research communications\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

RbZnFe(PO4)2: synthesis and crystal structure

CROSSMARK_Color_square_no_text.svg

aUnité de recherche, Matériaux Inorganiques, Faculté des Sciences, Université de Monastir, 5019 Monastir, Tunisia
*Correspondence e-mail: badri_abdessalem@yahoo.fr

Edited by I. D. Brown, McMaster University, Canada (Received 6 June 2016; accepted 28 June 2016; online 7 July 2016)

A new iron phosphate, rubidium zinc iron(III) phosphate, RbZnFe(PO4)2, has been synthesized as single crystals by the flux method. This compound is isostructural to the previously reported KCoAl(PO4)2 [Chen et al. (1997[Chen, X.-A., Zhao, L., Li, Y., Guo, F. & Chen, B.-M. (1997). Acta Cryst. C53, 1754-1756.]). Acta Cryst. C53,1754–1756]. Its structure consists of a three-dimensional framework built up from corner-sharing PO4 and (Zn,Fe)O4 tetra­hedra. This mode of linkage forms channels parallel to the [100], [010] and [001] directions in which the Rb+ ions are located.

1. Chemical context

Phosphates with open-framework structures, similar to other porous materials such as zeolites, are inter­esting because of their wide industrial and environmental applications ranging from catalysis to ion-exchange and separation (Gier & Stucky, 1991[Gier, T. E. & Stucky, G. D. (1991). Nature, 349, 508-510.]; Maspoch et al., 2007[Maspoch, D., Ruiz-Molina, D. & Veciana, J. (2007). Chem. Soc. Rev. 36, 770-818.]). Among them, iron phosphates (Redrup & Weller, 2009[Redrup, K. V. & Weller, M. T. (2009). Dalton Trans. pp. 3786-3792.]; Lajmi et al., 2009[Lajmi, B., Hidouri, M., Ben Hammouda, A., Wattiaux, A., Fournés, L., Darriet, J. & Ben Amara, M. (2009). Mater. Chem. Phys. 113, 372-375.]) are particularly attractive because of their rich crystal chemistry (Moore, 1970[Moore, P. B. (1970). Am. Mineral. 55, 135-169.]; Gleitzer, 1991[Gleitzer, C. (1991). Eur. J. Solid State Inorg. Chem. 28, 77-91.]) and they present inter­esting and variable physical properties (Elbouaanani et al., 2002[Elbouaanani, L. K., Malaman, B., Gérardin, R. & Ijjaali, M. (2002). J. Solid State Chem. 163, 412-420.]; Riou-Cavellec et al., 1999[Riou-Cavellec, M., Riou, D. & Férey, G. (1999). Inorg. Chim. Acta, 291, 317-325.]). Among the variety of iron orthophosphates synthesized and characterized over the past three decades, only two rubidium-containing compounds have been reported, namely Rb9Fe7(PO4)10 (Hidouri et al., 2010[Hidouri, M., Wattiaux, A., López, M. L., Pico, C. & Ben Amara, M. (2010). J. Alloys Compd. 506, 569-574.]) and RbCuFe(PO4)2 (Badri et al., 2013[Badri, A., Hidouri, M. & Ben Amara, M. (2013). Acta Cryst. E69, i52.]). In this paper, we report the structure of a new rubidium iron orthophosphate, RbZnFe(PO4)2, synthesized during our investigation of the Rb3PO4–Zn3(PO4)2–FePO4 quasi-system. This compound is isostructural to KCoAl(PO4)2 (Chen et al., 1997[Chen, X.-A., Zhao, L., Li, Y., Guo, F. & Chen, B.-M. (1997). Acta Cryst. C53, 1754-1756.]) and KZnFe(PO4)2 (Badri et al., 2014[Badri, A., Hidouri, M., Wattiaux, A., López, M. L., Veiga, M. L. & Ben Amara, M. (2014). Mater. Res. Bull. 55, 61-66.]).

