research communications
N,N,N′,N′-tetramethylguanidinium) tetrachloridocuprate(II)
of bis(aLaboratoire des Produits Naturels, Département de Chimie, Faculté des Sciences et Techniques, Université Cheikh Anta Diop, Dakar, Senegal, bLaboratoire de Chimie Minérale et Analytique, Département de Chimie, Faculté des Sciences et Techniques, Université Cheikh Anta Diop, Dakar, Senegal, and cDépartement de Chimie, Université de Montréal, 2900 Boulevard Édouard-Montpetit, Montréal, Québec, H3C 3J7, Canada
*Correspondence e-mail: dlibasse@gmail.com
In the structure of the title salt, (C5H14N3)2[CuCl4], the CuII atom in the anion lies on a twofold rotation axis. The tetrachloridocuprate(II) anion adopts a flattened tetrahedral coordination environment and interacts electrostatically with the tetramethylguanidinium cation. The crystal packing is additionally consolidated through N—H⋯Cl and C—H⋯Cl hydrogen bonds, resulting in a three-dimensional network structure.
Keywords: crystal structure; organic–inorganic hybrid salt; tetramethylguanidinium; tetrachloridocuprate(II); τ4 index.
CCDC reference: 1486986
1. Chemical context
The title compound belongs to the series of hybrid organic–inorganic materials of general formula A2[MX4] where A is an organic cation, M a divalent transition metal and X a halide. The copper representatives of these families have been extensively studied for their magnetic, dielectric and fluorescent properties in relation to their solid-state structures (Halvorson et al., 1990). Recent studies include examination of in relation to electrostatic properties (Awwadi & Haddad, 2012) or thermochroism (Aldrich et al., 2016), sometimes in relation to phase transitions (Kelley et al., 2015).
Following our report on the et al., 2016), we have investigated the interactions between tetramethylguanidine and CuCl2·2H2O which has yielded the title salt, (C5H14N3)2[CuCl4], (I).
of bis-tetramethylguanidinium trichloridocadmate (Ndiaye2. Structural commentary
The contains a complete N,N,N′,N′-tetramethylguanidinium cation and half of a [CuCl4]2− anion held together by an N—H⋯Cl hydrogen bond (Fig. 1). In the anion, the Cu—Cl distances range from 2.2396 (4) Å to 2.2557 (4) Å. They are shorter than those usually found in tetrachloridocuprate(II) anions with a square-planar configuration (Guo et al., 2015). The distortion of the flattened tetrachloridocuprate(II) anion in (I) from the ideal tetrahedral configuration can be asserted by the values of the two trans Cl—Cu—Cl angles, 135.62 (3)° and 133.31 (3)°. These two angles can also be used to calculate the τ4 geometry index developed by Yang et al. (2007) for complexes with four to quantify such a distortion. The τ4 parameter is defined as [360 - (α+β)] / 141 where α and β are the two largest Cl—Cu—Cl angles. A τ4 index value of 1 corresponds to an ideal tetrahedral configuration while a value of 0 is for a perfect square-planar configuration. Here the value obtained (0.65) indicates a `see-saw' (bisphenoidal) configuration with symmetry 2.
of (I)In the organic cation, the C—N distances in the central CN3 unit [1.332 (2), 1.335 (2) and 1.342 (2) Å] are consistent with a partial double-bond character and a positive charge delocalization, as usually found in structures involving tetramethylguanidinium cations. The central core of the cation has an almost planar–trigonal geometry, as reflected by the values for the three N—C—N angles close to 120° and the r.m.s deviation from the least-squares plane calculated for atoms C1, N1, N2 and N3 that is only 0.0006 Å. The dimethylammonium groups are twisted by 29.38 (16)° (C2, C3) and 25.08 (16)° (C4, C5) with respect to this plane.
3. Supramolecular features
Anions and cations are connected through electrostatic interactions and via classical N—H⋯Cl hydrogen bonds involving atom Cl1 whereby only one of the H atoms of the amine group is involved; the remaining H atom has no acceptor atom (Fig. 1, Table 1). In addition, each Cl atom of the anion is engaged in three C—H⋯Cl hydrogen bonds, leading to the formation of a three-dimensional network structure (Fig. 2, Table 1).
