research communications
Structural characterization of two benzene-1,2-diamine complexes of zinc chloride: a molecular compound and a
saltaDepartment of Chemistry, SUNY-College at Geneseo, Geneseo, NY 14454, USA
*Correspondence e-mail: geiger@geneseo.edu
The structures of two zinc complexes containing bidentate benzene-1,2-diamine ligands are reported. (Benzene-1,2-diamine-κ2N,N′)dichloroidozinc, [ZnCl2(C6H8N2)], (I), displays a distorted tetrahedral coordination sphere for the metal cation. The diamine ligand and the Zn atom reside on a crystallographic mirror plane. In the 1:1 salt trans-diaquabis(4,5-dimethylbenzene-1,2-diamine-κ2N,N′)zinc chloride–4,5-dimethylbenzene-1,2-diamine (1/1), [Zn(C8H12N2)2(H2O)2]Cl2·2C8H12N2, (II), the zinc(II) complex cation exhibits a tetragonally distorted octahedral coordination sphere. The Zn atom sits on a crystallographically imposed inversion center and the diamine ligands are tilted 30.63 (6)° with respect to the ZnN4 plane. Both complexes exhibit extensive hydrogen bonding. In (I), a stacked-sheet extended structure parallel to (101) is observed. In (II), the co-crystallized diamine is hydrogen-bonded to the complex cation via O—H⋯N and N—H⋯N linkages. These units are in turn linked into planes along (200) by O—H⋯Cl and N—H⋯Cl hydrogen bonds.
Keywords: crystal structure; benzene-1,2-diamine; zinc chloride; co-crystal salt.
1. Chemical context
Zinc complexes bearing aryl diimine and/or heterocyclic ligands have been shown to emit brightly in the blue region of the spectrum (DeStefano & Geiger, 2016; Tan et al., 2012; Liu et al., 2010; Xu et al., 2008; Yue et al., 2006; Singh et al., 2011; Wang et al., 2010). These complexes have potential use in photooptical devices because of their high thermal stability and the ability to tune their color by varying ancillary ligands and coordination geometry (Xu et al., 2008). Most of the compounds explored have acetate ligands. Substituting acetate with halide ligands provides an avenue for modulating the electronic structure of the complex and, hence, the carrier transport character. Toward that end, we have characterized several zinc complexes possessing benzene-1,2-diamine ligands (Geiger, 2012; Geiger & Parsons, 2014) and substituted benzimidazole ligands (DeStefano & Geiger, 2016). The benzene-1,2-diamine-containing complexes previously reported have a monodentate diamine coordination mode. We report herein two new zinc complexes containing bidentate benzene-1,2-diamine ligands: (benzene-1,2-diamine-κ2N,N′)dichloridozinc, (I), and the 1:1 salt trans-diaquabis(4,5-dimethylbenzene-1,2-diamine-κ2N,N′)zinc chloride 4,5-dimethylbenzene-1,2-diamine, (II).
2. Structural commentary
As seen in Fig. 1, compound (I) exhibits a distorted tetrahedral coordination sphere for the metal cation. Tables 1 and 2 give relevant geometric parameters found in the coordination sphere. The diamine ligand and the Zn atom sit on a mirror plane and, hence, are rigorously planar as a result of the symmetry constraint. The Zn—N bond lengths observed at the two temperatures are the same within the calculated s.u.s. The Zn—Cl bond lengths differ within the s.u.s, with the 200 K structure being 0.0030 (5) Å longer. The bond lengths observed at both temperatures fall within the s.u. of the average value [2.221 (19) Å] of similar complexes but the Cl—Zn—Cl bond angles are smaller than the average of the values [115 (1)°] reported for similar ZnII dichlorides in a tetrahedral environment (Shi et al., 2010; You, 2005; Lee et al., 2007).
|
|
Compound (II) consists of a ZnII complex cation with two bidentate 4,5-dimethylbenzene-1,2-diamine ligands and trans water ligands, chloride counter-ions and a non-coordinating molecule of 4,5-dimethylbenzene-1,2-diamine. The compound is thus classified as a salt (Grothe et al., 2016). A representation of (II) is found in Fig. 2. The ZnII ion sits on a crystallographically imposed center of symmetry and has a tetragonally distorted octahedral coordination geometry. The observed Zn—O bond length (Table 3) is significantly longer than the average of the values [2.14 (3) Å] reported for similar trans aqua zinc(II) complexes (Necefoglu et al., 2001; İbrahim et al., 2006; Karimnejad et al., 2011; Gallardo et al., 2008; Li et al., 2012) and the range [2.008 (3) to 2.147 (3) Å] found in the hexaaquazinc(II) cation (Lian et al., 2009). However, it is close to the 2.2057 (16) Å found in the similar cation of trans-diaquabis(cyclohexane-1,2-diamine)zinc dichloride (Karimnejad et al., 2011). The plane of the 4,5-dimethylbenzene-1,2-diamine ligand is canted 30.63 (6) Å out of the ZnN4 coordination plane. The nitrogen atoms of the diamine ligand are 0.022 (3) and 0.131 (3) Å out of the benzene plane for N1 and N2, respectively. For the co-crystallized diamine, N3 and N4 are 0.139 (3) and 0.088 (3) Å out of the plane, respectively.
3. Supramolecular features
As seen in Figs. 3 and 4 and Tables 4 and 5, N1—H1⋯Cl hydrogen bonds between adjacent molecules result in strips of molecules of (I) along [100]. The strips form planes parallel to (101). Additional N2—H2⋯Cl bonds join the strips to form the three-dimensional network.
|
|
Fig. 5 presents a view of the hydrogen-bonding network in (II). N—H⋯N and O—H⋯N hydrogen bonds connect inversion-related co-crystallized 4,5-dimethylbenzene-1,2-diamine molecules to the complex cation (see Table 6). Additional N—H⋯Cl and O—H⋯Cl hydrogen bonds join the units, forming planes parallel to (200).
4. Database survey
The structures of the tetrahedral complexes bis(acetato-κO)(benzene-1,2-diamine-κN)zinc (Mei et al., 2009) and bis(acetato-κO)(4,5-dimethylbenzene-1,2-diamine-κN)zinc (Geiger, 2012) have been reported. Poly[[tris(μ2-acetato-κ2O:O′)(4-chlorobenzene-1,2-diamine-κN)(μ3-hydroxido)dizinc] ethanol monosolvate] exhibits alternating octahedral and tetrahedral zinc coordination modes (Geiger & Parsons, 2014). Dichlorido[N-(2-pyridylmethylidene)benzene-1,4-diamine]zinc has a tetrahedral coordination sphere with intermolecular N—H⋯Cl hydrogen bonds (Shi et al., 2010). Dichlorido[N,N,N′,N′-tetramethylcyclohexane-1,2-diamine-κ2N,N′]zinc displays a tetrahedral coordination geometry (Lee et al., 2007). For examples of zinc complexes with the metal in octahedral coordination including trans water ligands, see İbrahim et al. (2006); Necefoglu et al. (2001); Karimnejad et al. (2011). A tetragonally distorted octahedral zinc complex that contains both a mono- and a bidentate benzene-1,2-diamine ligand (Qian et al., 2007) and a distorted octahedral complex with trans monodentate benzene-1,2-diamine ligands (Ovalle-Marroquín et al., 2002) have been reported.