2. Structural commentary

The structure is made up of a three-dimensional assemblage of MO4 (M = 0.5Zn + 0.5Fe) and PO4 tetra­hedra through corner-sharing. This framework delimits crossing channels along the [100] and [001] directions, in which the Rb+ ions are located (Figs. 1[link] and 2[link]). A projection of the structure along [001] direction reveals that each MO4 tetra­hedron is linked to four PO4 tetra­hedra by sharing corners. In addition, it shows the presence of two kinds of rings through corner-sharing of MO4 and PO4 tetra­hedra (Fig. 2[link]). The first presents an elliptical form and comprises four MO4 and four PO4 tetra­hedra, the second consists of two MO4 and two PO4 tetra­hedra and has a quasi-rectangular form. From an examination of the inter-atomic distances (cation–oxygen), the M(1) and M(2) sites exhibit similar regular tetra­hedral environments, as seen in the cation–oxygen distances which vary from 1.877 (5) to 1.900 (5) Å for M(1) and from 1.860 (6) to 1.919 (5) Å for M(2). The average distances of 1.885 (2) and 1.888 (2) Å are between the values of 1.926 (2) Å observed for tetra­hedrally coordinated Zn2+ ions in the zinc phosphate RbZnPO4 (Elammari & Elouadi, 1991[Elammari, L. & Elouadi, B. (1991). J. Chim. Phys. Physico-Chim. Biol. 88, 1969-1974.]) and 1.865 Å reported for the Fe3+ ions with the same coordination in the iron phosphate in FePO4 (Long et al., 1983[Long, G. J., Cheetham, A. K. & Battle, P. D. (1983). Inorg. Chem. 22, 3012-3016.]). The P—O distances within the PO4 tetra­hedra are between 1.514 (5) and 1.535 (5) Å and with mean distances of 1.523 (9) Å for P(1) and 1.520 (3) Å for P(2), consistent with the value of 1.537 Å calculated by Baur (1974[Baur, W. H. (1974). Acta Cryst. B30, 1195-1215.]) for orthophosphate groups.

[Figure 1]
Figure 1
A view of the crystal structure of RbZnFe(PO4)2 along [100]. Colour key: M(1)O4 tetrahedra are purple, M(2)O4 tetrahedra are red, P(1)O4 tetrahedra are dark grey, P(2)O4 tetrahedra are light grey and Rb+ cations are yellow spheres.
[Figure 2]
Figure 2
A view of the crystal structure of RbZnFe(PO4)2 along [001], showing the elliptical and quasi-rectangular forms of corner-sharing MO4 and PO4 tetrahedra (edge with green colour). The colour key is as in Fig. 1.

The Rb+ ions occupy a single site at the inter­section of the crossing tunnels. Their environment was determined assuming all cation–oxygen distances to be shorter than the shortest distance between Rb+ and its nearest cation. This environment (Fig. 3[link]) then consists of ten O atoms with Rb—O distances ranging from 2.925 (6) to 3.298 (7) Å.

[Figure 3]
Figure 3
The environment of the Rb cations, showing displacement ellipsoids drawn at the 50% probability level. Authors: Define symmetry operators (in the Figure) and codes (in the caption)

3. Synthesis and crystallization

Single crystals of RbZnFe(PO4)2 were grown in a flux of rubidium dimolybdate Rb2Mo2O7, in an atomic ratio P:Mo = 4:1. Appropriate amounts of Rb2CO3, Zn(NO3)2·6H2O, Fe(NO3)3·9H2O, (NH4)2HPO4 and MoO3 were used. All of the chemicals were analytically pure from commercial sources and used without further purification. The reagents were weighted in the atomic ratio P:Mo = 2:1 and dissolved in nitric acid and then dried for 24 h at 353 K. The dry residue was gradually heated to 873 K in a platinum crucible to remove the decomposition products. In a second step, the mixture was ground, melted for 1 h at 1173 K and subsequently cooled at a rate of 10 K h−1 to 773 K, after which the furnace was turned off. The crystals obtained by washing the final product with warm water in order to dissolve the flux are essentially comprised of beige hexa­gonally shaped crystals of RbZnFe(PO4)2.