4. Database survey
A search in the Cambridge Structural Database (Version 5.37 with two updates; Groom et al., 2016) for isolated tetrachloridocuprate(II) anions without disorder returned 342 hits for a total of 389 fragments. The configurations of these fragments were analysed using the τ4 index as described above. Around 60 of these (15%) have a τ4 index value less than 0.1, including 29 that have a τ4 index of 0 (ideal square-planar configuration). Only four were found to have a configuration close to the ideal tetrahedral one with a τ4 index value larger than 0.9. A large number of fragments (72%) has a geometry index τ4 value in the 0.6–0.8 range and feature a bisphenoidal configuration as found for (I). An analysis with the modified version of the τ4 index [τ4′, as defined by Okuniewski et al. (2015)] gives a similar distribution with only minor variation.
The title compound is isostructural with bis(N,N,N′,N′-tetramethylguanidinium) tetrabromidonickelate(II) (Jones & Thonnessen, 2006) and shows similarities in terms of the space-group and cell parameters with tetramethylguanidinium bisulfite (Heldebrant et al., 2009).
5. Synthesis and crystallization
Yellowish-green crystals were obtained by mixing in stoichiometric amounts tetramethylguanidine with CuCl2·2H2O in ethanol.
6. Refinement
Crystal data, data collection and structure . All hydrogen atoms were located from a Fourier difference map and were refined freely.
details are summarized in Table 2
|
Supporting information
CCDC reference: 1486986
https://doi.org/10.1107/S2056989016010161/wm5303sup1.cif
contains datablock I. DOI:Structure factors: contains datablock I. DOI: https://doi.org/10.1107/S2056989016010161/wm5303Isup2.hkl
Data collection: APEX2 (Bruker, 2014); cell
SAINT (Bruker, 2014); data reduction: SAINT (Bruker, 2014); program(s) used to solve structure: SHELXT (Sheldrick, 2015a); program(s) used to refine structure: SHELXL2014 (Sheldrick, 2015b); molecular graphics: OLEX2 (Dolomanov et al., 2009) and Mercury (Macrae et al., 2008); software used to prepare material for publication: OLEX2 (Dolomanov et al., 2009) and publCIF (Westrip, 2010).(C5H14N3)2[CuCl4] | F(000) = 908 |
Mr = 437.72 | Dx = 1.515 Mg m−3 |
Monoclinic, C2/c | Ga Kα radiation, λ = 1.34139 Å |
a = 18.9274 (5) Å | Cell parameters from 9968 reflections |
b = 8.2441 (2) Å | θ = 4.9–60.7° |
c = 14.8654 (4) Å | µ = 9.51 mm−1 |
β = 124.165 (1)° | T = 100 K |
V = 1919.28 (9) Å3 | Block, clear yellowish green |
Z = 4 | 0.16 × 0.10 × 0.06 mm |
Bruker Venture Metaljet diffractometer | 2208 independent reflections |
Radiation source: Metal Jet, Gallium Liquid Metal Jet Source | 2178 reflections with I > 2σ(I) |
Helios MX Mirror Optics monochromator | Rint = 0.036 |
Detector resolution: 10.24 pixels mm-1 | θmax = 60.7°, θmin = 4.9° |
ω and φ scans | h = −24→24 |
Absorption correction: multi-scan (SADABS; Krause et al., 2015) | k = −10→10 |
Tmin = 0.449, Tmax = 0.752 | l = −16→19 |
14222 measured reflections |