5. Synthesis and crystallization
Compound (I) was prepared by mixing a solution of 100. mg (0.734 mmol) zinc chloride dissolved in approximately 5 mL ethanol with a solution of 238 mg (2.20 mmol) benzene-1,2-diamine dissolved in approximately 5 mL ethanol. The mixture became cloudy with a fine white precipitate. After the addition of 4 drops of 6 M HCl, the mixture was gently heated, filtered and allowed to slowly evaporate. After two days, 0.0273 g (0.117 mmol, 15% yield) of clear, colorless crystals were isolated, which were used for data collection. The diffraction pattern showed signs of degradation as the temperature was lowered to 200 K from 300 K and so data sets were collected at both temperatures.
Compound (II) was prepared by combining solutions of 100 mg (0.734 mmole) zinc chloride in a few mL of ethanol and 300 mg (2.20 mmol) 4,5-dimethylbenzene-1,2-diamine in a few mL of ethanol. After the addition of 4 drops of 6 M HCl, the mixture was gently heated and filtered. The filtrate was divided into three portions and each allowed to slowly evaporate. After several days, a small number of clear, colorless crystals in the shape of hexagonal plates were isolated, one of which was used for data collection.
6. details
Crystal data, data collection and structure . For compound (I), data sets were collected at 300 K (Ia) and 200 K (Ib). The diffraction pattern showed clear degradation at the lower temperature. Examination of the crystal subjected to the cold stream showed fractures that were not previously present. As seen in Table 7, the cell constant s.u.s, R values and S values are lower for the 300 K data set.
details are summarized in Table 7
|
For both (I) and (II), all hydrogen atoms were located in difference Fourier maps. For (I), all hydrogen atoms bonded to the nitrogen atoms were refined freely, including isotropic displacement parameters. For (Ia), the hydrogen atoms bonded to the benzene carbon atoms were refined using a riding model with C—H = 0.93 Å and Uiso(H) = 1.2Ueq(C), whereas these hydrogen atoms were refined with C—H = 0.95 Å and Uiso(H) = 1.2Ueq(C) for (Ib).
For (II), the amine hydrogen atoms of the non-coordinating 4,5-dimethylbenzene-1,2-diamine were refined freely, including the isotropic displacement parameters. For the hydrogen atoms of the coordinating the atomic coordinates were refined freely with Uiso(H) = 1.2Ueq(N). The hydrogen atoms of the water ligands were refined freely, including the isotropic displacement parameters. The methyl hydrogen atoms were refined with C—H = 0.98 Å and Uiso(H) = 1.5Ueq(C).
Supporting information
https://doi.org/10.1107/S2056989016010033/lh5817sup1.cif
contains datablocks global, Ia, II, Ib. DOI:Structure factors: contains datablock Ia. DOI: https://doi.org/10.1107/S2056989016010033/lh5817Iasup2.hkl
Structure factors: contains datablock II. DOI: https://doi.org/10.1107/S2056989016010033/lh5817IIsup3.hkl
Structure factors: contains datablock Ib. DOI: https://doi.org/10.1107/S2056989016010033/lh5817Ibsup4.hkl
Supporting information file. DOI: https://doi.org/10.1107/S2056989016010033/lh5817Iasup5.mol
Supporting information file. DOI: https://doi.org/10.1107/S2056989016010033/lh5817IIsup7.mol
Supporting information file. DOI: https://doi.org/10.1107/S2056989016010033/lh5817Ibsup6.mol
For all compounds, data collection: APEX2 (Bruker, 2013); cell
SAINT (Bruker, 2013); data reduction: SAINT (Bruker, 2013); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL2014 (Sheldrick, 2015); molecular graphics: PLATON (Spek, 2009) and Mercury (Macrae et al., 2006); software used to prepare material for publication: publCIF (Westrip, 2010).[ZnCl2(C6H8N2)] | Dx = 1.813 Mg m−3 |
Mr = 244.41 | Mo Kα radiation, λ = 0.71073 Å |
Orthorhombic, Pnma | Cell parameters from 6300 reflections |
a = 8.4039 (9) Å | θ = 2.8–29.2° |
b = 7.5206 (7) Å | µ = 3.27 mm−1 |
c = 14.1667 (15) Å | T = 300 K |
V = 895.37 (16) Å3 | Parallelpiped, colorless |
Z = 4 | 0.60 × 0.30 × 0.20 mm |
F(000) = 488 |