4. Refinement

Crystal data, data collection and structure refinement details are summarized in Table 1[link]. The application of direct methods revealed the Rb atoms and located two sites, labelled M(1) and M(2), statistically occupied by the Fe3+ and Zn2+ ions. This distribution was supported by the M(1)—O and M(2)—O distances which are between the classical pure Zn—O and Fe—O values. Succeeding difference Fourier syntheses led to the positions of all the remaining atoms.

Table 1
Experimental details

Crystal data
Chemical formula RbZnFe(PO4)2
Mr 396.63
Crystal system, space group Monoclinic, C2/c
Temperature (K) 293
a, b, c (Å) 13.601 (4), 13.304 (5), 8.978 (9)
β (°) 100.76 (5)
V3) 1596.0 (18)
Z 8
Radiation type Mo Kα
μ (mm−1) 11.29
Crystal size (mm) 0.43 × 0.25 × 0.18
 
Data collection
Diffractometer Enraf–Nonius TurboCAD-4
Absorption correction Part of the refinement model (ΔF) (Walker & Stuart 1983[Walker, N. & Stuart, D. (1983). Acta Cryst. A39, 158-166.])
Tmin, Tmax 0.054, 0.070
No. of measured, independent and observed [I > 2σ(I)] reflections 1409, 1409, 1227
Rint 0.089
(sin θ/λ)max−1) 0.594
 
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.036, 0.110, 1.05
No. of reflections 1409
No. of parameters 118
  w = 1/[σ2(Fo2) + (0.0565P)2 + 31.2735P] where P = (Fo2 + 2Fc2)/3
Δρmax, Δρmin (e Å−3) 0.85, −0.76
Computer programs: CAD-4 EXPRESS (Enraf–Nonius, 1994[Enraf-Nonius (1994). CAD-4 EXPRESS. Enraf-Nonius, Delft, The Netherlands.]), XCAD4 (Harms & Wocadlo, 1995[Harms, K. & Wocadlo, S. (1995). XCAD4. University of Marburg, Germany.]), SIR92 (Altomare et al., 1993[Altomare, A., Cascarano, G., Giacovazzo, C. & Guagliardi, A. (1993). J. Appl. Cryst. 26, 343-350.]), SHELXL2014 (Sheldrick, 2015[Sheldrick, G. M. (2015). Acta Cryst. C71, 3-8.]), DIAMOND (Brandenburg, 1999[Brandenburg, K. (1999). DIAMOND. University of Bonn, Germany.]) and WinGX (Farrugia, 2012[Farrugia, L. J. (2012). J. Appl. Cryst. 45, 849-854.]).

Despite several synthesis attempts, all the obtained crystals of RbZnFe(PO4)2 were of poor quality, resulting in the large discrepancies found in a number of reflections; hence in this study the refinement was performed using a filter of the reflections by [sin (θ)/λ]. The four reflections ([\overline{6}]85, [\overline{9}]34, [\overline{8}]85 and [\overline{3}]75) were omitted as the difference between the observed and calculated structure factors was larger than 10σ.

Supporting information


Computing details top

Cell refinement: CAD-4 EXPRESS (Enraf–Nonius, 1994); data reduction: XCAD4 (Harms & Wocadlo, 1995); program(s) used to solve structure: SIR92 (Altomare et al., 1993); program(s) used to refine structure: SHELXL2014 (Sheldrick, 2015); molecular graphics: DIAMOND (Brandenburg, 1999); software used to prepare material for publication: WinGX (Farrugia, 2012).