Refinement on F2 | Primary atom site location: structure-invariant direct methods |
Least-squares matrix: full | Hydrogen site location: difference Fourier map |
R[F2 > 2σ(F2)] = 0.028 | All H-atom parameters refined |
wR(F2) = 0.071 | w = 1/[σ2(Fo2) + (0.0315P)2 + 2.7253P] where P = (Fo2 + 2Fc2)/3 |
S = 1.11 | (Δ/σ)max = 0.001 |
2208 reflections | Δρmax = 0.84 e Å−3 |
152 parameters | Δρmin = −0.35 e Å−3 |
0 restraints |
Experimental. X-ray crystallographic data for I were collected from a single crystal sample, which was mounted on a loop fiber. Data were collected using a Bruker Venture diffractometer equipped with a Photon 100 CMOS Detector, a Helios MX optics and a Kappa goniometer. The crystal-to-detector distance was 4.0 cm, and the data collection was carried out in 1024 x 1024 pixel mode. |
Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes. |
x | y | z | Uiso*/Ueq | ||
N1 | 0.18244 (9) | 0.33219 (19) | 0.30111 (11) | 0.0202 (3) | |
N2 | 0.24981 (11) | 0.5129 (2) | 0.44495 (13) | 0.0277 (4) | |
N3 | 0.32977 (9) | 0.32615 (17) | 0.42260 (11) | 0.0164 (3) | |
C1 | 0.25428 (10) | 0.3903 (2) | 0.38962 (13) | 0.0173 (3) | |
C2 | 0.17917 (12) | 0.2676 (2) | 0.20725 (14) | 0.0215 (3) | |
C3 | 0.09950 (12) | 0.3500 (3) | 0.28512 (17) | 0.0314 (4) | |
C4 | 0.40978 (11) | 0.4132 (2) | 0.49381 (15) | 0.0235 (4) | |
C5 | 0.33922 (12) | 0.1564 (2) | 0.40153 (15) | 0.0208 (3) | |
Cu1 | 0.5000 | 0.71829 (4) | 0.7500 | 0.01698 (11) | |
Cl1 | 0.37443 (3) | 0.61496 (7) | 0.70754 (4) | 0.03106 (13) | |
Cl2 | 0.54835 (3) | 0.82595 (5) | 0.91317 (3) | 0.02989 (13) | |
H4A | 0.4363 (15) | 0.380 (3) | 0.569 (2) | 0.030 (6)* | |
H5A | 0.2894 (16) | 0.099 (3) | 0.3780 (19) | 0.029 (6)* | |
H4B | 0.4000 (14) | 0.526 (3) | 0.4851 (18) | 0.024 (5)* | |
H2C | 0.1702 (16) | 0.150 (3) | 0.2047 (19) | 0.030 (6)* | |
H2D | 0.2285 (15) | 0.291 (3) | 0.2132 (18) | 0.022 (5)* | |
H3A | 0.0693 (18) | 0.248 (4) | 0.260 (2) | 0.040 (7)* | |
H2A | 0.2102 (18) | 0.568 (4) | 0.418 (2) | 0.037 (7)* | |
H3B | 0.0655 (19) | 0.432 (4) | 0.228 (2) | 0.050 (8)* | |
H5B | 0.3539 (15) | 0.147 (3) | 0.349 (2) | 0.028 (6)* | |
H5C | 0.3857 (16) | 0.111 (3) | 0.465 (2) | 0.028 (6)* | |
H2E | 0.1316 (16) | 0.319 (3) | 0.143 (2) | 0.028 (6)* | |
H4C | 0.4454 (16) | 0.389 (3) | 0.468 (2) | 0.033 (6)* | |
H2B | 0.2934 (17) | 0.536 (3) | 0.509 (2) | 0.035 (6)* | |
H3C | 0.1050 (17) | 0.373 (3) | 0.352 (2) | 0.040 (7)* |
U11 | U22 | U33 | U12 | U13 | U23 | |
N1 | 0.0176 (6) | 0.0242 (7) | 0.0155 (6) | 0.0023 (6) | 0.0072 (5) | −0.0054 (6) |
N2 | 0.0225 (7) | 0.0289 (8) | 0.0186 (7) | 0.0092 (7) | 0.0036 (6) | −0.0097 (6) |
N3 | 0.0174 (6) | 0.0135 (6) | 0.0163 (6) | −0.0003 (5) | 0.0083 (5) | −0.0008 (5) |
C1 | 0.0196 (7) | 0.0167 (7) | 0.0130 (7) | 0.0028 (6) | 0.0075 (6) | −0.0001 (6) |
C2 | 0.0273 (9) | 0.0215 (9) | 0.0134 (8) | −0.0026 (7) | 0.0102 (7) | −0.0044 (6) |
C3 | 0.0182 (8) | 0.0432 (12) | 0.0264 (9) | 0.0061 (8) | 0.0086 (7) | −0.0100 (9) |
C4 | 0.0194 (8) | 0.0228 (9) | 0.0223 (8) | −0.0040 (7) | 0.0079 (7) | −0.0029 (7) |