Bruker SMART X2S benchtop diffractometer | 1129 independent reflections |
Radiation source: sealed microfocus tube | 1026 reflections with I > 2σ(I) |
Doubly curved silicon crystal monochromator | Rint = 0.039 |
Detector resolution: 8.3330 pixels mm-1 | θmax = 27.9°, θmin = 2.8° |
/w scans | h = −11→11 |
Absorption correction: multi-scan (SADABS; Bruker, 2013) | k = −9→8 |
Tmin = 0.39, Tmax = 0.56 | l = −18→15 |
9435 measured reflections |
Refinement on F2 | Primary atom site location: structure-invariant direct methods |
Least-squares matrix: full | Secondary atom site location: difference Fourier map |
R[F2 > 2σ(F2)] = 0.020 | Hydrogen site location: mixed |
wR(F2) = 0.051 | H atoms treated by a mixture of independent and constrained refinement |
S = 1.09 | w = 1/[σ2(Fo2) + (0.0226P)2 + 0.2253P] where P = (Fo2 + 2Fc2)/3 |
1129 reflections | (Δ/σ)max = 0.001 |
72 parameters | Δρmax = 0.26 e Å−3 |
0 restraints | Δρmin = −0.40 e Å−3 |
Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes. |
Refinement. Refined as a 2-component inversion twin. |
x | y | z | Uiso*/Ueq | ||
Zn1 | 0.12910 (3) | 0.75 | 0.38035 (2) | 0.03301 (10) | |
N1 | 0.3667 (2) | 0.75 | 0.34928 (13) | 0.0359 (5) | |
H1 | 0.393 (2) | 0.656 (3) | 0.3182 (15) | 0.050 (6)* | |
N2 | 0.1999 (2) | 0.75 | 0.51849 (13) | 0.0362 (5) | |
H2 | 0.162 (3) | 0.660 (3) | 0.5468 (16) | 0.057 (6)* | |
Cl1 | 0.00181 (5) | 0.50621 (6) | 0.33277 (3) | 0.04250 (13) | |
C1 | 0.4560 (3) | 0.75 | 0.43712 (14) | 0.0301 (4) | |
C2 | 0.3724 (2) | 0.75 | 0.52146 (14) | 0.0293 (4) | |
C3 | 0.4541 (3) | 0.75 | 0.60645 (15) | 0.0406 (5) | |
H3 | 0.3982 | 0.75 | 0.6631 | 0.049* | |
C4 | 0.6191 (3) | 0.75 | 0.60699 (19) | 0.0496 (7) | |
H4 | 0.6742 | 0.75 | 0.6639 | 0.059* | |
C5 | 0.7007 (3) | 0.75 | 0.5231 (2) | 0.0508 (7) | |
H5 | 0.8114 | 0.75 | 0.5236 | 0.061* | |
C6 | 0.6208 (3) | 0.75 | 0.43830 (19) | 0.0434 (6) | |
H6 | 0.6774 | 0.75 | 0.3819 | 0.052* |
U11 | U22 | U33 | U12 | U13 | U23 | |
Zn1 | 0.03143 (15) | 0.04349 (19) | 0.02409 (14) | 0 | −0.00277 (9) | 0 |
N1 | 0.0353 (10) | 0.0523 (14) | 0.0200 (8) | 0 | 0.0028 (7) | 0 |
N2 | 0.0357 (10) | 0.0506 (14) | 0.0223 (8) | 0 | 0.0037 (7) | 0 |
Cl1 | 0.0528 (3) | 0.0391 (3) | 0.0355 (2) | −0.00706 (18) | −0.00622 (16) | 0.00356 (16) |
C1 | 0.0339 (11) | 0.0307 (12) | 0.0258 (9) | 0 | 0.0001 (8) | 0 |
C2 | 0.0342 (11) | 0.0308 (12) | 0.0228 (9) | 0 | −0.0010 (7) | 0 |
C3 | 0.0499 (14) | 0.0474 (15) | 0.0244 (10) | 0 | −0.0057 (9) | 0 |
C4 | 0.0485 (15) | 0.0559 (18) | 0.0443 (14) | 0 | −0.0201 (11) | 0 |
C5 | 0.0354 (13) | 0.0582 (18) | 0.0587 (15) | 0 | −0.0093 (11) | 0 |
C6 | 0.0332 (12) | 0.0541 (17) | 0.0429 (13) | 0 | 0.0041 (9) | 0 |
Zn1—Cl1i | 2.2271 (5) | C5—C6 | 1.377 (4) |
Zn1—Cl1 | 2.2271 (5) | C5—H5 | 0.93 |
Zn1—N1 | 2.0449 (19) | C4—C5 | 1.372 (4) |
Zn1—N2 | 2.0454 (18) | C4—H4 | 0.93 |
N2—C2 | 1.451 (3) | C3—C4 | 1.387 (4) |
N2—H2 | 0.85 (2) | C3—H3 | 0.93 |
N1—C1 | 1.453 (3) | C2—C3 | 1.386 (3) |
N1—H1 | 0.86 (2) | C1—C2 | 1.386 (3) |
C6—H6 | 0.93 | C1—C6 | 1.385 (3) |
Cl1—Zn1—Cl1i | 110.82 (2) | C4—C5—C6 | 120.8 (2) |
N1—Zn1—N2 | 85.53 (8) | C6—C5—H5 | 119.6 |
N1—Zn1—Cl1 | 113.82 (3) | C4—C5—H5 | 119.6 |
N2—Zn1—Cl1 | 115.42 (3) | C5—C4—C3 | 119.7 (2) |
N2—Zn1—Cl1i | 115.42 (3) | C5—C4—H4 | 120.2 |
N1—Zn1—Cl1i | 113.82 (3) | C3—C4—H4 | 120.2 |
Zn1—N2—H2 | 110.1 (15) | C2—C3—C4 | 120.0 (2) |
C2—N2—H2 | 111.3 (15) | C4—C3—H3 | 120.0 |
C2—N2—Zn1 | 108.56 (13) | C2—C3—H3 | 120.0 |
Zn1—N1—H1 | 111.1 (14) | C3—C2—C1 | 119.8 (2) |
C1—N1—H1 | 107.8 (14) | C3—C2—N2 | 121.4 (2) |
C1—N1—Zn1 | 108.67 (13) | C1—C2—N2 | 118.81 (18) |
C5—C6—C1 | 119.9 (2) | C6—C1—C2 | 119.8 (2) |
C5—C6—H6 | 120.1 | C6—C1—N1 | 121.79 (19) |
C1—C6—H6 | 120.1 | C2—C1—N1 | 118.43 (19) |
Symmetry code: (i) x, −y+3/2, z. |
D—H···A | D—H | H···A | D···A | D—H···A |
N1—H1···Cl1ii | 0.86 (2) | 2.59 (2) | 3.3618 (16) | 150.7 (18) |
N2—H2···Cl1iii | 0.85 (2) | 2.52 (2) | 3.3204 (16) | 157 (2) |
Symmetry codes: (ii) x+1/2, y, −z+1/2; (iii) −x, −y+1, −z+1. |
[Zn(C8H12N2)2(H2O)2]Cl2·2C8H12N2 | F(000) = 760 |