Rubidium zinc Iron(III) phosphate top
Crystal data top
RbZnFe(PO4)2F(000) = 1496
Mr = 396.63Dx = 3.301 Mg m3
Monoclinic, C2/cMo Kα radiation, λ = 0.71073 Å
a = 13.601 (4) ÅCell parameters from 25 reflections
b = 13.304 (5) Åθ = 8.1–11.1°
c = 8.978 (9) ŵ = 11.29 mm1
β = 100.76 (5)°T = 293 K
V = 1596.0 (18) Å3Prism, brown
Z = 80.43 × 0.25 × 0.18 mm
Data collection top
Enraf–Nonius TurboCAD-4
diffractometer
Rint = 0.089
Radiation source: fine-focus sealed tubeθmax = 25.0°, θmin = 2.2°
non–profiled ω/2τ scansh = 1615
Absorption correction: part of the refinement model (ΔF)
(Walker & Stuart 1983)
k = 015
Tmin = 0.054, Tmax = 0.070l = 010
1409 measured reflections2 standard reflections every 120 min
1409 independent reflections intensity decay: 1%
1227 reflections with I > 2σ(I)
Refinement top
Refinement on F2118 parameters
Least-squares matrix: full0 restraints
R[F2 > 2σ(F2)] = 0.036 w = 1/[σ2(Fo2) + (0.0565P)2 + 31.2735P]
where P = (Fo2 + 2Fc2)/3
wR(F2) = 0.110(Δ/σ)max < 0.001
S = 1.05Δρmax = 0.85 e Å3
1409 reflectionsΔρmin = 0.76 e Å3
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/UeqOcc. (<1)
Rb0.18260 (6)0.24668 (6)0.22827 (9)0.0316 (3)
Zn10.87122 (6)0.55912 (6)0.11383 (9)0.0169 (3)0.5
Fe10.87122 (6)0.55912 (6)0.11383 (9)0.0169 (3)0.5
Zn20.92406 (6)0.12098 (6)0.05652 (9)0.0166 (3)0.5
Fe20.92406 (6)0.12098 (6)0.05652 (9)0.0166 (3)0.5
P10.14761 (12)0.06205 (13)0.08572 (19)0.0166 (4)
O110.1420 (4)0.0526 (4)0.0852 (6)0.0295 (12)
O120.2450 (3)0.1026 (4)0.0096 (6)0.0243 (11)
O130.3570 (5)0.3996 (5)0.2456 (6)0.0397 (15)
O140.0638 (4)0.1055 (5)0.0151 (7)0.0385 (14)
P20.92645 (12)0.36174 (12)0.03358 (18)0.0144 (4)
O210.8903 (5)0.2550 (4)0.0146 (7)0.0323 (13)
O220.0389 (4)0.3613 (4)0.0253 (6)0.0269 (11)
O230.3731 (4)0.0942 (5)0.3168 (6)0.0367 (14)
O240.8990 (4)0.4217 (4)0.0972 (6)0.0252 (11)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Rb0.0383 (5)0.0321 (5)0.0259 (4)0.0006 (3)0.0097 (3)0.0044 (3)
Zn10.0197 (4)0.0151 (5)0.0149 (4)0.0019 (3)0.0006 (3)0.0023 (3)
Fe10.0197 (4)0.0151 (5)0.0149 (4)0.0019 (3)0.0006 (3)0.0023 (3)
Zn20.0194 (5)0.0149 (5)0.0149 (4)0.0013 (3)0.0021 (3)0.0026 (3)
Fe20.0194 (5)0.0149 (5)0.0149 (4)0.0013 (3)0.0021 (3)0.0026 (3)
P10.0191 (8)0.0138 (8)0.0156 (8)0.0026 (7)0.0004 (6)0.0035 (6)
O110.043 (3)0.014 (3)0.033 (3)0.003 (2)0.013 (2)0.003 (2)
O120.019 (2)0.023 (3)0.028 (3)0.0014 (19)0.003 (2)0.003 (2)
O130.059 (4)0.043 (3)0.015 (3)0.011 (3)0.002 (3)0.011 (2)
O140.021 (3)0.042 (3)0.052 (4)0.000 (2)0.007 (3)0.017 (3)