C5 | 0.0234 (8) | 0.0132 (7) | 0.0253 (9) | 0.0028 (7) | 0.0135 (7) | 0.0000 (7) |
Cu1 | 0.01872 (18) | 0.01483 (18) | 0.01209 (17) | 0.000 | 0.00542 (14) | 0.000 |
Cl1 | 0.0201 (2) | 0.0510 (3) | 0.0243 (2) | −0.00970 (18) | 0.01383 (17) | −0.01532 (19) |
Cl2 | 0.0501 (3) | 0.0180 (2) | 0.01273 (19) | −0.00519 (18) | 0.01222 (18) | −0.00224 (14) |
N1—C1 | 1.342 (2) | C3—H3B | 0.99 (3) |
N1—C2 | 1.462 (2) | C3—H3C | 0.96 (3) |
N1—C3 | 1.457 (2) | C4—H4A | 0.97 (3) |
N2—C1 | 1.335 (2) | C4—H4B | 0.95 (2) |
N2—H2A | 0.77 (3) | C4—H4C | 0.97 (3) |
N2—H2B | 0.86 (3) | C5—H5A | 0.93 (3) |
N3—C1 | 1.332 (2) | C5—H5B | 0.96 (2) |
N3—C4 | 1.459 (2) | C5—H5C | 0.93 (3) |
N3—C5 | 1.467 (2) | Cu1—Cl1i | 2.2557 (4) |
C2—H2C | 0.98 (3) | Cu1—Cl1 | 2.2557 (4) |
C2—H2D | 0.91 (2) | Cu1—Cl2i | 2.2396 (4) |
C2—H2E | 0.96 (3) | Cu1—Cl2 | 2.2396 (4) |
C3—H3A | 0.96 (3) | ||
C1—N1—C2 | 122.85 (14) | H3A—C3—H3B | 108 (2) |
C1—N1—C3 | 121.97 (14) | H3A—C3—H3C | 105 (2) |
C3—N1—C2 | 114.63 (14) | H3B—C3—H3C | 113 (2) |
C1—N2—H2A | 120 (2) | N3—C4—H4A | 110.4 (14) |
C1—N2—H2B | 119.9 (17) | N3—C4—H4B | 110.0 (14) |
H2A—N2—H2B | 120 (3) | N3—C4—H4C | 106.3 (15) |
C1—N3—C4 | 122.24 (14) | H4A—C4—H4B | 112 (2) |
C1—N3—C5 | 122.31 (14) | H4A—C4—H4C | 112 (2) |
C4—N3—C5 | 115.01 (14) | H4B—C4—H4C | 106 (2) |
N2—C1—N1 | 119.64 (15) | N3—C5—H5A | 110.2 (15) |
N3—C1—N1 | 120.38 (15) | N3—C5—H5B | 111.8 (15) |
N3—C1—N2 | 119.98 (15) | N3—C5—H5C | 109.2 (15) |
N1—C2—H2C | 108.1 (14) | H5A—C5—H5B | 110 (2) |
N1—C2—H2D | 109.8 (14) | H5A—C5—H5C | 111 (2) |
N1—C2—H2E | 107.2 (15) | H5B—C5—H5C | 104 (2) |
H2C—C2—H2D | 111 (2) | Cl1—Cu1—Cl1i | 135.62 (3) |
H2C—C2—H2E | 110 (2) | Cl2—Cu1—Cl1 | 100.265 (17) |
H2D—C2—H2E | 110 (2) | Cl2i—Cu1—Cl1 | 96.958 (19) |
N1—C3—H3A | 109.1 (16) | Cl2—Cu1—Cl1i | 96.959 (19) |
N1—C3—H3B | 109.1 (17) | Cl2i—Cu1—Cl1i | 100.264 (17) |
N1—C3—H3C | 111.8 (16) | Cl2—Cu1—Cl2i | 133.31 (3) |
C2—N1—C1—N2 | 146.94 (18) | C4—N3—C1—N1 | 159.80 (16) |
C2—N1—C1—N3 | −33.3 (3) | C4—N3—C1—N2 | −20.4 (2) |
C3—N1—C1—N2 | −24.1 (3) | C5—N3—C1—N1 | −28.2 (2) |
C3—N1—C1—N3 | 155.67 (18) | C5—N3—C1—N2 | 151.61 (17) |
Symmetry code: (i) −x+1, y, −z+3/2. |
D—H···A | D—H | H···A | D···A | D—H···A |
C4—H4B···Cl2i | 0.95 (2) | 2.77 (2) | 3.5902 (19) | 145.3 (18) |
C2—H2C···Cl1ii | 0.98 (3) | 2.90 (3) | 3.745 (2) | 144.5 (18) |
C2—H2D···Cl1iii | 0.91 (2) | 2.91 (2) | 3.818 (2) | 173.3 (19) |
C3—H3B···Cl2iv | 0.99 (3) | 2.82 (3) | 3.793 (2) | 168 (2) |
C5—H5C···Cl2v | 0.93 (3) | 2.80 (3) | 3.5992 (18) | 144.9 (19) |
C2—H2E···Cl2vi | 0.96 (3) | 2.85 (3) | 3.6491 (18) | 140.5 (19) |
N2—H2B···Cl1 | 0.86 (3) | 2.53 (3) | 3.3417 (16) | 157 (2) |
Symmetry codes: (i) −x+1, y, −z+3/2; (ii) −x+1/2, −y+1/2, −z+1; (iii) x, −y+1, z−1/2; (iv) −x+1/2, −y+3/2, −z+1; (v) −x+1, y−1, −z+3/2; (vi) x−1/2, y−1/2, z−1. |
Acknowledgements
The authors acknowledge the Cheikh Anta Diop University of Dakar (Sénégal), the Canada Foundation for Innovation and the Université de Montréal for financial support.