Mr = 717.08 | Dx = 1.298 Mg m−3 |
Monoclinic, P21/c | Mo Kα radiation, λ = 0.71073 Å |
a = 18.529 (2) Å | Cell parameters from 8719 reflections |
b = 12.6227 (16) Å | θ = 2.7–25.8° |
c = 7.8691 (8) Å | µ = 0.86 mm−1 |
β = 94.665 (4)° | T = 200 K |
V = 1834.4 (4) Å3 | Plate, clear colourless |
Z = 2 | 0.60 × 0.40 × 0.10 mm |
Bruker SMART X2S benchtop diffractometer | 3619 independent reflections |
Radiation source: sealed microfocus tube | 2920 reflections with I > 2σ(I) |
Doubly curved silicon crystal monochromator | Rint = 0.060 |
Detector resolution: 8.3330 pixels mm-1 | θmax = 26.0°, θmin = 2.7° |
/w scans | h = −22→22 |
Absorption correction: multi-scan (SADABS; Bruker, 2013) | k = −15→15 |
Tmin = 0.66, Tmax = 0.92 | l = −9→9 |
25430 measured reflections |
Refinement on F2 | 0 restraints |
Least-squares matrix: full | Hydrogen site location: mixed |
R[F2 > 2σ(F2)] = 0.031 | H atoms treated by a mixture of independent and constrained refinement |
wR(F2) = 0.079 | w = 1/[σ2(Fo2) + (0.0325P)2 + 0.4174P] where P = (Fo2 + 2Fc2)/3 |
S = 1.05 | (Δ/σ)max = 0.001 |
3619 reflections | Δρmax = 0.31 e Å−3 |
245 parameters | Δρmin = −0.22 e Å−3 |
Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes. |
x | y | z | Uiso*/Ueq | ||
Zn1 | 0.5 | 0.5 | 0.5 | 0.02953 (11) | |
Cl1 | 0.45668 (3) | 0.33892 (4) | 1.02374 (6) | 0.03564 (13) | |
O1 | 0.56720 (9) | 0.42255 (13) | 0.31090 (19) | 0.0392 (4) | |
H1WA | 0.6043 (14) | 0.447 (2) | 0.278 (3) | 0.051 (8)* | |
H1WB | 0.5410 (14) | 0.403 (2) | 0.231 (3) | 0.058 (8)* | |
N1 | 0.40508 (8) | 0.41964 (13) | 0.4016 (2) | 0.0274 (3) | |
H1A | 0.4163 (11) | 0.3837 (17) | 0.317 (3) | 0.033* | |
H1B | 0.3870 (11) | 0.3749 (17) | 0.468 (3) | 0.033* | |
N2 | 0.45593 (9) | 0.61470 (14) | 0.3192 (2) | 0.0322 (4) | |
H2A | 0.4637 (11) | 0.6792 (18) | 0.355 (3) | 0.039* | |
H2B | 0.4755 (12) | 0.6043 (17) | 0.233 (3) | 0.039* | |
N3 | 0.67491 (11) | 0.80052 (17) | 0.8184 (3) | 0.0422 (4) | |
H3A | 0.6415 (14) | 0.807 (2) | 0.741 (3) | 0.056 (8)* | |
H3B | 0.6781 (12) | 0.736 (2) | 0.859 (3) | 0.050 (7)* | |
N4 | 0.68407 (11) | 0.98800 (18) | 0.6276 (3) | 0.0408 (4) | |
H4A | 0.6917 (13) | 1.035 (2) | 0.560 (3) | 0.058 (8)* | |
H4B | 0.6509 (14) | 0.947 (2) | 0.579 (3) | 0.053 (7)* | |
C1 | 0.35297 (10) | 0.49852 (14) | 0.3405 (2) | 0.0261 (4) | |
C2 | 0.37896 (10) | 0.59711 (15) | 0.2950 (2) | 0.0280 (4) | |
C3 | 0.33004 (11) | 0.67499 (16) | 0.2373 (2) | 0.0356 (5) | |
H3 | 0.3479 | 0.7416 | 0.2031 | 0.043* | |
C4 | 0.25549 (11) | 0.65820 (17) | 0.2281 (2) | 0.0385 (5) | |
C5 | 0.22942 (10) | 0.56000 (18) | 0.2798 (2) | 0.0373 (5) | |
C6 | 0.27863 (10) | 0.48108 (16) | 0.3337 (2) | 0.0325 (5) | |
H6 | 0.2611 | 0.414 | 0.3666 | 0.039* | |
C7 | 0.20454 (14) | 0.7463 (2) | 0.1635 (3) | 0.0584 (7) | |
H7A | 0.2328 | 0.8085 | 0.1351 | 0.088* | |
H7B | 0.1726 | 0.7651 | 0.2522 | 0.088* | |
H7C | 0.1753 | 0.7221 | 0.0615 | 0.088* | |
C8 | 0.14910 (12) | 0.5376 (2) | 0.2831 (3) | 0.0575 (7) | |
H8A | 0.1248 | 0.5496 | 0.1694 | 0.086* | |
H8B | 0.1285 | 0.5849 | 0.3653 | 0.086* | |
H8C | 0.1421 | 0.4638 | 0.3168 | 0.086* | |
C9 | 0.74336 (10) | 0.84050 (16) | 0.7842 (2) | 0.0337 (4) | |
C10 | 0.74828 (10) | 0.93442 (16) | 0.6917 (2) | 0.0330 (4) | |
C11 | 0.81603 (12) | 0.97694 (17) | 0.6739 (3) | 0.0389 (5) | |
H11 | 0.8193 | 1.0404 | 0.61 | 0.047* | |
C12 | 0.87968 (11) | 0.93093 (19) | 0.7455 (3) | 0.0437 (5) | |
C13 | 0.87500 (12) | 0.83640 (19) | 0.8363 (3) | 0.0441 (5) | |
C14 | 0.80689 (12) | 0.79322 (18) | 0.8537 (2) | 0.0403 (5) | |
H14 | 0.8036 | 0.7289 | 0.9154 | 0.048* | |
C15 | 0.95146 (14) | 0.9844 (2) | 0.7237 (4) | 0.0706 (8) | |
H15A | 0.9767 | 0.9977 | 0.836 | 0.106* | |
H15B | 0.9429 | 1.0518 | 0.6636 | 0.106* | |
H15C | 0.9812 | 0.9384 | 0.6575 | 0.106* | |
C16 | 0.94172 (14) | 0.7809 (3) | 0.9159 (3) | 0.0710 (8) | |
H16A | 0.9745 | 0.7651 | 0.8275 | 0.107* | |
H16B | 0.9275 | 0.7147 | 0.9691 | 0.107* | |
H16C | 0.9664 | 0.8268 | 1.0026 | 0.107* |
U11 | U22 | U33 | U12 | U13 | U23 | |