P20.0211 (9)0.0095 (8)0.0127 (8)0.0020 (6)0.0031 (6)0.0001 (6)
O210.053 (4)0.016 (3)0.034 (3)0.010 (2)0.024 (3)0.010 (2)
O220.023 (3)0.023 (3)0.037 (3)0.000 (2)0.010 (2)0.006 (2)
O230.037 (3)0.056 (4)0.016 (3)0.006 (3)0.004 (2)0.011 (2)
O240.040 (3)0.014 (2)0.023 (3)0.005 (2)0.009 (2)0.0051 (19)
Geometric parameters (Å, º) top
Rb—O21i2.925 (6)Zn1—O22vi1.900 (5)
Rb—O122.979 (5)Zn2—O13vii1.860 (6)
Rb—O143.098 (6)Zn2—O14viii1.878 (5)
Rb—O133.107 (6)Zn2—O211.897 (5)
Rb—O223.109 (5)Zn2—O11ix1.919 (5)
Rb—O24i3.123 (5)P1—O13iii1.514 (5)
Rb—O11ii3.181 (5)P1—O141.519 (6)
Rb—O12iii3.215 (6)P1—O111.527 (5)
Rb—O233.269 (6)P1—O121.535 (5)
Rb—O21iv3.298 (7)P2—O22viii1.517 (5)
Zn1—O23v1.877 (5)P2—O23vii1.520 (5)
Zn1—O241.879 (5)P2—O241.523 (5)
Zn1—O12v1.886 (5)P2—O211.522 (5)
O21i—Rb—O12142.06 (14)O12iii—Rb—O23102.79 (14)
O21i—Rb—O14115.16 (17)O21i—Rb—O21iv76.81 (19)
O12—Rb—O1447.17 (13)O12—Rb—O21iv98.31 (14)
O21i—Rb—O13108.19 (16)O14—Rb—O21iv139.07 (14)
O12—Rb—O1398.37 (15)O13—Rb—O21iv54.77 (14)
O14—Rb—O13136.49 (16)O22—Rb—O21iv148.78 (13)
O21i—Rb—O22110.80 (16)O24i—Rb—O21iv89.55 (14)
O12—Rb—O2292.90 (15)O11ii—Rb—O21iv80.58 (14)
O14—Rb—O2266.86 (16)O12iii—Rb—O21iv98.09 (13)
O13—Rb—O2294.89 (14)O23—Rb—O21iv44.69 (13)
O21i—Rb—O24i47.19 (13)O23v—Zn1—O24110.7 (3)
O12—Rb—O24i169.12 (13)O23v—Zn1—O12v104.6 (2)
O14—Rb—O24i128.20 (14)O24—Zn1—O12v115.9 (2)
O13—Rb—O24i79.99 (16)O23v—Zn1—O22vi112.0 (3)
O22—Rb—O24i76.59 (15)O24—Zn1—O22vi110.8 (2)
O21i—Rb—O11ii56.47 (13)O12v—Zn1—O22vi102.6 (2)
O12—Rb—O11ii85.60 (14)O13vii—Zn2—O14viii118.1 (3)
O14—Rb—O11ii76.11 (17)O13vii—Zn2—O21103.5 (3)
O13—Rb—O11ii135.33 (15)O14viii—Zn2—O21109.7 (3)
O22—Rb—O11ii129.51 (14)O13vii—Zn2—O11ix110.9 (3)
O24i—Rb—O11ii103.19 (13)O14viii—Zn2—O11ix113.5 (3)
O21i—Rb—O12iii139.13 (14)O21—Zn2—O11ix98.8 (2)
O12—Rb—O12iii78.67 (16)O13iii—P1—O14111.5 (4)
O14—Rb—O12iii95.38 (16)O13iii—P1—O11110.3 (3)
O13—Rb—O12iii45.51 (13)O14—P1—O11109.7 (3)
O22—Rb—O12iii55.68 (13)O13iii—P1—O12106.8 (3)
O24i—Rb—O12iii92.85 (14)O14—P1—O12105.7 (3)
O11ii—Rb—O12iii163.87 (13)O11—P1—O12112.8 (3)
O21i—Rb—O23101.14 (15)O22viii—P2—O23vii110.8 (3)
O12—Rb—O2356.67 (14)O22viii—P2—O24110.8 (3)
O14—Rb—O2394.63 (15)O23vii—P2—O24109.5 (3)
O13—Rb—O2380.27 (17)O22viii—P2—O21109.5 (3)
O22—Rb—O23147.51 (14)O23vii—P2—O21110.3 (3)
O24i—Rb—O23132.85 (14)O24—P2—O21105.7 (3)
O11ii—Rb—O2364.93 (15)
Symmetry codes: (i) x+1, y, z+1/2; (ii) x, y, z+1/2; (iii) x+1/2, y+1/2, z; (iv) x1/2, y+1/2, z+1/2; (v) x+1/2, y+1/2, z; (vi) x+1, y+1, z; (vii) x+1/2, y+1/2, z1/2; (viii) x+1, y, z; (ix) x+1, y, z.
 