References
Aldrich, E. P., Bussey, K. A., Connell, J. R., Reinhart, E. F., Oshin, K. D., Mercado, B. Q. & Oliver, A. G. (2016). Acta Cryst. E72, 40–43. CSD CrossRef IUCr Journals Google Scholar
Awwadi, F. F. & Haddad, S. F. (2012). J. Mol. Struct. 1020, 28–32. Web of Science CSD CrossRef CAS Google Scholar
Bruker (2014). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA. Google Scholar
Dolomanov, O. V., Bourhis, L. J., Gildea, R. J., Howard, J. A. K. & Puschmann, H. (2009). J. Appl. Cryst. 42, 339–341. Web of Science CrossRef CAS IUCr Journals Google Scholar
Groom, C. R., Bruno, I. J., Lightfoot, M. P. & Ward, S. C. (2016). Acta Cryst. B72, 171–179. Web of Science CSD CrossRef IUCr Journals Google Scholar
Guo, B., Zhang, X., Yu, J.-H. & Xu, J.-Q. (2015). Dalton Trans. 44, 11470–11481. CSD CrossRef CAS PubMed Google Scholar
Halvorson, K. E., Patterson, C. & Willett, R. D. (1990). Acta Cryst. B46, 508–519. CSD CrossRef CAS Web of Science IUCr Journals Google Scholar
Heldebrant, D. J., Yonker, C. R., Jessop, P. G. & Phan, L. (2009). Chem. Eur. J. 15, 7619–7627. Web of Science CSD CrossRef PubMed CAS Google Scholar
Jones, P. G. & Thonnessen, H. (2006). Private communication (refcode CEPXIF). CCDC, Cambridge, England. Google Scholar
Kelley, A., Nalla, S. & Bond, M. R. (2015). Acta Cryst. B71, 48–60. CSD CrossRef IUCr Journals Google Scholar
Krause, L., Herbst-Irmer, R., Sheldrick, G. M. & Stalke, D. (2015). J. Appl. Cryst. 48, 3–10. Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
Macrae, C. F., Bruno, I. J., Chisholm, J. A., Edgington, P. R., McCabe, P., Pidcock, E., Rodriguez-Monge, L., Taylor, R., van de Streek, J. & Wood, P. A. (2008). J. Appl. Cryst. 41, 466–470. Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
Ndiaye, M., Samb, A., Diop, L. & Maris, T. (2016). Acta Cryst. E72, 1–3. CSD CrossRef IUCr Journals Google Scholar
Okuniewski, A., Rosiak, D., Chojnacki, J. & Becker, B. (2015). Polyhedron, 90, 47–57. Web of Science CSD CrossRef CAS Google Scholar
Sheldrick, G. M. (2015a). Acta Cryst. A71, 3–8. Web of Science CrossRef IUCr Journals Google Scholar
Sheldrick, G. M. (2015b). Acta Cryst. C71, 3–8. Web of Science CrossRef IUCr Journals Google Scholar
Westrip, S. P. (2010). J. Appl. Cryst. 43, 920–925. Web of Science CrossRef CAS IUCr Journals Google Scholar
Yang, L., Powell, D. R. & Houser, R. P. (2007). Dalton Trans. pp. 955–964. Web of Science CSD CrossRef PubMed CAS Google Scholar
This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.