Zn1 | 0.02417 (16) | 0.03331 (19) | 0.03039 (18) | −0.00446 (13) | −0.00213 (12) | −0.00003 (13) |
Cl1 | 0.0358 (3) | 0.0413 (3) | 0.0299 (3) | −0.0041 (2) | 0.00360 (19) | 0.0004 (2) |
O1 | 0.0308 (8) | 0.0510 (10) | 0.0362 (9) | −0.0069 (7) | 0.0048 (7) | −0.0091 (7) |
N1 | 0.0275 (8) | 0.0270 (9) | 0.0280 (9) | −0.0030 (7) | 0.0028 (7) | −0.0012 (7) |
N2 | 0.0310 (9) | 0.0344 (9) | 0.0318 (9) | −0.0076 (7) | 0.0061 (7) | 0.0018 (8) |
N3 | 0.0411 (11) | 0.0428 (12) | 0.0436 (11) | −0.0114 (9) | 0.0094 (9) | −0.0012 (9) |
N4 | 0.0359 (10) | 0.0443 (12) | 0.0422 (11) | −0.0001 (9) | 0.0027 (8) | 0.0053 (10) |
C1 | 0.0261 (9) | 0.0311 (10) | 0.0209 (9) | −0.0002 (8) | 0.0004 (7) | −0.0021 (8) |
C2 | 0.0287 (9) | 0.0329 (10) | 0.0225 (9) | −0.0024 (8) | 0.0019 (7) | 0.0002 (8) |
C3 | 0.0435 (11) | 0.0314 (11) | 0.0318 (11) | 0.0007 (9) | 0.0024 (9) | 0.0035 (8) |
C4 | 0.0401 (11) | 0.0471 (13) | 0.0279 (10) | 0.0131 (10) | 0.0005 (8) | −0.0020 (9) |
C5 | 0.0279 (10) | 0.0544 (14) | 0.0297 (10) | 0.0019 (9) | 0.0020 (8) | −0.0012 (9) |
C6 | 0.0273 (10) | 0.0400 (12) | 0.0301 (10) | −0.0055 (8) | 0.0024 (8) | 0.0004 (8) |
C7 | 0.0582 (15) | 0.0603 (17) | 0.0559 (15) | 0.0239 (13) | −0.0010 (12) | 0.0009 (12) |
C8 | 0.0301 (12) | 0.0844 (19) | 0.0582 (15) | 0.0066 (12) | 0.0043 (11) | 0.0051 (13) |
C9 | 0.0359 (11) | 0.0376 (12) | 0.0288 (10) | −0.0068 (9) | 0.0093 (8) | −0.0070 (9) |
C10 | 0.0354 (11) | 0.0364 (11) | 0.0276 (10) | −0.0011 (9) | 0.0060 (8) | −0.0047 (8) |
C11 | 0.0405 (12) | 0.0393 (12) | 0.0379 (11) | −0.0076 (9) | 0.0089 (9) | 0.0030 (9) |
C12 | 0.0342 (11) | 0.0583 (15) | 0.0394 (12) | −0.0083 (10) | 0.0071 (9) | −0.0055 (11) |
C13 | 0.0389 (12) | 0.0572 (15) | 0.0361 (11) | 0.0042 (11) | 0.0025 (9) | −0.0024 (10) |
C14 | 0.0493 (13) | 0.0380 (12) | 0.0342 (11) | 0.0031 (10) | 0.0069 (9) | 0.0025 (9) |
C15 | 0.0383 (14) | 0.100 (2) | 0.0741 (19) | −0.0179 (14) | 0.0070 (13) | 0.0068 (16) |
C16 | 0.0503 (15) | 0.095 (2) | 0.0656 (17) | 0.0143 (15) | −0.0073 (13) | 0.0084 (16) |
Zn1—N1i | 2.1214 (15) | C4—C7 | 1.519 (3) |
Zn1—N1 | 2.1214 (15) | C5—C6 | 1.393 (3) |
Zn1—N2 | 2.1442 (17) | C5—C8 | 1.517 (3) |
Zn1—N2i | 2.1442 (17) | C6—H6 | 0.95 |
Zn1—O1i | 2.2409 (15) | C7—H7A | 0.98 |
Zn1—O1 | 2.2410 (15) | C7—H7B | 0.98 |
O1—H1WA | 0.81 (3) | C7—H7C | 0.98 |
O1—H1WB | 0.80 (3) | C8—H8A | 0.98 |
N1—C1 | 1.442 (2) | C8—H8B | 0.98 |
N1—H1A | 0.84 (2) | C8—H8C | 0.98 |
N1—H1B | 0.85 (2) | C9—C14 | 1.391 (3) |
N2—C2 | 1.441 (2) | C9—C10 | 1.398 (3) |
N2—H2A | 0.87 (2) | C10—C11 | 1.383 (3) |
N2—H2B | 0.81 (2) | C11—C12 | 1.392 (3) |
N3—C9 | 1.411 (3) | C11—H11 | 0.95 |
N3—H3A | 0.84 (3) | C12—C13 | 1.397 (3) |
N3—H3B | 0.87 (3) | C12—C15 | 1.514 (3) |
N4—C10 | 1.425 (3) | C13—C14 | 1.392 (3) |
N4—H4A | 0.81 (3) | C13—C16 | 1.512 (3) |
N4—H4B | 0.87 (3) | C14—H14 | 0.95 |
C1—C6 | 1.392 (2) | C15—H15A | 0.98 |
C1—C2 | 1.392 (3) | C15—H15B | 0.98 |
C2—C3 | 1.388 (3) | C15—H15C | 0.98 |
C3—C4 | 1.393 (3) | C16—H16A | 0.98 |
C3—H3 | 0.95 | C16—H16B | 0.98 |
C4—C5 | 1.403 (3) | C16—H16C | 0.98 |
N1i—Zn1—N1 | 180.0 | C6—C5—C4 | 119.21 (18) |
N1i—Zn1—N2 | 100.31 (6) | C6—C5—C8 | 118.7 (2) |
N1—Zn1—N2 | 79.69 (6) | C4—C5—C8 | 122.1 (2) |
N1i—Zn1—N2i | 79.69 (6) | C1—C6—C5 | 121.32 (19) |
N1—Zn1—N2i | 100.31 (6) | C1—C6—H6 | 119.3 |
N2—Zn1—N2i | 180.0 | C5—C6—H6 | 119.3 |
N1i—Zn1—O1i | 92.18 (7) | C4—C7—H7A | 109.5 |
N1—Zn1—O1i | 87.82 (7) | C4—C7—H7B | 109.5 |
N2—Zn1—O1i | 86.78 (7) | H7A—C7—H7B | 109.5 |
N2i—Zn1—O1i | 93.22 (7) | C4—C7—H7C | 109.5 |
N1i—Zn1—O1 | 87.82 (7) | H7A—C7—H7C | 109.5 |
N1—Zn1—O1 | 92.18 (7) | H7B—C7—H7C | 109.5 |
N2—Zn1—O1 | 93.22 (7) | C5—C8—H8A | 109.5 |
N2i—Zn1—O1 | 86.78 (7) | C5—C8—H8B | 109.5 |
O1i—Zn1—O1 | 180.00 (5) | H8A—C8—H8B | 109.5 |
Zn1—O1—H1WA | 124.6 (18) | C5—C8—H8C | 109.5 |
Zn1—O1—H1WB | 108.7 (18) | H8A—C8—H8C | 109.5 |
H1WA—O1—H1WB | 110 (2) | H8B—C8—H8C | 109.5 |
C1—N1—Zn1 | 107.71 (12) | C14—C9—C10 | 118.65 (18) |
C1—N1—H1A | 108.0 (14) | C14—C9—N3 | 121.1 (2) |
Zn1—N1—H1A | 107.1 (14) | C10—C9—N3 | 120.01 (19) |