References

First citationAltomare, A., Cascarano, G., Giacovazzo, C. & Guagliardi, A. (1993). J. Appl. Cryst. 26, 343–350.  CrossRef Web of Science IUCr Journals Google Scholar
First citationBadri, A., Hidouri, M. & Ben Amara, M. (2013). Acta Cryst. E69, i52.  CrossRef IUCr Journals Google Scholar
First citationBadri, A., Hidouri, M., Wattiaux, A., López, M. L., Veiga, M. L. & Ben Amara, M. (2014). Mater. Res. Bull. 55, 61–66.  Web of Science CrossRef CAS Google Scholar
First citationBaur, W. H. (1974). Acta Cryst. B30, 1195–1215.  CrossRef CAS IUCr Journals Web of Science Google Scholar
First citationBrandenburg, K. (1999). DIAMOND. University of Bonn, Germany.  Google Scholar
First citationChen, X.-A., Zhao, L., Li, Y., Guo, F. & Chen, B.-M. (1997). Acta Cryst. C53, 1754–1756.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationElammari, L. & Elouadi, B. (1991). J. Chim. Phys. Physico-Chim. Biol. 88, 1969–1974.  CAS Google Scholar
First citationElbouaanani, L. K., Malaman, B., Gérardin, R. & Ijjaali, M. (2002). J. Solid State Chem. 163, 412–420.  Web of Science CrossRef CAS Google Scholar
First citationEnraf–Nonius (1994). CAD-4 EXPRESS. Enraf–Nonius, Delft, The Netherlands.  Google Scholar
First citationFarrugia, L. J. (2012). J. Appl. Cryst. 45, 849–854.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationGier, T. E. & Stucky, G. D. (1991). Nature, 349, 508–510.  CrossRef CAS Web of Science Google Scholar
First citationGleitzer, C. (1991). Eur. J. Solid State Inorg. Chem. 28, 77–91.  CAS Google Scholar
First citationHarms, K. & Wocadlo, S. (1995). XCAD4. University of Marburg, Germany.  Google Scholar
First citationHidouri, M., Wattiaux, A., López, M. L., Pico, C. & Ben Amara, M. (2010). J. Alloys Compd. 506, 569–574.  Web of Science CrossRef CAS Google Scholar
First citationLajmi, B., Hidouri, M., Ben Hammouda, A., Wattiaux, A., Fournés, L., Darriet, J. & Ben Amara, M. (2009). Mater. Chem. Phys. 113, 372–375.  Web of Science CrossRef CAS Google Scholar
First citationLong, G. J., Cheetham, A. K. & Battle, P. D. (1983). Inorg. Chem. 22, 3012–3016.  CrossRef CAS Web of Science Google Scholar
First citationMaspoch, D., Ruiz-Molina, D. & Veciana, J. (2007). Chem. Soc. Rev. 36, 770–818.  Web of Science CrossRef PubMed CAS Google Scholar
First citationMoore, P. B. (1970). Am. Mineral. 55, 135–169.  CAS Google Scholar
First citationRedrup, K. V. & Weller, M. T. (2009). Dalton Trans. pp. 3786–3792.  Web of Science CSD CrossRef Google Scholar
First citationRiou-Cavellec, M., Riou, D. & Férey, G. (1999). Inorg. Chim. Acta, 291, 317–325.  CAS Google Scholar
First citationSheldrick, G. M. (2015). Acta Cryst. C71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar
First citationWalker, N. & Stuart, D. (1983). Acta Cryst. A39, 158–166.  CrossRef CAS Web of Science IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds