N790.18 (13)C23—C22—H22A121.3
O1—Si1—N187.88 (13)C22—C23—C18120.7 (3)
O2—Si1—N191.81 (14)C22—C23—C24132.5 (3)
N3—Si1—N190.80 (13)C18—C23—C24106.6 (3)
N5—Si1—N1179.44 (19)N6—C24—N5127.2 (3)
N7—Si1—N189.30 (13)N6—C24—C23122.2 (3)
C33—O1—Si1128.6 (2)N5—C24—C23110.6 (3)
C40—O2—Si1128.2 (2)N6—C25—N7127.7 (3)
C1—N1—C8107.7 (3)N6—C25—C26122.0 (3)
C1—N1—Si1127.1 (3)N7—C25—C26110.2 (3)
C8—N1—Si1125.2 (2)C27—C26—C31121.9 (3)
C9—N2—C8121.4 (3)C27—C26—C25131.9 (3)
C9—N3—C16106.6 (3)C31—C26—C25106.2 (3)
C9—N3—Si1125.9 (2)C28—C27—C26116.8 (4)
C16—N3—Si1127.1 (3)C28—C27—H27A121.6
C17—N4—C16122.0 (3)C26—C27—H27A121.6
C24—N5—C17106.3 (3)C27—C28—C29121.3 (4)
C24—N5—Si1126.8 (2)C27—C28—H28A119.3
C17—N5—Si1126.8 (3)C29—C28—H28A119.3
C25—N6—C24121.7 (3)C30—C29—C28121.9 (3)
C32—N7—C25106.9 (3)C30—C29—H29A119.1
C32—N7—Si1126.5 (3)C28—C29—H29A119.1
C25—N7—Si1126.3 (2)C29—C30—C31116.9 (4)
C32—N8—C1119.9 (3)C29—C30—H30A121.5
N8—C1—N1128.5 (4)C31—C30—H30A121.5
N8—C1—C2121.4 (3)C26—C31—C30121.1 (3)
N1—C1—C2110.1 (3)C26—C31—C32107.0 (3)
C7—C2—C3121.9 (4)C30—C31—C32131.8 (4)
C7—C2—C1106.1 (3)N8—C32—N7128.4 (3)
C3—C2—C1131.9 (3)N8—C32—C31121.9 (3)
C4—C3—C2117.4 (3)N7—C32—C31109.7 (3)
C4—C3—H3A121.3O1—C33—C34120.0 (4)
C2—C3—H3A121.3O1—C33—C38120.4 (3)
C3—C4—C5121.2 (3)C34—C33—C38119.5 (3)
C3—C4—H4A119.4C33—C34—C35121.0 (4)
C5—C4—H4A119.4C33—C34—H34A119.5
C6—C5—C4121.1 (4)C35—C34—H34A119.5
C6—C5—H5A119.5C36—C35—C34118.5 (4)
C4—C5—H5A119.5C36—C35—C39121.3 (4)
C5—C6—C7117.4 (3)C34—C35—C39120.1 (4)
C5—C6—H6A121.3C37—C36—C35120.1 (4)
C7—C6—H6A121.3C37—C36—H36A120.0
C2—C7—C6120.9 (3)C35—C36—H36A120.0
C2—C7—C8106.6 (3)C36—C37—C38122.3 (4)
C6—C7—C8132.4 (3)C36—C37—H37A118.8
N2—C8—N1128.4 (3)C38—C37—H37A118.8
N2—C8—C7122.2 (3)C37—C38—C33118.6 (4)
N1—C8—C7109.4 (3)C37—C38—H38A120.7
N2—C9—N3128.3 (3)C33—C38—H38A120.7
N2—C9—C10122.0 (4)C35—C39—H39A109.5
N3—C9—C10109.7 (3)C35—C39—H39B109.5
C15—C10—C11120.6 (3)H39A—C39—H39B109.5
C15—C10—C9106.8 (3)C35—C39—H39C109.5
C11—C10—C9132.6 (3)H39A—C39—H39C109.5
C12—C11—C10117.4 (4)H39B—C39—H39C109.5
C12—C11—H11A121.3O2—C40—C41120.7 (4)
C10—C11—H11A121.3O2—C40—C45120.1 (3)
C11—C12—C13122.0 (4)C41—C40—C45119.2 (3)
C11—C12—H12A119.0C42—C41—C40121.7 (4)
C13—C12—H12A119.0C42—C41—H41A119.2
C14—C13—C12120.7 (3)C40—C41—H41A119.2
C14—C13—H13A119.6C41—C42—C43118.5 (4)
C12—C13—H13A119.6C41—C42—C46122.0 (4)
C15—C14—C13117.6 (4)C43—C42—C46119.5 (4)
C15—C14—H14A121.2C44—C43—C42119.9 (3)
C13—C14—H14A121.2C44—C43—H43A120.0
C14—C15—C10121.6 (4)C42—C43—H43A120.0
C14—C15—C16131.9 (4)C45—C44—C43121.3 (4)
C10—C15—C16106.4 (3)C45—C44—H44A119.4
N4—C16—N3127.1 (3)C43—C44—H44A119.4
N4—C16—C15122.5 (3)C44—C45—C40119.2 (4)
N3—C16—C15110.4 (3)C44—C45—H45A120.4
N4—C17—N5127.0 (4)C40—C45—H45A120.4
N4—C17—C18123.0 (3)C42—C46—H46A109.5
N5—C17—C18110.0 (3)C42—C46—H46B109.5
C19—C18—C23121.8 (4)H46A—C46—H46B109.5
C19—C18—C17131.7 (4)C42—C46—H46C109.5
C23—C18—C17106.4 (3)H46A—C46—H46C109.5
C18—C19—C20116.6 (4)H46B—C46—H46C109.5
C18—C19—H19A121.7
(3IP2-SiPc) Bis(2-sec-butylphenoxy)(phthalocyanine)silicon top
Crystal data top
C44H24I2N8O2SiF(000) = 960
Mr = 978.60Dx = 1.788 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
a = 12.6431 (6) ÅCell parameters from 9148 reflections
b = 19.587 (1) Åθ = 2.7–27.5°
c = 7.5403 (4) ŵ = 1.82 mm1
β = 103.222 (1)°T = 147 K
V = 1817.78 (16) Å3Plate, blue
Z = 20.40 × 0.22 × 0.04 mm
Data collection top
Bruker Kappa APEX DUO CCD
diffractometer
3721 reflections with I > 2σ(I)
Radiation source: sealed tube with Bruker Triumph monocnromatorRint = 0.024
φ and ω scansθmax = 27.5°, θmin = 1.7°
Absorption correction: multi-scan
(SADABS; Bruker, 2011)
h = 1616
Tmin = 0.635, Tmax = 0.746k = 2525
31089 measured reflectionsl = 97
4119 independent reflections
Refinement top
Refinement on F20 restraints
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.037H-atom parameters constrained
wR(F2) = 0.101 w = 1/[σ2(Fo2) + (0.0505P)2 + 4.7192P]
where P = (Fo2 + 2Fc2)/3
S = 1.07(Δ/σ)max < 0.001
4119 reflectionsΔρmax = 2.25 e Å3
259 parametersΔρmin = 1.33 e Å3
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
I10.58373 (2)0.18313 (2)0.00675 (4)0.03731 (10)
Si11.00000.00000.00000.0150 (2)
O10.95195 (16)0.07333 (10)0.1198 (3)0.0179 (4)
N10.88930 (19)0.00288 (12)0.1341 (3)0.0169 (4)
N20.9741 (2)0.07375 (12)0.3918 (3)0.0193 (5)
N31.09243 (18)0.05331 (12)0.1863 (3)0.0165 (4)
N41.25478 (19)0.06065 (12)0.0671 (3)0.0195 (5)
C10.8921 (2)0.03894 (14)0.2930 (4)0.0176 (5)
C21.0663 (2)0.07947 (14)0.3410 (4)0.0179 (5)
C31.1573 (2)0.11803 (14)0.4453 (4)0.0201 (5)
C41.1716 (3)0.15271 (16)0.6108 (4)0.0254 (6)
H4A1.11650.15370.67780.031*
C51.2702 (3)0.18575 (16)0.6727 (5)0.0298 (7)
H5A1.28280.21020.78430.036*
C61.3518 (3)0.18382 (16)0.5743 (5)0.0293 (7)
H6A1.41800.20740.62080.035*
C71.3387 (3)0.14851 (15)0.4112 (4)0.0248 (6)
H7A1.39450.14680.34550.030*
C81.2387 (2)0.11562 (14)0.3486 (4)0.0196 (5)
C91.1969 (2)0.07466 (14)0.1873 (4)0.0180 (5)
C101.2146 (2)0.02365 (14)0.0789 (4)0.0179 (5)
C111.2804 (2)0.00286 (14)0.2035 (4)0.0199 (5)
C121.3895 (2)0.01224 (16)0.2023 (4)0.0238 (6)
H12A1.43490.04000.11300.029*
C131.4293 (3)0.02018 (18)0.3354 (5)0.0289 (7)
H13A1.50420.01630.33480.035*
C141.3613 (3)0.05895 (17)0.4722 (4)0.0280 (6)
H14A1.39110.08020.56300.034*
C151.2519 (3)0.06679 (15)0.4774 (4)0.0227 (6)
H15A1.20540.09180.57190.027*
C161.2129 (2)0.03648 (14)0.3382 (4)0.0193 (5)
C170.9045 (2)0.12947 (14)0.0640 (4)0.0180 (5)
C180.7937 (2)0.12940 (14)0.0651 (4)0.0192 (5)
H18A0.75060.09010.10440.023*
C190.7474 (2)0.18679 (15)0.0088 (4)0.0223 (6)
C200.8061 (3)0.24578 (17)0.0427 (5)0.0317 (7)
H20A0.77280.28480.08160.038*
C210.9147 (3)0.24686 (17)0.0365 (5)0.0342 (7)
H21A0.95550.28760.06670.041*
C220.9651 (3)0.18879 (15)0.0136 (4)0.0246 (6)
H22A1.04020.18970.01340.030*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
I10.02480 (14)0.04162 (16)0.04785 (17)0.00971 (8)0.01317 (10)0.00607 (10)
Si10.0145 (5)0.0154 (5)0.0134 (5)0.0021 (4)0.0001 (4)0.0025 (4)