C1—N1—H1B | 111.9 (14) | C11—C10—C9 | 118.68 (19) |
Zn1—N1—H1B | 116.6 (13) | C11—C10—N4 | 121.26 (19) |
H1A—N1—H1B | 105 (2) | C9—C10—N4 | 119.93 (18) |
C2—N2—Zn1 | 107.66 (11) | C10—C11—C12 | 122.9 (2) |
C2—N2—H2A | 108.9 (14) | C10—C11—H11 | 118.5 |
Zn1—N2—H2A | 111.8 (14) | C12—C11—H11 | 118.5 |
C2—N2—H2B | 111.9 (15) | C11—C12—C13 | 118.52 (19) |
Zn1—N2—H2B | 106.0 (16) | C11—C12—C15 | 119.4 (2) |
H2A—N2—H2B | 111 (2) | C13—C12—C15 | 122.0 (2) |
C9—N3—H3A | 116.8 (17) | C14—C13—C12 | 118.65 (19) |
C9—N3—H3B | 111.6 (16) | C14—C13—C16 | 119.7 (2) |
H3A—N3—H3B | 112 (2) | C12—C13—C16 | 121.7 (2) |
C10—N4—H4A | 113.0 (18) | C9—C14—C13 | 122.6 (2) |
C10—N4—H4B | 114.7 (17) | C9—C14—H14 | 118.7 |
H4A—N4—H4B | 107 (2) | C13—C14—H14 | 118.7 |
C6—C1—C2 | 119.58 (17) | C12—C15—H15A | 109.5 |
C6—C1—N1 | 122.50 (17) | C12—C15—H15B | 109.5 |
C2—C1—N1 | 117.84 (16) | H15A—C15—H15B | 109.5 |
C3—C2—C1 | 119.14 (17) | C12—C15—H15C | 109.5 |
C3—C2—N2 | 123.19 (18) | H15A—C15—H15C | 109.5 |
C1—C2—N2 | 117.59 (16) | H15B—C15—H15C | 109.5 |
C2—C3—C4 | 121.84 (19) | C13—C16—H16A | 109.5 |
C2—C3—H3 | 119.1 | C13—C16—H16B | 109.5 |
C4—C3—H3 | 119.1 | H16A—C16—H16B | 109.5 |
C3—C4—C5 | 118.86 (18) | C13—C16—H16C | 109.5 |
C3—C4—C7 | 119.5 (2) | H16A—C16—H16C | 109.5 |
C5—C4—C7 | 121.6 (2) | H16B—C16—H16C | 109.5 |
Zn1—N1—C1—C6 | −152.85 (15) | C4—C5—C6—C1 | 1.3 (3) |
Zn1—N1—C1—C2 | 24.00 (19) | C8—C5—C6—C1 | −177.21 (19) |
C6—C1—C2—C3 | −2.4 (3) | C14—C9—C10—C11 | −0.4 (3) |
N1—C1—C2—C3 | −179.38 (16) | N3—C9—C10—C11 | 173.98 (18) |
C6—C1—C2—N2 | 174.28 (17) | C14—C9—C10—N4 | −176.29 (18) |
N1—C1—C2—N2 | −2.7 (2) | N3—C9—C10—N4 | −1.9 (3) |
Zn1—N2—C2—C3 | 156.68 (15) | C9—C10—C11—C12 | −0.7 (3) |
Zn1—N2—C2—C1 | −19.9 (2) | N4—C10—C11—C12 | 175.16 (19) |
C1—C2—C3—C4 | 1.8 (3) | C10—C11—C12—C13 | 1.4 (3) |
N2—C2—C3—C4 | −174.74 (17) | C10—C11—C12—C15 | −178.3 (2) |
C2—C3—C4—C5 | 0.4 (3) | C11—C12—C13—C14 | −1.1 (3) |
C2—C3—C4—C7 | −179.85 (18) | C15—C12—C13—C14 | 178.7 (2) |
C3—C4—C5—C6 | −1.9 (3) | C11—C12—C13—C16 | 179.2 (2) |
C7—C4—C5—C6 | 178.34 (19) | C15—C12—C13—C16 | −1.0 (3) |
C3—C4—C5—C8 | 176.51 (19) | C10—C9—C14—C13 | 0.7 (3) |
C7—C4—C5—C8 | −3.2 (3) | N3—C9—C14—C13 | −173.60 (19) |
C2—C1—C6—C5 | 0.9 (3) | C12—C13—C14—C9 | 0.0 (3) |
N1—C1—C6—C5 | 177.72 (17) | C16—C13—C14—C9 | 179.7 (2) |
Symmetry code: (i) −x+1, −y+1, −z+1. |
D—H···A | D—H | H···A | D···A | D—H···A |
O1—H1WA···N4ii | 0.81 (3) | 2.13 (3) | 2.924 (3) | 164 (2) |
O1—H1WB···Cl1iii | 0.80 (3) | 2.31 (3) | 3.1083 (17) | 173 (2) |
N1—H1A···Cl1iii | 0.84 (2) | 2.55 (2) | 3.3551 (18) | 160.3 (18) |
N1—H1B···N3iv | 0.85 (2) | 2.31 (2) | 3.137 (3) | 162.6 (18) |
N2—H2A···Cl1v | 0.87 (2) | 2.63 (2) | 3.4401 (19) | 155.3 (18) |
N2—H2B···Cl1i | 0.81 (2) | 2.57 (2) | 3.3105 (18) | 154 (2) |
N3—H3A···Cl1v | 0.84 (3) | 2.68 (3) | 3.516 (2) | 174 (2) |
N3—H3B···Cl1vi | 0.87 (3) | 2.89 (2) | 3.3284 (19) | 112.9 (18) |
N4—H4B···Cl1v | 0.87 (3) | 2.50 (3) | 3.355 (2) | 171 (2) |
Symmetry codes: (i) −x+1, −y+1, −z+1; (ii) x, −y+3/2, z−1/2; (iii) x, y, z−1; (iv) −x+1, y−1/2, −z+3/2; (v) −x+1, y+1/2, −z+3/2; (vi) −x+1, −y+1, −z+2. |
[ZnCl2(C6H8N2)] | Dx = 1.808 Mg m−3 |
Mr = 244.41 | Mo Kα radiation, λ = 0.71073 Å |
Orthorhombic, Pnma | Cell parameters from 2561 reflections |
a = 8.4152 (12) Å | θ = 2.8–29.2° |
b = 7.5141 (9) Å | µ = 3.27 mm−1 |
c = 14.199 (2) Å | T = 200 K |
V = 897.8 (2) Å3 | Prism, clear colourless |
Z = 4 | 0.60 × 0.30 × 0.20 mm |
F(000) = 488 |
Bruker SMART X2S benchtop diffractometer | 1090 independent reflections |
Radiation source: XOS X-beam microfocus source | 992 reflections with I > 2σ(I) |
Doubly curved silicon crystal monochromator | Rint = 0.040 |
Detector resolution: 8.3330 pixels mm-1 | θmax = 27.5°, θmin = 2.8° |
ω scans | h = −10→5 |
Absorption correction: multi-scan (SADABS; Bruker, 2013) | k = −8→9 |
Tmin = 0.40, Tmax = 0.56 | l = −15→18 |
4392 measured reflections |
Refinement on F2 | Primary atom site location: structure-invariant direct methods |
Least-squares matrix: full | Secondary atom site location: difference Fourier map |
R[F2 > 2σ(F2)] = 0.027 | Hydrogen site location: mixed |
wR(F2) = 0.074 | H atoms treated by a mixture of independent and constrained refinement |
S = 1.16 | w = 1/[σ2(Fo2) + (0.0377P)2] where P = (Fo2 + 2Fc2)/3 |
1090 reflections | (Δ/σ)max < 0.001 |
72 parameters | Δρmax = 0.41 e Å−3 |
0 restraints | Δρmin = −0.58 e Å−3 |
Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes. |
Refinement. Refined as a 2-component inversion twin. |
x | y | z | Uiso*/Ueq | ||
Zn1 | 0.12938 (3) | 0.75 | 0.38034 (2) | 0.03201 (15) | |
N1 | 0.3669 (2) | 0.75 | 0.3494 (2) | 0.0343 (6) | |
H1 | 0.388 (2) | 0.661 (3) | 0.318 (2) | 0.040 (7)* | |
N2 | 0.2002 (3) | 0.75 | 0.51812 (18) | 0.0354 (6) | |
H2 | 0.165 (3) | 0.666 (3) | 0.550 (2) | 0.047 (7)* | |
Cl1 | 0.00184 (5) | 0.50585 (6) | 0.33279 (4) | 0.04089 (18) | |
C1 | 0.4559 (3) | 0.75 | 0.4370 (2) | 0.0294 (6) | |
C2 | 0.3728 (3) | 0.75 | 0.5215 (2) | 0.0284 (6) | |
C3 | 0.4543 (4) | 0.75 | 0.6066 (2) | 0.0402 (7) | |
H3 | 0.3973 | 0.75 | 0.6644 | 0.048* | |
C4 | 0.6198 (4) | 0.75 | 0.6068 (3) | 0.0482 (9) | |
H4 | 0.6761 | 0.75 | 0.6648 | 0.058* | |
C5 | 0.7015 (4) | 0.75 | 0.5231 (3) | 0.0493 (8) | |
H5 | 0.8144 | 0.75 | 0.5237 | 0.059* | |
C6 | 0.6220 (3) | 0.75 | 0.4382 (3) | 0.0423 (8) | |
H6 | 0.6798 | 0.75 | 0.3807 | 0.051* |
U11 | U22 | U33 | U12 | U13 | U23 | |
Zn1 | 0.0301 (2) | 0.0408 (3) | 0.0251 (2) | 0 | −0.00244 (10) | 0 |
N1 | 0.0345 (12) | 0.0468 (18) | 0.0216 (12) | 0 | 0.0024 (8) | 0 |
N2 | 0.0346 (12) | 0.0469 (17) | 0.0246 (12) | 0 | 0.0041 (9) | 0 |
Cl1 | 0.0502 (3) | 0.0367 (3) | 0.0358 (3) | −0.0066 (2) | −0.0058 (2) | 0.0032 (2) |
C1 | 0.0341 (12) | 0.0282 (14) | 0.0259 (13) | 0 | −0.0001 (10) | 0 |
C2 | 0.0309 (13) | 0.0289 (14) | 0.0253 (14) | 0 | −0.0005 (9) | 0 |
C3 | 0.0498 (16) | 0.0423 (17) | 0.0283 (15) | 0 | −0.0035 (12) | 0 |
C4 | 0.0487 (18) | 0.051 (2) | 0.045 (2) | 0 | −0.0201 (14) | 0 |
C5 | 0.0331 (14) | 0.053 (2) | 0.061 (2) | 0 | −0.0120 (14) | 0 |
C6 | 0.0331 (14) | 0.051 (2) | 0.0425 (19) | 0 | 0.0048 (11) | 0 |
Zn1—Cl1 | 2.2301 (5) | C5—C6 | 1.379 (5) |
Zn1—Cl1i | 2.2301 (5) | C5—H5 | 0.95 |
Zn1—N1 | 2.047 (2) | C4—C5 | 1.373 (5) |
Zn1—N2 | 2.045 (3) | C4—H4 | 0.95 |
N2—C2 | 1.453 (3) | C3—C4 | 1.393 (4) |
N2—H2 | 0.83 (3) | C3—H3 | 0.95 |
N1—C1 | 1.452 (4) | C2—C3 | 1.389 (4) |
N1—H1 | 0.83 (3) | C1—C2 | 1.388 (4) |
C6—H6 | 0.95 | C1—C6 | 1.398 (3) |
Cl1—Zn1—Cl1i | 110.70 (3) | C4—C5—C6 | 120.9 (3) |
N1—Zn1—N2 | 85.45 (10) | C6—C5—H5 | 119.5 |
N1—Zn1—Cl1 | 113.89 (4) | C4—C5—H5 | 119.5 |
N2—Zn1—Cl1i | 115.46 (3) | C5—C4—C3 | 119.9 (3) |
N2—Zn1—Cl1 | 115.46 (3) | C5—C4—H4 | 120.0 |
N1—Zn1—Cl1i | 113.89 (4) | C3—C4—H4 | 120.0 |
Zn1—N2—H2 | 114.1 (19) | C2—C3—C4 | 119.7 (3) |
C2—N2—H2 | 110.0 (17) | C4—C3—H3 | 120.2 |
C2—N2—Zn1 | 108.84 (19) | C2—C3—H3 | 120.2 |
Zn1—N1—H1 | 109.0 (14) | C1—C2—C3 | 120.2 (2) |
C1—N1—H1 | 111.0 (18) | C3—C2—N2 | 121.5 (3) |
C1—N1—Zn1 | 108.62 (18) | C1—C2—N2 | 118.4 (2) |
C5—C6—C1 | 119.7 (3) | C2—C1—C6 | 119.6 (3) |
C5—C6—H6 | 120.2 | C6—C1—N1 | 121.7 (3) |
C1—C6—H6 | 120.2 | C2—C1—N1 | 118.7 (2) |
Zn1—N1—C1—C2 | 0 | C1—C2—C3—C4 | 0.0000 (10) |
Zn1—N1—C1—C6 | 180.0 | N2—C2—C3—C4 | 180.0000 (10) |
C6—C1—C2—C3 | 0.0000 (10) | C2—C3—C4—C5 | 0.0000 (10) |
N1—C1—C2—C3 | 180.0000 (10) | C3—C4—C5—C6 | 0.0000 (10) |
C6—C1—C2—N2 | 180.0 | C4—C5—C6—C1 | 0.0000 (10) |
N1—C1—C2—N2 | 0.0000 (10) | C2—C1—C6—C5 | 0.0000 (10) |
Zn1—N2—C2—C1 | 0.0000 (10) | N1—C1—C6—C5 | 180.0000 (10) |
Zn1—N2—C2—C3 | 180.0000 (10) |
Symmetry code: (i) x, −y+3/2, z. |
D—H···A | D—H | H···A | D···A | D—H···A |
N1—H1···Cl1ii | 0.83 (3) | 2.61 (3) | 3.368 (2) | 152 (2) |
N2—H2···Cl1iii | 0.83 (3) | 2.53 (3) | 3.327 (2) | 160 (2) |
Symmetry codes: (ii) x+1/2, y, −z+1/2; (iii) −x, −y+1, −z+1. |
Acknowledgements
This work was supported by a Congressionally-directed grant from the US Department of Education (grant No. P116Z100020) for the X-ray diffractometer and a grant from the Geneseo Foundation.
References
Bruker (2013). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA. Google Scholar
DeStefano, M. R. & Geiger, D. K. (2016). Acta Cryst. C72, 491–497. Web of Science CSD CrossRef IUCr Journals Google Scholar
Gallardo, H., Molin, F., Bortoluzzi, A. J. & Neves, A. (2008). Acta Cryst. E64, m541–m542. CSD CrossRef IUCr Journals Google Scholar
Geiger, D. K. (2012). Acta Cryst. E68, m1040. CSD CrossRef IUCr Journals Google Scholar
Geiger, D. K. & Parsons, D. E. (2014). Acta Cryst. E70, m247–m248. CSD CrossRef IUCr Journals Google Scholar
Grothe, E., Meekes, H., Vlieg, E., ter Horst, J. H. & de Gelder, R. (2016). Cryst. Growth Des.16, doi: 10.1021/acs. cgd. 6b00200. Google Scholar
İbrahim, K., Şahin, O., Filiz, Y. & Büyükgüngör, O. (2006). Acta Cryst. E62, m1909–m1911. CSD CrossRef IUCr Journals Google Scholar
Karimnejad, K., Khaledi, H. & Mohd Ali, H. (2011). Acta Cryst. E67, m421. CSD CrossRef IUCr Journals Google Scholar
Lee, N. Y., Yoon, J. U. & Jeong, J. H. (2007). Acta Cryst. E63, m2471. CSD CrossRef IUCr Journals Google Scholar
Li, F., Ou, X.-P. & Huang, C.-C. (2012). Acta Cryst. E68, m653–m654. CSD CrossRef IUCr Journals Google Scholar
Lian, Z., Zhao, N., Zhang, J., Gu, Y., Li, X. & Tang, B. (2009). Z. Kristallogr. New Cryst. Struct. 224, 399–401. CAS Google Scholar
Liu, H.-Y., Wu, H., Ma, J.-F., Liu, Y.-Y., Liu, B. & Yang, J. (2010). Cryst. Growth Des. 10, 4795–4805. Web of Science CSD CrossRef CAS Google Scholar
Macrae, C. F., Edgington, P. R., McCabe, P., Pidcock, E., Shields, G. P., Taylor, R., Towler, M. & van de Streek, J. (2006). J. Appl. Cryst. 39, 453–457. Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
Mei, L., Li, J., Ming, Z. S., Rong, L. Q. & Liang, L. X. (2009). Russ. J. Coord. Chem. 35, 871–873. Web of Science CrossRef CAS Google Scholar
Necefoglu, H., Clegg, W. & Scott, A. J. (2001). Acta Cryst. E57, m462–m464. Web of Science CSD CrossRef IUCr Journals Google Scholar
Ovalle-Marroquín, P., Gómez-Lara, J. & Hernández-Ortega, S. (2002). Acta Cryst. E58, m269–m271. Web of Science CSD CrossRef IUCr Journals Google Scholar
Qian, B., Ma, W.-X., Lu, L.-D., Yang, X.-J. & Wang, X. (2007). Acta Cryst. E63, m2930. Web of Science CSD CrossRef IUCr Journals Google Scholar
Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. Web of Science CrossRef CAS IUCr Journals Google Scholar
Sheldrick, G. M. (2015). Acta Cryst. C71, 3–8. Web of Science CrossRef IUCr Journals Google Scholar
Shi, Y.-F., Feng, Q.-H., Zhao, W.-J., Shi, Y.-B. & Zhan, P. (2010). Acta Cryst. E66, m593. Web of Science CSD CrossRef IUCr Journals Google Scholar
Singh, K., Kumar, A., Srivastava, R., Kadyan, P. S., Kamalasanan, M. N. & Singh, I. (2011). Opt. Mater. 34, 221–227. Web of Science CrossRef CAS Google Scholar
Spek, A. L. (2009). Acta Cryst. D65, 148–155. Web of Science CrossRef CAS IUCr Journals Google Scholar
Tan, R., Wang, Z.-B., Li, Y., Kozera, D. J., Lu, Z.-H. & Song, D. (2012). Inorg. Chem. 51, 7039–7049. Web of Science CSD CrossRef CAS PubMed Google Scholar
Wang, C.-J., Yue, K.-F., Zhang, W.-H., Jin, J.-C., Huang, X.-Y. & Wang, Y.-Y. (2010). Inorg. Chem. Commun. 13, 1332–1336. Web of Science CSD CrossRef CAS Google Scholar
Westrip, S. P. (2010). J. Appl. Cryst. 43, 920–925. Web of Science CrossRef CAS IUCr Journals Google Scholar
Xu, H., Xu, Z.-F., Yue, Z.-Y., Yan, P.-F., Wang, B., Jia, L.-W., Li, G.-M., Sun, W.-B. & Zhang, J.-W. (2008). J. Phys. Chem. C, 112, 15517–15525. Web of Science CrossRef CAS Google Scholar
You, Z.-L. (2005). Acta Cryst. C61, m383–m385. Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
Yue, S.-M., Xu, H.-B., Ma, J.-F., Su, Z.-M., Kan, Y.-H. & Zhang, H.-J. (2006). Polyhedron, 25, 635–644. Web of Science CSD CrossRef CAS Google Scholar
This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.