O10.0204 (9)0.0172 (9)0.0149 (9)0.0057 (7)0.0016 (7)0.0005 (7)
N10.0174 (11)0.0157 (11)0.0159 (10)0.0014 (8)0.0000 (8)0.0015 (8)
N20.0215 (12)0.0198 (11)0.0155 (11)0.0030 (9)0.0016 (9)0.0022 (8)
N30.0158 (10)0.0175 (11)0.0145 (10)0.0018 (8)0.0000 (8)0.0026 (8)
N40.0190 (11)0.0189 (11)0.0196 (11)0.0014 (9)0.0021 (9)0.0002 (9)
C10.0211 (13)0.0153 (12)0.0157 (12)0.0043 (10)0.0029 (10)0.0002 (9)
C20.0209 (13)0.0153 (12)0.0149 (12)0.0025 (10)0.0014 (10)0.0026 (9)
C30.0229 (14)0.0169 (13)0.0170 (13)0.0025 (10)0.0025 (10)0.0008 (10)
C40.0295 (15)0.0222 (14)0.0205 (14)0.0033 (12)0.0026 (11)0.0052 (11)
C50.0363 (18)0.0219 (15)0.0243 (15)0.0023 (12)0.0074 (13)0.0073 (11)
C60.0322 (17)0.0227 (15)0.0266 (16)0.0081 (12)0.0065 (13)0.0014 (11)
C70.0247 (15)0.0194 (14)0.0261 (15)0.0028 (11)0.0027 (11)0.0008 (11)
C80.0218 (13)0.0153 (12)0.0180 (13)0.0010 (10)0.0031 (10)0.0012 (10)
C90.0165 (12)0.0166 (12)0.0180 (13)0.0004 (10)0.0024 (10)0.0012 (10)
C100.0185 (13)0.0162 (12)0.0182 (12)0.0010 (10)0.0028 (10)0.0016 (10)
C110.0231 (14)0.0175 (13)0.0189 (13)0.0009 (10)0.0043 (11)0.0027 (10)
C120.0231 (14)0.0264 (15)0.0219 (14)0.0049 (11)0.0053 (11)0.0017 (11)
C130.0243 (15)0.0351 (17)0.0305 (16)0.0032 (13)0.0128 (12)0.0025 (13)
C140.0333 (17)0.0305 (16)0.0246 (15)0.0005 (13)0.0159 (13)0.0009 (12)
C150.0280 (15)0.0212 (14)0.0199 (13)0.0016 (11)0.0078 (11)0.0007 (10)
C160.0222 (13)0.0170 (13)0.0183 (13)0.0009 (10)0.0040 (10)0.0025 (10)
C170.0222 (13)0.0165 (12)0.0144 (12)0.0024 (10)0.0021 (10)0.0007 (9)
C180.0217 (13)0.0182 (13)0.0159 (12)0.0006 (10)0.0008 (10)0.0027 (10)
C190.0200 (14)0.0256 (15)0.0217 (14)0.0035 (11)0.0054 (11)0.0039 (10)
C200.0393 (19)0.0215 (15)0.0365 (18)0.0048 (13)0.0132 (14)0.0069 (13)
C210.0388 (19)0.0211 (15)0.0426 (19)0.0084 (13)0.0092 (15)0.0101 (13)
C220.0216 (15)0.0233 (15)0.0282 (16)0.0027 (11)0.0041 (12)0.0017 (11)
Geometric parameters (Å, º) top
I1—C192.100 (3)C7—C81.401 (4)
Si1—O1i1.7314 (19)C7—H7A0.9500
Si1—O11.7314 (19)C8—C91.452 (4)
Si1—N11.906 (2)C10—N1i1.385 (4)
Si1—N1i1.906 (2)C10—C111.449 (4)
Si1—N3i1.918 (2)C11—C121.389 (4)
Si1—N31.918 (2)C11—C161.399 (4)
O1—C171.364 (3)C12—C131.376 (4)
N1—C11.385 (3)C12—H12A0.9500
N1—C10i1.385 (4)C13—C141.405 (5)
N2—C21.313 (4)C13—H13A0.9500
N2—C11.319 (4)C14—C151.383 (4)
N3—C21.381 (3)C14—H14A0.9500
N3—C91.384 (4)C15—C161.390 (4)
N4—C91.317 (4)C15—H15A0.9500
N4—C101.319 (4)C16—C1i1.444 (4)
C1—C16i1.444 (4)C17—C221.396 (4)
C2—C31.449 (4)C17—C181.399 (4)
C3—C81.392 (4)C18—C191.378 (4)
C3—C41.396 (4)C18—H18A0.9500
C4—C51.388 (5)C19—C201.381 (5)
C4—H4A0.9500C20—C211.384 (5)
C5—C61.401 (5)C20—H20A0.9500
C5—H5A0.9500C21—C221.397 (5)
C6—C71.388 (4)C21—H21A0.9500
C6—H6A0.9500C22—H22A0.9500
O1i—Si1—O1180.0C3—C8—C7121.8 (3)
O1i—Si1—N187.72 (9)C3—C8—C9106.6 (2)
O1—Si1—N192.28 (9)C7—C8—C9131.6 (3)
O1i—Si1—N1i92.28 (9)N4—C9—N3127.8 (2)
O1—Si1—N1i87.72 (9)N4—C9—C8122.6 (3)
N1—Si1—N1i180.0N3—C9—C8109.6 (2)
O1i—Si1—N3i90.74 (9)N4—C10—N1i127.9 (3)
O1—Si1—N3i89.26 (9)N4—C10—C11121.8 (3)
N1—Si1—N3i90.37 (10)N1i—C10—C11110.2 (2)
N1i—Si1—N3i89.63 (10)C12—C11—C16121.2 (3)
O1i—Si1—N389.26 (9)C12—C11—C10132.5 (3)
O1—Si1—N390.74 (9)C16—C11—C10106.3 (2)
N1—Si1—N389.63 (10)C13—C12—C11117.5 (3)
N1i—Si1—N390.37 (10)C13—C12—H12A121.2
N3i—Si1—N3180.0C11—C12—H12A121.2
C17—O1—Si1129.36 (17)C12—C13—C14121.4 (3)
C1—N1—C10i106.6 (2)C12—C13—H13A119.3
C1—N1—Si1126.73 (19)C14—C13—H13A119.3
C10i—N1—Si1126.19 (18)C15—C14—C13121.4 (3)
C2—N2—C1121.0 (2)C15—C14—H14A119.3
C2—N3—C9107.2 (2)C13—C14—H14A119.3
C2—N3—Si1126.65 (19)C14—C15—C16117.1 (3)
C9—N3—Si1126.11 (19)C14—C15—H15A121.4
C9—N4—C10121.4 (2)C16—C15—H15A121.4
N2—C1—N1127.8 (3)C15—C16—C11121.3 (3)
N2—C1—C16i122.0 (2)C15—C16—C1i131.9 (3)
N1—C1—C16i110.1 (2)C11—C16—C1i106.7 (2)
N2—C2—N3127.9 (2)O1—C17—C22120.2 (3)
N2—C2—C3122.3 (3)O1—C17—C18120.5 (2)
N3—C2—C3109.8 (2)C22—C17—C18119.2 (3)
C8—C3—C4121.6 (3)C19—C18—C17119.5 (3)
C8—C3—C2106.8 (2)C19—C18—H18A120.2
C4—C3—C2131.6 (3)C17—C18—H18A120.2
C5—C4—C3116.8 (3)C18—C19—C20122.0 (3)
C5—C4—H4A121.6C18—C19—I1118.9 (2)
C3—C4—H4A121.6C20—C19—I1119.1 (2)
C4—C5—C6121.5 (3)C19—C20—C21118.5 (3)
C4—C5—H5A119.2C19—C20—H20A120.7
C6—C5—H5A119.2C21—C20—H20A120.7
C7—C6—C5122.0 (3)C20—C21—C22120.9 (3)
C7—C6—H6A119.0C20—C21—H21A119.5
C5—C6—H6A119.0C22—C21—H21A119.5
C6—C7—C8116.3 (3)C17—C22—C21119.7 (3)
C6—C7—H7A121.9C17—C22—H22A120.1
C8—C7—H7A121.9C21—C22—H22A120.1
N1—Si1—O1—C1734.0 (2)C2—N3—C9—C80.2 (3)
N1i—Si1—O1—C17146.0 (2)Si1—N3—C9—C8178.24 (18)
N3i—Si1—O1—C17124.3 (2)C3—C8—C9—N4178.4 (3)
N3—Si1—O1—C1755.7 (2)C7—C8—C9—N41.3 (5)
C2—N2—C1—N12.3 (4)C3—C8—C9—N30.4 (3)
C2—N2—C1—C16i174.9 (3)C7—C8—C9—N3179.9 (3)
C10i—N1—C1—N2178.7 (3)C9—N4—C10—N1i3.0 (4)
Si1—N1—C1—N26.1 (4)C9—N4—C10—C11174.4 (3)
C10i—N1—C1—C16i1.2 (3)N4—C10—C11—C122.4 (5)
Si1—N1—C1—C16i171.45 (18)N1i—C10—C11—C12175.4 (3)
C1—N2—C2—N31.0 (4)N4—C10—C11—C16178.7 (3)
C1—N2—C2—C3179.2 (3)N1i—C10—C11—C160.8 (3)
C9—N3—C2—N2177.7 (3)C16—C11—C12—C131.8 (4)
Si1—N3—C2—N20.4 (4)C10—C11—C12—C13174.0 (3)
C9—N3—C2—C30.7 (3)C11—C12—C13—C142.7 (5)
Si1—N3—C2—C3178.75 (18)C12—C13—C14—C150.8 (5)
N2—C2—C3—C8177.5 (3)C13—C14—C15—C162.0 (5)
N3—C2—C3—C81.0 (3)C14—C15—C16—C112.9 (4)
N2—C2—C3—C42.8 (5)C14—C15—C16—C1i174.1 (3)
N3—C2—C3—C4178.7 (3)C12—C11—C16—C151.0 (4)
C8—C3—C4—C51.2 (4)C10—C11—C16—C15177.7 (3)
C2—C3—C4—C5179.2 (3)C12—C11—C16—C1i176.7 (3)
C3—C4—C5—C60.5 (5)C10—C11—C16—C1i0.1 (3)
C4—C5—C6—C70.5 (5)Si1—O1—C17—C22100.8 (3)
C5—C6—C7—C80.9 (5)Si1—O1—C17—C1882.4 (3)
C4—C3—C8—C70.8 (4)O1—C17—C18—C19179.8 (2)
C2—C3—C8—C7179.5 (3)C22—C17—C18—C192.9 (4)
C4—C3—C8—C9178.9 (3)C17—C18—C19—C202.5 (4)
C2—C3—C8—C90.8 (3)C17—C18—C19—I1175.6 (2)
C6—C7—C8—C30.3 (4)C18—C19—C20—C210.2 (5)
C6—C7—C8—C9179.9 (3)I1—C19—C20—C21178.3 (3)
C10—N4—C9—N31.9 (4)C19—C20—C21—C222.6 (6)
C10—N4—C9—C8179.6 (3)O1—C17—C22—C21177.5 (3)
C2—N3—C9—N4178.9 (3)C18—C17—C22—C210.6 (5)
Si1—N3—C9—N43.1 (4)C20—C21—C22—C172.1 (5)
Symmetry code: (i) x+2, y, z.
(2secBP2-SiPc) Bis(3-iodophenoxy)(phthalocyanine)silicon top
Crystal data top
C52H42N8O2SiF(000) = 3520
Mr = 839.03Dx = 1.194 Mg m3
Orthorhombic, IbcaCu Kα radiation, λ = 1.54178 Å
Hall symbol: -I 2b 2cCell parameters from 586 reflections
a = 10.9239 (3) Åθ = 4.4–35.1°
b = 25.7282 (7) ŵ = 0.83 mm1
c = 33.2065 (8) ÅT = 220 K
V = 9332.8 (4) Å3Plate, blue
Z = 80.12 × 0.12 × 0.01 mm
Data collection top
Bruker Kappa APEX DUO CCD
diffractometer
4085 independent reflections
Radiation source: fine-focus sealed tube2969 reflections with I > 2σ(I)
Multi-layer optics monochromatorRint = 0.104
φ and ω scansθmax = 66.8°, θmin = 3.4°
Absorption correction: multi-scan
(TWINABS; Bruker, 2007)
h = 1212
Tmin = 0.621, Tmax = 0.753k = 3030
120855 measured reflectionsl = 3838
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.066Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.208H-atom parameters constrained
S = 1.08 w = 1/[σ2(Fo2) + (0.1166P)2 + 6.9892P]
where P = (Fo2 + 2Fc2)/3
4085 reflections(Δ/σ)max < 0.001
287 parametersΔρmax = 0.40 e Å3
4 restraintsΔρmin = 0.36 e Å3
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > 2sigma(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Si10.00000.25000.14722 (3)0.0424 (3)
O10.10423 (18)0.30013 (7)0.15037 (5)0.0502 (5)
N10.00000.25000.09000 (10)0.0477 (8)
N20.1543 (2)0.18453 (10)0.07595 (7)0.0557 (6)
N30.1325 (2)0.20136 (9)0.14701 (6)0.0469 (6)
N40.1747 (2)0.19492 (9)0.21844 (7)0.0467 (6)
N50.00000.25000.20454 (8)0.0414 (7)
C10.0427 (3)0.22952 (14)0.04755 (9)0.0655 (9)
H10.07070.21610.07220.079*
C20.0858 (3)0.20892 (13)0.01231 (8)0.0600 (8)
H20.14280.18160.01230.072*
C30.0421 (3)0.22993 (12)0.02363 (8)0.0527 (7)
C40.0689 (3)0.21830 (11)0.06512 (8)0.0484 (7)
C50.1844 (3)0.17777 (11)0.11392 (8)0.0535 (7)
C60.2850 (3)0.14513 (12)0.12648 (9)0.0586 (8)
C70.3677 (3)0.11427 (14)0.10481 (11)0.0758 (11)
H7A0.36290.11120.07670.091*
C80.4562 (4)0.08877 (15)0.12662 (12)0.0847 (12)
H8A0.51360.06810.11290.102*
C90.4635 (4)0.09263 (15)0.16849 (12)0.0799 (11)
H9A0.52430.07400.18230.096*
C100.3830 (3)0.12339 (12)0.18996 (10)0.0623 (8)
H10A0.38830.12650.21810.075*
C110.2936 (3)0.14950 (11)0.16799 (9)0.0536 (7)
C120.1969 (2)0.18421 (11)0.18043 (8)0.0473 (6)
C130.0820 (2)0.22489 (10)0.22928 (8)0.0433 (6)
C140.0520 (2)0.23430 (10)0.27105 (8)0.0447 (6)
C150.1064 (3)0.21848 (12)0.30650 (8)0.0540 (7)
H150.17730.19780.30650.065*
C160.0525 (3)0.23430 (13)0.34196 (9)0.0597 (8)
H160.08670.22380.36660.072*
C170.1460 (3)0.33683 (12)0.12375 (9)0.0561 (7)
C180.2136 (3)0.32242 (15)0.09020 (9)0.0658 (9)
H18A0.23030.28710.08540.079*
C190.2570 (4)0.3601 (2)0.06368 (12)0.0995 (15)
H19A0.30090.35050.04050.119*
C200.2341 (5)0.4119 (2)0.07211 (19)0.123 (2)
H20A0.25880.43780.05380.147*
C210.1763 (5)0.42528 (19)0.10666 (19)0.126 (2)
H21A0.16810.46070.11300.151*
C220.1292 (4)0.38908 (15)0.13276 (15)0.0906 (13)
C230.0718 (5)0.40626 (17)0.17334 (18)0.128 (2)
H23A0.04100.37450.18670.154*
C240.1738 (8)0.4300 (3)0.20158 (18)0.179 (3)
H24A0.23760.40440.20590.269*
H24B0.13770.43950.22720.269*
H24C0.20850.46060.18900.269*
C250.0369 (6)0.4412 (2)0.1666 (3)0.181 (4)
H25A0.09560.42490.14820.218*
H25B0.01100.47450.15510.218*
C260.0956 (8)0.4494 (3)0.2095 (3)0.226 (4)
H26A0.16890.47040.20700.339*
H26B0.03740.46680.22690.339*
H26C0.11680.41590.22100.339*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Si10.0459 (6)0.0491 (6)0.0323 (5)0.0052 (4)0.0000.000
O10.0573 (12)0.0531 (11)0.0402 (11)0.0034 (9)0.0045 (8)0.0066 (8)
N10.0552 (19)0.0534 (18)0.0344 (16)0.0052 (14)0.0000.000
N20.0658 (15)0.0622 (14)0.0390 (13)0.0115 (12)0.0092 (11)0.0023 (11)
N30.0516 (13)0.0526 (13)0.0366 (12)0.0080 (10)0.0062 (10)0.0035 (9)
N40.0455 (12)0.0558 (13)0.0387 (12)0.0043 (10)0.0028 (10)0.0038 (9)
N50.0434 (16)0.0514 (17)0.0295 (15)0.0019 (13)0.0000.000
C10.066 (2)0.097 (2)0.0342 (15)0.0023 (16)0.0047 (14)0.0033 (15)
C20.0594 (18)0.080 (2)0.0410 (16)0.0041 (15)0.0065 (14)0.0070 (14)
C30.0555 (16)0.0632 (17)0.0395 (15)0.0014 (13)0.0014 (13)0.0007 (12)
C40.0522 (15)0.0568 (16)0.0363 (14)0.0049 (13)0.0058 (12)0.0003 (11)
C50.0628 (18)0.0565 (16)0.0411 (16)0.0103 (14)0.0108 (13)0.0017 (12)
C60.0665 (19)0.0603 (17)0.0490 (17)0.0188 (14)0.0146 (14)0.0095 (13)
C70.091 (3)0.077 (2)0.059 (2)0.032 (2)0.0247 (18)0.0101 (17)
C80.088 (3)0.080 (2)0.086 (3)0.039 (2)0.024 (2)0.016 (2)
C90.075 (2)0.080 (2)0.084 (3)0.034 (2)0.007 (2)0.0160 (19)
C100.0606 (18)0.0678 (19)0.0586 (18)0.0153 (15)0.0047 (15)0.0135 (15)
C110.0535 (16)0.0553 (16)0.0518 (18)0.0100 (13)0.0095 (13)0.0102 (13)
C120.0447 (14)0.0535 (15)0.0437 (15)0.0061 (12)0.0029 (12)0.0086 (12)
C130.0395 (13)0.0524 (14)0.0379 (14)0.0013 (11)0.0006 (11)0.0006 (11)
C140.0406 (13)0.0557 (15)0.0379 (14)0.0030 (11)0.0018 (11)0.0012 (11)
C150.0486 (15)0.0730 (19)0.0403 (15)0.0000 (13)0.0051 (13)0.0035 (13)
C160.0605 (18)0.082 (2)0.0365 (14)0.0010 (15)0.0072 (14)0.0028 (14)
C170.0517 (16)0.0635 (18)0.0530 (17)0.0010 (13)0.0000 (14)0.0167 (14)
C180.0513 (17)0.098 (2)0.0487 (18)0.0062 (16)0.0014 (14)0.0108 (17)
C190.072 (2)0.159 (5)0.068 (3)0.022 (3)0.008 (2)0.037 (3)
C200.117 (4)0.122 (4)0.129 (4)0.012 (3)0.013 (3)0.076 (4)
C210.127 (4)0.085 (3)0.164 (5)0.008 (3)0.054 (4)0.058 (3)
C220.092 (3)0.059 (2)0.120 (3)0.000 (2)0.033 (2)0.022 (2)
C230.155 (5)0.059 (2)0.171 (5)0.016 (3)0.082 (4)0.007 (3)
C240.259 (8)0.144 (5)0.135 (5)0.085 (6)0.066 (5)0.030 (4)
C250.143 (5)0.085 (3)0.316 (9)0.011 (4)0.099 (6)0.056 (5)
C260.183 (7)0.172 (7)0.324 (11)0.024 (6)0.067 (8)0.090 (8)
Geometric parameters (Å, º) top
Si1—O11.7236 (19)C10—C111.391 (4)
Si1—O1i1.7237 (19)C10—H10A0.9400
Si1—N11.900 (3)C11—C121.444 (4)
Si1—N51.904 (3)C13—C141.446 (4)
Si1—N31.913 (2)C14—C151.380 (4)
Si1—N3i1.913 (2)C14—C14i1.394 (5)
O1—C171.372 (3)C15—C161.378 (4)
N1—C4i1.384 (3)C15—H150.9400
N1—C41.384 (3)C16—C16i1.403 (6)
N2—C51.315 (4)C16—H160.9400
N2—C41.324 (4)C17—C181.387 (4)
N3—C51.378 (3)C17—C221.390 (5)
N3—C121.386 (3)C18—C191.392 (5)
N4—C121.314 (4)C18—H18A0.9400
N4—C131.323 (3)C19—C201.385 (8)
N5—C13i1.376 (3)C19—H19A0.9400
N5—C131.376 (3)C20—C211.354 (7)
C1—C21.368 (4)C20—H20A0.9400
C1—C1i1.408 (7)C21—C221.372 (6)
C1—H10.9400C21—H21A0.9400
C2—C31.394 (4)C22—C231.550 (7)
C2—H20.9400C23—C251.506 (9)
C3—C3i1.383 (6)C23—C241.578 (7)
C3—C41.440 (4)C23—H23A0.9900
C5—C61.445 (4)C24—H24A0.9700
C6—C111.386 (4)C24—H24B0.9700
C6—C71.401 (4)C24—H24C0.9700
C7—C81.375 (5)C25—C261.577 (7)
C7—H7A0.9400C25—H25A0.9800
C8—C91.396 (6)C25—H25B0.9800
C8—H8A0.9400C26—H26A0.9700
C9—C101.381 (5)C26—H26B0.9700
C9—H9A0.9400C26—H26C0.9700
O1—Si1—O1i173.03 (13)C10—C11—C12131.4 (3)
O1—Si1—N193.48 (7)N4—C12—N3127.5 (2)
O1i—Si1—N193.49 (7)N4—C12—C11122.6 (2)
O1—Si1—N586.52 (7)N3—C12—C11109.8 (2)
O1i—Si1—N586.51 (7)N4—C13—N5127.6 (2)
N1—Si1—N5180.0N4—C13—C14122.2 (2)
O1—Si1—N389.42 (10)N5—C13—C14110.3 (2)
O1i—Si1—N390.61 (10)C15—C14—C14i121.46 (17)
N1—Si1—N389.79 (7)C15—C14—C13132.2 (3)
N5—Si1—N390.21 (7)C14i—C14—C13106.38 (15)
O1—Si1—N3i90.61 (10)C16—C15—C14117.2 (3)
O1i—Si1—N3i89.42 (10)C16—C15—H15121.4
N1—Si1—N3i89.79 (7)C14—C15—H15121.4
N5—Si1—N3i90.21 (7)C15—C16—C16i121.30 (18)
N3—Si1—N3i179.58 (14)C15—C16—H16119.3
C17—O1—Si1134.08 (18)C16i—C16—H16119.3
C4i—N1—C4106.7 (3)O1—C17—C18120.7 (3)
C4i—N1—Si1126.66 (15)O1—C17—C22118.9 (3)
C4—N1—Si1126.66 (15)C18—C17—C22120.1 (3)
C5—N2—C4121.6 (2)C17—C18—C19120.2 (4)
C5—N3—C12106.8 (2)C17—C18—H18A119.9
C5—N3—Si1127.05 (19)C19—C18—H18A119.9
C12—N3—Si1126.11 (18)C20—C19—C18118.7 (4)
C12—N4—C13121.6 (2)C20—C19—H19A120.6
C13i—N5—C13106.7 (3)C18—C19—H19A120.6
C13i—N5—Si1126.63 (14)C21—C20—C19120.0 (4)
C13—N5—Si1126.63 (14)C21—C20—H20A120.0
C2—C1—C1i121.19 (19)C19—C20—H20A120.0
C2—C1—H1119.4C20—C21—C22122.5 (5)
C1i—C1—H1119.4C20—C21—H21A118.8
C1—C2—C3117.7 (3)C22—C21—H21A118.8
C1—C2—H2121.2C21—C22—C17118.1 (4)
C3—C2—H2121.2C21—C22—C23120.5 (4)
C3i—C3—C2121.13 (18)C17—C22—C23121.1 (3)
C3i—C3—C4106.89 (16)C25—C23—C22111.1 (5)
C2—C3—C4132.0 (3)C25—C23—C24114.5 (5)
N2—C4—N1127.4 (2)C22—C23—C24109.9 (4)
N2—C4—C3122.6 (2)C25—C23—H23A107.0
N1—C4—C3109.8 (2)C22—C23—H23A107.0
N2—C5—N3127.1 (3)C24—C23—H23A107.0
N2—C5—C6123.0 (3)C23—C24—H24A109.5
N3—C5—C6109.8 (2)C23—C24—H24B109.5
C11—C6—C7120.9 (3)H24A—C24—H24B109.5
C11—C6—C5106.9 (2)C23—C24—H24C109.5
C7—C6—C5132.2 (3)H24A—C24—H24C109.5
C8—C7—C6116.9 (3)H24B—C24—H24C109.5
C8—C7—H7A121.5C23—C25—C26105.4 (6)
C6—C7—H7A121.5C23—C25—H25A110.7
C7—C8—C9122.0 (3)C26—C25—H25A110.7
C7—C8—H8A119.0C23—C25—H25B110.7
C9—C8—H8A119.0C26—C25—H25B110.7
C10—C9—C8121.3 (3)H25A—C25—H25B108.8
C10—C9—H9A119.4C25—C26—H26A109.5
C8—C9—H9A119.4C25—C26—H26B109.5
C9—C10—C11116.9 (3)H26A—C26—H26B109.5
C9—C10—H10A121.6C25—C26—H26C109.5
C11—C10—H10A121.6H26A—C26—H26C109.5
C6—C11—C10122.0 (3)H26B—C26—H26C109.5
C6—C11—C12106.6 (2)
Symmetry code: (i) x, y+1/2, z.
Comparison of contacts (Å) less than the sum of the van der Waals radii for various meta-functional bis(meta-functional phenoxy) silicon phthalocyanines top
MoleculeC(K)-H(L)—H(M)-C(N)distanceX···X
(3MP)2-SiPcC4—H4A···O2—Si12.67H···O
(3MP)2-SiPcC46—H46B···H11—C112.39H···H
(3MP)2-SiPcC39—H39C···H3A—C32.34H···H
(3MP)2-SiPcC42—C43···H21A—C212.75C···H
(3IP)2-SiPcC4—H1···H11—C212.32H···H
(2secBP)2-SiPcC24—H16···H19—C262.30H···H
Summary of single-crystal X-ray diffraction data (Å, °) top
Slip angle between Pc aromatic = angle between centroid-to-centroid and normal of each aromatic Pc benzene; angle between aromatic planes = smallest angle between both planes that contain the stacking aromatic benzene rings.
Compounddetails of packingshortest distance between Pc aromaticslip angle between Pc aromaticangle between aromatic planesRef.
Cl2-SiPcdual benzene ring stacking4.172,4.17234.87 / 36.591.72Lessard, White et al. (2015)
(3MP)2-SiPcisoindoline stacking3.794, 3.655, 3.79422.33 / 22.530.21This work
(345F)2-SiPcisoindoline stacking3.716, 3.580, 3.71618.90 / 18.900Lessard, Grant et al., (2015)
(246F)2-SiPcdual benzene ring stacking3.860, 3.86030.08 / 30.080Lessard, Grant et al. (2015)
(3IP)2-SiPcdual benzene ring stacking3.716, 3.71617.55/14.6010.9This work
(2secBP)2-SiPcdual benzene ring stacking3.947, 3.94732.53/26.026.5This work
Notes: in all cases the single crystals were grown by slow diffusion of heptane into a THF solution of the respective compound. Identical crystals of (3MP)2-SiPc were also grown by diffusion of pentane into a solution of benzene as well as from slow evaporation of a chloroform solution.
 

Acknowledgements

This work was supported by a Natural Sciences and Engineer Research Council (NSERC) Banting Post-Doctoral fellowship to BHL and a Discovery Grant to TPB. The authors would also like to acknowledge financial support from Saudi Basic Industries (SABIC). We would also like to thank Dr Alan Lough for his help performing the single-crystal X-ray diffractions.

References

First citationAthimoolam, S., Kumar, J., Ramakrishnan, V. & Rajaram, R. K. (2005). Acta Cryst. E61, m2014–m2017.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationBruker (2011). APEX2, SAINT, SADABS and TWINABS. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationCnops, K., Rand, B. P., Cheyns, D., Verreet, B., Empl, M. & Heremans, P. (2014). Nat. Commun. 5, 3406.  CrossRef PubMed Google Scholar
First citationCox, P. J., Kumarasamy, Y., Nahar, L., Sarker, S. D. & Shoeb, M. (2003). Acta Cryst. E59, o975–o977.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationLessard, B. H., Dang, J. D., Grant, T. M., Gao, D., Seferos, D. S. & Bender, T. P. (2014). Appl. Mater. Interfaces, 6, 15040–15051.  CAS Google Scholar
First citationEftaiha, A. F., Sun, J.-P., Hill, I. G. & Welch, G. C. (2014). J. Mater. Chem. A, 2, 1201–1213.  CrossRef CAS Google Scholar
First citationFlack, H. D. (1983). Acta Cryst. A39, 876–881.  CrossRef CAS Web of Science IUCr Journals Google Scholar
First citationHonda, S., Nogami, T., Ohkita, H., Benten, H. & Ito, S. (2009). Appl. Mater. Interfaces, 1, 804–810.  CrossRef CAS Google Scholar
First citationHonda, S., Ohkita, H., Benten, H. & Ito, S. (2011). Adv. Energ. Mater. 1, 588–598.  CrossRef CAS Google Scholar
First citationLessard, B. H., Grant, T. M., White, R., Thibau, E., Lu, Z.-H. & Bender, T. P. (2015). J. Mater. Chem. A, 3, 24512–24524.  CSD CrossRef CAS Google Scholar
First citationLessard, B. H., White, R. T., AL-Amar, M., Plint, T., Castrucci, J. S., Josey, D. S., Lu, Z.-H. & Bender, T. P. (2015). Appl. Mater. Interfaces, 7, 5076–5088.  CrossRef CAS Google Scholar
First citationLi, H., Earmme, T., Ren, G., Saeki, A., Yoshikawa, S., Murari, N. M., Subramaniyan, S., Crane, M. J., Seki, S. & Jenekhe, S. (2014). J. Am. Chem. Soc. 136, 14589–14597.  CrossRef CAS PubMed Google Scholar
First citationLowery, M. K., Starshak, A. J., Esposito, J. N., Krueger, P. C. & Kenney, M. E. (1965). Inorg. Chem. 4, 128.  CrossRef Google Scholar
First citationMacrae, C. F., Edgington, P. R., McCabe, P., Pidcock, E., Shields, G. P., Taylor, R., Towler, M. & van de Streek, J. (2006). J. Appl. Cryst. 39, 453–457.  Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
First citationMohamed, A. A., Krause Bauer, J. A., Bruce, A. E. & Bruce, M. R. M. (2003). Acta Cryst. C59, m84–m86.  Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
First citationPaton, A. S., Lough, A. J. & Bender, T. P. (2012). Ind. Eng. Chem. Res. 51, 6290–6296.  CSD CrossRef CAS Google Scholar
First citationRozycka-Sokolowska, E., Marciniak, B., Kosik, S., Dondela, B. & Bak, Z. (2015). Struct. Chem. 26, 873–886.  CAS Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSheldrick, G. M. (2015). Acta Cryst. C71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar
First citationSpackman, M. & Jayatilaka, D. (2009). CrystEngComm, 11, 19–32.  Web of Science CrossRef CAS Google Scholar
First citationSpek, A. L. (2009). Acta Cryst. D65, 148–155.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSpek, A. L. (2015). Acta Cryst. C71, 9–18.  Web of Science CrossRef IUCr Journals Google Scholar
First citationStähler, R., Näther, C. & Bensch, W. (2001). Acta Cryst. C57, 26–27.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationVirdo, J. D., Kawar, Y. H., Lough, A. J. & Bender, T. P. (2013). CrystEngComm, 15, 3187–3199.  CSD CrossRef CAS Google Scholar
First citationZhang, X., Lu, Z., Ye, L., Zhan, C., Hou, J., Zhang, S., Jiang, B., Zhao, Y., Huang, J., Zhang, S., Liu, Y., Shi, Q., Liu, Y. & Yao, J. (2013). Adv. Mater. 25, 5791–5797.  CrossRef CAS PubMed Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds