research communications
catena-poly[[aquabis(4-cyanobenzoato-κO)copper(II)]-μ-N,N-diethylnicotinamide-κ2N1:O]
ofaSANAEM, Saray Mahallesi, Atom Caddesi, No. 27, 06980 Saray-Kazan, Ankara, Turkey, bDepartment of Chemistry, Kafkas University, 36100 Kars, Turkey, cInternational Scientific Research Centre, Baku State University, 1148 Baku, Azerbaijan, and dDepartment of Physics, Hacettepe University, 06800 Beytepe, Ankara, Turkey
*Correspondence e-mail: merzifon@hacettepe.edu.tr
The 8H4NO2)2(C10H14N2O)(H2O)]n, contains one CuII atom, one coordinating water molecule, two 4-cyanobenzoate (CB) ligands and one coordinating N,N-diethylnicotinamide (DENA) molecule. The DENA ligand acts as a bis-monodentate ligand, while the CB anions are monodentate. Two O atoms of the CB ligands, one O atom of the water molecule and the pyridine N atom of the DENA ligand form a slightly distorted square-planar arrangement around the CuII atom which is completed to a square-pyramidal coordination by the apically placed O atom of the DENA ligand, with a Cu—O distance of 2.4303 (15) Å. In the two CB anions, the carboxylate groups are twisted relative to the attached benzene rings by 2.19 (12) and 3.87 (15)°, while the benzene rings are oriented at a dihedral angle of 5.52 (8)°. The DENA ligands bridge adjacent Cu2+ ions, forming polymeric coordination chains running along the b axis. In the crystal, strong water–carboxylate O—H⋯O hydrogen bonds link adjacent chains into layers parallel to (10-1) and weak C—H⋯O hydrogen bonds further stabilize the The cyano group C and N atoms of one of the CB ligands are disordered over two sets of sites with equal occupancies.
of the title polymeric compound, [Cu(CCCDC reference: 1494903
1. Chemical context
Nicotinamide (NA) is one form of niacin. A deficiency of this vitamin leads to loss of copper from the body, known as pellagra disease. Victims of pellagra show unusually high serum and urinary copper levels (Krishnamachari, 1974). The nicotinic acid derivative N,N-diethylnicotinamide (DENA) is an important respiratory stimulant (Bigoli et al., 1972). The structures of some complexes obtained from the reactions of transition metal(II) ions with NA and DENA as ligands, e.g. [Ni(NA)2(C7H4ClO2)2(H2O)2] (Hökelek et al., 2009a) and [Ni(C7H4ClO2)2(C10H14N2O)2(H2O)2] (Hökelek et al., 2009b), have been the subject of much interest in our laboratory. Aqua complexes of CuII benzoates containing nicotinamide or N-methylnicotinamide ligands have been studied e.g. [Cu(4-NO2bz)2(mna)2(H2O)] and [Cu(3,5-(NO2)2bz)2(NA)2(H2O)] (4-NO2bz = 4-nitrobenzoate, mna = N-methylnicotinamide, 3,5-(NO2)2bz = 3,5-dinitrobenzoate) (Vasková et al., 2014) and [Cu2(C8H7O3)4(C6H6N2O)2(H2O)2] (Hökelek et al., 2010). To the best of our knowledge, the title compound is the first polymeric copper compound with a similar set of ligands.
Transition metal complexes with biochemical molecules show interesting physical and/or chemical properties, through which they may find applications in biological systems (Antolini et al., 1982). Some benzoic acid derivatives, such as 4-aminobenzoic acid, have been extensively reported in coordination chemistry, as bifunctional organic ligands, due to the varieties of their coordination modes (Chen & Chen, 2002; Amiraslanov et al., 1979; Hauptmann et al., 2000).
The structure–function–coordination relationships of the arylcarboxylate ion in CuII complexes of benzoic acid derivatives may change depending on the nature and position of the substituent on the benzene ring, the nature of the additional ligand molecule or solvent, and the pH and temperature of synthesis (Shnulin et al., 1981; Nadzhafov et al., 1981; Antsyshkina et al., 1980; Adiwidjaja et al., 1978). When pyridine and its derivatives are used instead of water molecules, the structure is completely different (Catterick et al., 1974). In this context, we synthesized a CuII-containing compound with 4-cyanobenzoate (CB) and DENA ligands, namely catena-poly[[aquabis(4-cyanobenzoato-κO)copper(II)]-μ-N,N-diethylnicotinamide-κ2N1:O], [Cu(DENA)(CB)2(H2O)]n, and report herein its crystal structure.
2. Structural commentary
The II atom, one coordinating water molecule, two 4-cyanobenzoate (CB) anions and one N,N-diethylnicotinamide (DENA) ligand; the DENA ligand acts as a bis-monodentate ligand, while the CB anions are monodentate (Fig. 1). The DENA ligands bridge adjacent CuII ions, forming polymeric chains (Fig. 2) running along the b axis.
of the title polymeric compound contains one CuThe two carboxylate O atoms (O2 and O4) of the CB anions, the coordinating water O atom (O6) and the N atom (N3) of the DENA ligand form a slightly distorted square-planar arrangement around the Cu atom, while the distorted square-pyramidal coordination is completed by the O atom (O5) of the DENA ligand at a distance of 2.4303 (15) Å (Table 1 and Fig. 2). A more remote O atom at 2.8500 (15) Å defines a tetragonally distorted CuNO3+2 octahedron.
In the carboxylate groups, the C—O bonds for coordinating O atoms are 0.028 (3) Å {for C1—O1 [1.244 (3) Å] and C1—O2 [1.272 (3) Å]} and 0.041 (3) Å {for C9—O3 [1.232 (3) Å] and C9—O4 [1.273 (3) Å]} longer than those of the non-coordinating ones, in which they indicate delocalized bonding arrangements rather than localized single and double bonds.
The Cu1 atom lies −0.0054 (2) and −0.1184 (2) Å, respectively, out of the planes of the O1/O2/C1 and O3/O4/C9 carboxylate groups. The O1—Cu1—O2 angle is 51.12 (6)°. The corresponding O—M—O (where M is a metal) angles are 59.76 (5) and 55.08 (5)° in [Cu(C7H4O2Cl)2(C6H6N2O)2] (Bozkurt et al., 2013), 53.50 (14)° in [Cu2(C8H5O3)4(C6H6N2O)4] (Sertçelik et al., 2013), 57.75 (2)° in [Cu(C7H4FO2)2(C7H5FO2)(C6H6N2O)2] (Necefoğlu et al., 2011) and 55.2 (1)° in [Cu(Asp)2(py)2] (where Asp is acetylsalicylate and py is pyridine) (Greenaway et al., 1984).
The dihedral angles between the carboxylate groups [(O1/O2/C1) and (O3/O4/C9)] and the adjacent benzene rings [A (C2–C7) and B (C10–C15)] are 2.19 (12) and 3.87 (15)°, respectively, while the benzene and pyridine [C (N3/C17–C21)] rings are oriented at dihedral angles of A/B = 5.52 (8), A/C = 88.66 (7) and B/C = 85.85 (7)°.
3. Supramolecular features
In the crystal, strong O—Hwater ⋯ Ocarboxylate hydrogen bonds (Table 2) link adjacent chains into layers parallel to (10). Weak intermolecular C—HDENA ⋯ Ocarboxylate, C—HDENA ⋯ ODENA and C—HDENA ⋯ Owater hydrogen bonds (Table 2) may further stabilize the crystal structure.
4. Synthesis and crystallization
The title compound was prepared by the reaction of CuSO4·5H2O (1.24 g, 5 mmol) in H2O (50 ml) and diethylnicotinamide (1.78 g, 10 mmol) in H2O (10 ml) with sodium 4-cyanobenzoate (1.69 g, 10 mmol) in H2O (100 ml). The mixture was filtered and set aside to crystallize at ambient temperature for several days, giving translucent dark-blue single crystals.
5. Refinement
The experimental details including the crystal data, data collection and . Atoms H61 and H62 (for H2O) were located in a difference Fourier map and were refined by applying restrains [O—H = 0.85 (2) Å]. The C-bound H atoms were positioned geometrically with C—H = 0.93, 0.97 and 0.96 Å, for aromatic, methylene and methyl H-atoms, respectively, and constrained to ride on their parent atoms, with Uiso(H) = k × Ueq(C), where k = 1.5 for methyl H atoms and k = 1.2 for aromatic and methylene H atoms. The CN substituents of one of the benzoate ligands are disordered over two sets of sites with equal occupancies.
are summarized in Table 3
|
Supporting information
CCDC reference: 1494903
https://doi.org/10.1107/S205698901601183X/gk2662sup1.cif
contains datablocks I, global. DOI:Structure factors: contains datablock I. DOI: https://doi.org/10.1107/S205698901601183X/gk2662Isup2.hkl
Data collection: APEX2 (Bruker, 2012); cell
SAINT (Bruker, 2012); data reduction: SAINT (Bruker, 2012); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 for Windows (Farrugia, 2012); software used to prepare material for publication: WinGX (Farrugia, 2012) and PLATON (Spek, 2009).[Cu(C8H4NO2)2(C10H14N2O)(H2O)] | F(000) = 1140 |
Mr = 552.04 | Dx = 1.434 Mg m−3 |
Monoclinic, P21/n | Mo Kα radiation, λ = 0.71073 Å |
Hall symbol: -P 2yn | Cell parameters from 9911 reflections |
a = 14.6207 (4) Å | θ = 2.7–28.3° |
b = 8.0160 (3) Å | µ = 0.90 mm−1 |
c = 22.2892 (5) Å | T = 296 K |
β = 101.725 (3)° | Prism, translucent dark blue |
V = 2557.78 (13) Å3 | 0.45 × 0.36 × 0.11 mm |
Z = 4 |
Bruker SMART BREEZE CCD diffractometer | 6403 independent reflections |
Radiation source: fine-focus sealed tube | 4871 reflections with I > 2σ(I) |
Graphite monochromator | Rint = 0.044 |
φ and ω scans | θmax = 28.4°, θmin = 1.5° |
Absorption correction: multi-scan (SADABS; Bruker, 2012) | h = −19→19 |
Tmin = 0.671, Tmax = 0.912 | k = −10→10 |
42530 measured reflections | l = −29→29 |
Refinement on F2 | Primary atom site location: structure-invariant direct methods |
Least-squares matrix: full | Secondary atom site location: difference Fourier map |
R[F2 > 2σ(F2)] = 0.042 | Hydrogen site location: inferred from neighbouring sites |
wR(F2) = 0.103 | H atoms treated by a mixture of independent and constrained refinement |
S = 1.05 | w = 1/[σ2(Fo2) + (0.0489P)2 + 0.8094P] where P = (Fo2 + 2Fc2)/3 |
6403 reflections | (Δ/σ)max < 0.001 |
362 parameters | Δρmax = 0.44 e Å−3 |
2 restraints | Δρmin = −0.47 e Å−3 |
Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes. |
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > 2sigma(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger. |
x | y | z | Uiso*/Ueq | Occ. (<1) | |
Cu1 | 0.090509 (15) | 0.08013 (3) | 0.097687 (11) | 0.03134 (9) | |
O1 | 0.16527 (10) | 0.1123 (2) | −0.01029 (8) | 0.0518 (4) | |
O2 | 0.20187 (9) | −0.02498 (18) | 0.07812 (7) | 0.0381 (3) | |
O3 | −0.07154 (12) | 0.2958 (2) | 0.02356 (8) | 0.0556 (4) | |
O4 | −0.01992 (9) | 0.18571 (19) | 0.11618 (7) | 0.0444 (4) | |
O5 | 0.37494 (11) | 0.45382 (19) | 0.30110 (7) | 0.0472 (4) | |
O6 | 0.01725 (10) | −0.10957 (19) | 0.05986 (7) | 0.0365 (3) | |
H61 | 0.0397 (17) | −0.162 (3) | 0.0354 (11) | 0.063 (9)* | |
H62 | −0.0380 (12) | −0.108 (3) | 0.0510 (12) | 0.060 (8)* | |
N1 | 0.5925 (2) | −0.3371 (4) | −0.06545 (14) | 0.0950 (10) | |
N2A | −0.4017 (6) | 0.7313 (12) | 0.1822 (4) | 0.109 (3) | 0.50 |
N2B | −0.4394 (6) | 0.6248 (14) | 0.1870 (5) | 0.116 (3) | 0.50 |
N3 | 0.16793 (10) | 0.2791 (2) | 0.12940 (7) | 0.0314 (4) | |
N4 | 0.43627 (11) | 0.2351 (2) | 0.25951 (7) | 0.0358 (4) | |
C1 | 0.21593 (13) | 0.0157 (3) | 0.02560 (10) | 0.0376 (5) | |
C2 | 0.29915 (14) | −0.0606 (3) | 0.00607 (10) | 0.0374 (5) | |
C3 | 0.35893 (15) | −0.1668 (3) | 0.04427 (11) | 0.0451 (5) | |
H3 | 0.3480 | −0.1906 | 0.0830 | 0.054* | |
C4 | 0.43431 (16) | −0.2378 (3) | 0.02588 (12) | 0.0532 (6) | |
H4 | 0.4739 | −0.3092 | 0.0520 | 0.064* | |
C5 | 0.45085 (16) | −0.2027 (3) | −0.03156 (12) | 0.0506 (6) | |
C6 | 0.39130 (18) | −0.0968 (3) | −0.07040 (12) | 0.0572 (7) | |
H6 | 0.4022 | −0.0733 | −0.1092 | 0.069* | |
C7 | 0.31624 (16) | −0.0267 (3) | −0.05161 (11) | 0.0501 (6) | |
H7 | 0.2765 | 0.0443 | −0.0778 | 0.060* | |
C8 | 0.5301 (2) | −0.2783 (4) | −0.05100 (13) | 0.0676 (8) | |
C9 | −0.07600 (14) | 0.2734 (3) | 0.07759 (11) | 0.0385 (5) | |
C10 | −0.15334 (13) | 0.3569 (3) | 0.10182 (10) | 0.0371 (5) | |
C11 | −0.16399 (15) | 0.3308 (3) | 0.16119 (11) | 0.0476 (6) | |
H11 | −0.1239 | 0.2585 | 0.1866 | 0.057* | |
C12 | −0.23369 (18) | 0.4116 (4) | 0.18294 (13) | 0.0642 (8) | |
H12 | −0.2405 | 0.3949 | 0.2231 | 0.077* | |
C13 | −0.29347 (19) | 0.5176 (4) | 0.14476 (13) | 0.0706 (9) | |
C14 | −0.2838 (2) | 0.5436 (4) | 0.08554 (13) | 0.0692 (9) | |
H14 | −0.3245 | 0.6149 | 0.0600 | 0.083* | |
C15 | −0.21392 (17) | 0.4638 (3) | 0.06426 (11) | 0.0521 (6) | |
H15 | −0.2070 | 0.4817 | 0.0242 | 0.062* | |
C16A | −0.3521 (8) | 0.6441 (15) | 0.1651 (6) | 0.073 (3) | 0.50 |
C16B | −0.3782 (8) | 0.5688 (14) | 0.1706 (6) | 0.081 (3) | 0.50 |
C17 | 0.15321 (14) | 0.4322 (3) | 0.10551 (10) | 0.0382 (5) | |
H17 | 0.1037 | 0.4486 | 0.0725 | 0.046* | |
C18 | 0.20800 (16) | 0.5653 (3) | 0.12768 (11) | 0.0440 (5) | |
H18 | 0.1959 | 0.6703 | 0.1101 | 0.053* | |
C19 | 0.28183 (15) | 0.5417 (3) | 0.17672 (11) | 0.0401 (5) | |
H19 | 0.3193 | 0.6312 | 0.1930 | 0.048* | |
C20 | 0.29939 (13) | 0.3835 (2) | 0.20134 (9) | 0.0297 (4) | |
C21 | 0.24061 (12) | 0.2563 (2) | 0.17641 (9) | 0.0308 (4) | |
H21 | 0.2516 | 0.1497 | 0.1928 | 0.037* | |
C22 | 0.37445 (13) | 0.3587 (3) | 0.25778 (9) | 0.0316 (4) | |
C23 | 0.50883 (16) | 0.2147 (3) | 0.31541 (11) | 0.0538 (6) | |
H23A | 0.5285 | 0.0990 | 0.3190 | 0.065* | |
H23B | 0.4825 | 0.2417 | 0.3508 | 0.065* | |
C24 | 0.59187 (19) | 0.3226 (5) | 0.31558 (17) | 0.0892 (11) | |
H24A | 0.6363 | 0.3072 | 0.3533 | 0.134* | |
H24B | 0.5727 | 0.4373 | 0.3118 | 0.134* | |
H24C | 0.6201 | 0.2927 | 0.2818 | 0.134* | |
C25 | 0.44567 (16) | 0.1255 (3) | 0.20873 (11) | 0.0484 (6) | |
H25A | 0.5103 | 0.1255 | 0.2042 | 0.058* | |
H25B | 0.4079 | 0.1690 | 0.1711 | 0.058* | |
C26 | 0.4156 (2) | −0.0535 (3) | 0.21815 (15) | 0.0693 (8) | |
H26A | 0.4343 | −0.1249 | 0.1882 | 0.104* | |
H26B | 0.3490 | −0.0578 | 0.2137 | 0.104* | |
H26C | 0.4447 | −0.0905 | 0.2585 | 0.104* |
U11 | U22 | U33 | U12 | U13 | U23 | |
Cu1 | 0.02943 (12) | 0.03170 (15) | 0.03000 (15) | 0.00186 (9) | −0.00075 (9) | −0.00126 (10) |
O1 | 0.0366 (8) | 0.0593 (11) | 0.0556 (11) | 0.0051 (7) | 0.0006 (7) | 0.0137 (8) |
O2 | 0.0365 (7) | 0.0379 (8) | 0.0394 (9) | 0.0017 (6) | 0.0066 (6) | −0.0021 (7) |
O3 | 0.0702 (11) | 0.0561 (11) | 0.0428 (10) | 0.0174 (9) | 0.0170 (8) | −0.0003 (8) |
O4 | 0.0369 (7) | 0.0483 (9) | 0.0470 (9) | 0.0091 (7) | 0.0059 (6) | −0.0029 (8) |
O5 | 0.0543 (9) | 0.0412 (9) | 0.0399 (9) | 0.0110 (7) | −0.0054 (7) | −0.0162 (7) |
O6 | 0.0322 (7) | 0.0422 (9) | 0.0322 (9) | −0.0014 (6) | −0.0004 (6) | −0.0043 (7) |
N1 | 0.103 (2) | 0.105 (2) | 0.091 (2) | 0.0460 (19) | 0.0533 (17) | 0.0233 (18) |
N2A | 0.093 (6) | 0.148 (9) | 0.090 (5) | 0.064 (6) | 0.032 (4) | −0.015 (6) |
N2B | 0.099 (7) | 0.158 (9) | 0.098 (6) | 0.068 (6) | 0.036 (5) | −0.006 (7) |
N3 | 0.0340 (8) | 0.0276 (9) | 0.0306 (9) | 0.0021 (6) | 0.0018 (6) | 0.0009 (7) |
N4 | 0.0389 (8) | 0.0356 (10) | 0.0299 (9) | 0.0041 (7) | 0.0001 (7) | −0.0068 (8) |
C1 | 0.0310 (9) | 0.0347 (11) | 0.0432 (13) | −0.0045 (8) | −0.0015 (8) | −0.0038 (10) |
C2 | 0.0353 (10) | 0.0383 (12) | 0.0367 (12) | −0.0047 (8) | 0.0030 (8) | −0.0025 (9) |
C3 | 0.0458 (11) | 0.0527 (14) | 0.0372 (13) | 0.0051 (10) | 0.0095 (9) | 0.0072 (11) |
C4 | 0.0512 (12) | 0.0591 (16) | 0.0498 (15) | 0.0164 (12) | 0.0118 (11) | 0.0128 (13) |
C5 | 0.0551 (13) | 0.0514 (15) | 0.0488 (15) | 0.0079 (11) | 0.0189 (11) | 0.0030 (12) |
C6 | 0.0656 (15) | 0.0691 (18) | 0.0408 (15) | 0.0088 (13) | 0.0203 (12) | 0.0098 (13) |
C7 | 0.0529 (13) | 0.0542 (15) | 0.0424 (14) | 0.0090 (11) | 0.0078 (10) | 0.0116 (12) |
C8 | 0.0784 (18) | 0.070 (2) | 0.0616 (18) | 0.0225 (15) | 0.0322 (15) | 0.0129 (15) |
C9 | 0.0379 (10) | 0.0317 (11) | 0.0443 (14) | −0.0021 (9) | 0.0044 (9) | −0.0083 (10) |
C10 | 0.0354 (10) | 0.0354 (11) | 0.0379 (13) | 0.0013 (8) | 0.0011 (8) | −0.0082 (10) |
C11 | 0.0433 (11) | 0.0529 (15) | 0.0442 (14) | 0.0105 (10) | 0.0030 (9) | 0.0005 (12) |
C12 | 0.0574 (15) | 0.094 (2) | 0.0420 (15) | 0.0211 (14) | 0.0116 (11) | −0.0047 (14) |
C13 | 0.0578 (15) | 0.098 (2) | 0.0520 (18) | 0.0357 (16) | 0.0013 (12) | −0.0187 (16) |
C14 | 0.0707 (17) | 0.075 (2) | 0.0542 (18) | 0.0394 (15) | −0.0058 (13) | −0.0091 (15) |
C15 | 0.0583 (14) | 0.0550 (15) | 0.0394 (14) | 0.0155 (12) | 0.0017 (10) | −0.0026 (12) |
C16A | 0.063 (5) | 0.107 (9) | 0.051 (4) | 0.027 (5) | 0.015 (4) | −0.001 (6) |
C16B | 0.070 (7) | 0.099 (9) | 0.075 (6) | 0.045 (5) | 0.018 (5) | −0.006 (6) |
C17 | 0.0398 (10) | 0.0375 (12) | 0.0346 (12) | 0.0057 (9) | 0.0011 (8) | 0.0067 (9) |
C18 | 0.0517 (12) | 0.0284 (11) | 0.0502 (15) | 0.0034 (9) | 0.0063 (10) | 0.0109 (10) |
C19 | 0.0459 (11) | 0.0265 (11) | 0.0460 (13) | −0.0051 (9) | 0.0052 (9) | 0.0006 (9) |
C20 | 0.0341 (9) | 0.0281 (10) | 0.0271 (10) | −0.0003 (8) | 0.0067 (7) | −0.0008 (8) |
C21 | 0.0342 (9) | 0.0256 (10) | 0.0311 (11) | 0.0018 (8) | 0.0028 (7) | 0.0029 (8) |
C22 | 0.0350 (9) | 0.0281 (10) | 0.0305 (11) | −0.0035 (8) | 0.0038 (8) | −0.0024 (9) |
C23 | 0.0525 (13) | 0.0561 (16) | 0.0438 (14) | 0.0200 (11) | −0.0113 (10) | −0.0138 (12) |
C24 | 0.0473 (15) | 0.101 (3) | 0.108 (3) | −0.0012 (16) | −0.0109 (15) | −0.035 (2) |
C25 | 0.0451 (12) | 0.0628 (16) | 0.0362 (13) | 0.0142 (11) | 0.0057 (9) | −0.0108 (11) |
C26 | 0.0722 (18) | 0.0439 (16) | 0.083 (2) | 0.0149 (13) | −0.0048 (15) | −0.0242 (14) |
Cu1—O1 | 2.8500 (15) | C11—C12 | 1.376 (3) |
Cu1—O2 | 1.9595 (14) | C11—H11 | 0.9300 |
Cu1—O4 | 1.9400 (14) | C12—H12 | 0.9300 |
Cu1—O5i | 2.4303 (15) | C13—C14 | 1.372 (4) |
Cu1—N3 | 1.9999 (16) | C13—C12 | 1.381 (4) |
O1—C1 | 1.244 (3) | C14—C15 | 1.370 (4) |
O2—C1 | 1.272 (3) | C14—H14 | 0.9300 |
O3—C9 | 1.232 (3) | C15—H15 | 0.9300 |
O4—C9 | 1.273 (3) | C16A—N2A | 1.128 (14) |
O5—Cu1ii | 2.4303 (15) | C16A—N2B | 1.464 (13) |
O5—C22 | 1.229 (2) | C16A—C13 | 1.458 (13) |
O6—Cu1 | 1.9503 (15) | C16A—C16B | 0.737 (13) |
O6—H61 | 0.810 (17) | C16B—N2A | 1.385 (15) |
O6—H62 | 0.791 (17) | C16B—N2B | 1.126 (13) |
N2A—N2B | 1.034 (11) | C16B—C13 | 1.525 (11) |
N3—C17 | 1.338 (2) | C17—C18 | 1.365 (3) |
N3—C21 | 1.345 (2) | C17—H17 | 0.9300 |
N4—C22 | 1.336 (2) | C18—C19 | 1.384 (3) |
N4—C23 | 1.472 (3) | C18—H18 | 0.9300 |
N4—C25 | 1.461 (3) | C19—H19 | 0.9300 |
C1—C2 | 1.503 (3) | C20—C19 | 1.385 (3) |
C2—C3 | 1.383 (3) | C21—C20 | 1.376 (3) |
C2—C7 | 1.386 (3) | C21—H21 | 0.9300 |
C3—H3 | 0.9300 | C22—C20 | 1.505 (3) |
C4—C3 | 1.375 (3) | C23—C24 | 1.490 (4) |
C4—C5 | 1.379 (3) | C23—H23A | 0.9700 |
C4—H4 | 0.9300 | C23—H23B | 0.9700 |
C5—C6 | 1.387 (3) | C24—H24A | 0.9600 |
C5—C8 | 1.449 (3) | C24—H24B | 0.9600 |
C6—H6 | 0.9300 | C24—H24C | 0.9600 |
C7—C6 | 1.372 (3) | C25—C26 | 1.528 (4) |
C7—H7 | 0.9300 | C25—H25A | 0.9700 |
C8—N1 | 1.130 (3) | C25—H25B | 0.9700 |
C9—C10 | 1.506 (3) | C26—H26A | 0.9600 |
C10—C11 | 1.379 (3) | C26—H26B | 0.9600 |
C10—C15 | 1.385 (3) | C26—H26C | 0.9600 |
O1—Cu1—O2 | 51.12 (6) | C14—C13—C12 | 120.7 (2) |
O2—Cu1—O5i | 90.12 (6) | C14—C13—C16A | 112.0 (5) |
O2—Cu1—N3 | 89.16 (6) | C14—C13—C16B | 124.9 (6) |
O4—Cu1—O2 | 179.33 (7) | C13—C14—H14 | 120.3 |
O4—Cu1—O5i | 90.54 (6) | C15—C14—C13 | 119.5 (2) |
O4—Cu1—O6 | 91.40 (7) | C15—C14—H14 | 120.3 |
O4—Cu1—N3 | 90.73 (6) | C10—C15—H15 | 119.7 |
O6—Cu1—O2 | 88.67 (6) | C14—C15—C10 | 120.7 (2) |
O6—Cu1—O5i | 93.94 (6) | C14—C15—H15 | 119.7 |
O6—Cu1—N3 | 175.09 (7) | N2A—C16A—C13 | 174.3 (11) |
N3—Cu1—O5i | 90.47 (6) | C13—C16A—N2B | 129.6 (10) |
C1—O2—Cu1 | 113.07 (13) | C16B—C16A—N2A | 93.5 (18) |
C9—O4—Cu1 | 123.16 (14) | C16B—C16A—N2B | 48.9 (14) |
C22—O5—Cu1ii | 162.66 (14) | C16B—C16A—C13 | 80.8 (18) |
Cu1—O6—H61 | 116 (2) | N2A—C16B—C13 | 125.1 (9) |
Cu1—O6—H62 | 123 (2) | N2B—C16B—N2A | 47.3 (7) |
H61—O6—H62 | 112 (3) | N2B—C16B—C13 | 171.9 (12) |
N2B—N2A—C16A | 85.2 (11) | C16A—C16B—N2A | 54.4 (16) |
N2B—N2A—C16B | 53.1 (8) | C16A—C16B—N2B | 102 (2) |
N2A—N2B—C16A | 50.1 (8) | C16A—C16B—C13 | 70.7 (16) |
N2A—N2B—C16B | 79.6 (10) | N3—C17—C18 | 122.52 (19) |
C17—N3—Cu1 | 123.86 (13) | N3—C17—H17 | 118.7 |
C17—N3—C21 | 118.21 (17) | C18—C17—H17 | 118.7 |
C21—N3—Cu1 | 117.90 (13) | C17—C18—C19 | 119.05 (19) |
C22—N4—C23 | 118.27 (17) | C17—C18—H18 | 120.5 |
C22—N4—C25 | 126.36 (17) | C19—C18—H18 | 120.5 |
C25—N4—C23 | 115.08 (17) | C18—C19—C20 | 119.32 (19) |
O1—C1—O2 | 124.4 (2) | C18—C19—H19 | 120.3 |
O1—C1—C2 | 118.6 (2) | C20—C19—H19 | 120.3 |
O2—C1—C2 | 117.02 (18) | C19—C20—C22 | 119.78 (18) |
C3—C2—C7 | 118.8 (2) | C21—C20—C19 | 117.93 (18) |
C3—C2—C1 | 121.3 (2) | C21—C20—C22 | 121.97 (17) |
C7—C2—C1 | 119.89 (19) | N3—C21—C20 | 122.95 (18) |
C2—C3—H3 | 119.5 | N3—C21—H21 | 118.5 |
C4—C3—C2 | 121.1 (2) | C20—C21—H21 | 118.5 |
C4—C3—H3 | 119.5 | O5—C22—N4 | 122.77 (18) |
C3—C4—C5 | 119.6 (2) | O5—C22—C20 | 117.50 (17) |
C3—C4—H4 | 120.2 | N4—C22—C20 | 119.73 (17) |
C5—C4—H4 | 120.2 | N4—C23—C24 | 112.6 (2) |
C4—C5—C6 | 119.9 (2) | N4—C23—H23A | 109.1 |
C4—C5—C8 | 119.6 (2) | N4—C23—H23B | 109.1 |
C6—C5—C8 | 120.5 (2) | C24—C23—H23A | 109.1 |
C5—C6—H6 | 120.0 | C24—C23—H23B | 109.1 |
C7—C6—C5 | 120.0 (2) | H23A—C23—H23B | 107.8 |
C7—C6—H6 | 120.0 | C23—C24—H24A | 109.5 |
C2—C7—H7 | 119.7 | C23—C24—H24B | 109.5 |
C6—C7—C2 | 120.6 (2) | C23—C24—H24C | 109.5 |
C6—C7—H7 | 119.7 | H24A—C24—H24B | 109.5 |
N1—C8—C5 | 179.2 (4) | H24A—C24—H24C | 109.5 |
O3—C9—O4 | 125.9 (2) | H24B—C24—H24C | 109.5 |
O3—C9—C10 | 118.58 (19) | N4—C25—C26 | 112.5 (2) |
O4—C9—C10 | 115.5 (2) | N4—C25—H25A | 109.1 |
C11—C10—C9 | 121.09 (19) | N4—C25—H25B | 109.1 |
C11—C10—C15 | 119.4 (2) | C26—C25—H25A | 109.1 |
C15—C10—C9 | 119.5 (2) | C26—C25—H25B | 109.1 |
C10—C11—H11 | 119.9 | H25A—C25—H25B | 107.8 |
C12—C11—C10 | 120.2 (2) | C25—C26—H26A | 109.5 |
C12—C11—H11 | 119.9 | C25—C26—H26B | 109.5 |
C11—C12—C13 | 119.6 (2) | C25—C26—H26C | 109.5 |
C11—C12—H12 | 120.2 | H26A—C26—H26B | 109.5 |
C13—C12—H12 | 120.2 | H26A—C26—H26C | 109.5 |
C12—C13—C16A | 125.1 (5) | H26B—C26—H26C | 109.5 |
C12—C13—C16B | 113.2 (5) | ||
O5i—Cu1—O2—C1 | −176.78 (14) | C9—C10—C11—C12 | 178.4 (2) |
O6—Cu1—O2—C1 | 89.28 (14) | C15—C10—C11—C12 | −0.5 (4) |
N3—Cu1—O2—C1 | −86.32 (14) | C11—C10—C15—C14 | 0.1 (4) |
O5i—Cu1—O4—C9 | −177.31 (16) | C9—C10—C15—C14 | −178.9 (2) |
O6—Cu1—O4—C9 | −83.35 (16) | C10—C11—C12—C13 | 0.6 (4) |
N3—Cu1—O4—C9 | 92.22 (16) | C14—C13—C12—C11 | −0.2 (5) |
O2—Cu1—N3—C17 | 117.84 (16) | C16A—C13—C12—C11 | −162.1 (6) |
O2—Cu1—N3—C21 | −60.21 (14) | C16B—C13—C12—C11 | 168.1 (6) |
O4—Cu1—N3—C17 | −61.50 (16) | C12—C13—C14—C15 | −0.2 (5) |
O4—Cu1—N3—C21 | 120.45 (14) | C16A—C13—C14—C15 | 163.8 (5) |
O5i—Cu1—N3—C17 | −152.04 (16) | C16B—C13—C14—C15 | −167.1 (6) |
O5i—Cu1—N3—C21 | 29.90 (14) | C13—C14—C15—C10 | 0.3 (5) |
Cu1—O2—C1—O1 | 0.2 (3) | N2B—C16A—N2A—C16B | 3 (2) |
Cu1—O2—C1—C2 | −179.20 (13) | C16B—C16A—N2A—N2B | −3 (2) |
Cu1—O4—C9—O3 | 4.2 (3) | N2A—C16A—N2B—C16B | −176 (3) |
Cu1—O4—C9—C10 | −175.13 (13) | C13—C16A—N2B—N2A | 179.0 (17) |
Cu1ii—O5—C22—N4 | −10.6 (6) | C13—C16A—N2B—C16B | 3.5 (15) |
Cu1ii—O5—C22—C20 | 168.3 (4) | C16B—C16A—N2B—N2A | 176 (3) |
C16A—N2A—N2B—C16B | 2.2 (15) | N2B—C16A—C13—C12 | −76.1 (13) |
C16B—N2A—N2B—C16A | −2.2 (15) | N2B—C16A—C13—C14 | 120.7 (11) |
Cu1—N3—C17—C18 | −179.16 (17) | N2B—C16A—C13—C16B | −2.6 (11) |
C21—N3—C17—C18 | −1.1 (3) | C16B—C16A—C13—C12 | −73 (2) |
Cu1—N3—C21—C20 | 179.03 (14) | C16B—C16A—C13—C14 | 123.4 (18) |
C17—N3—C21—C20 | 0.9 (3) | N2A—C16A—C16B—N2B | 3 (2) |
C23—N4—C22—O5 | −1.1 (3) | N2A—C16A—C16B—C13 | −179.5 (11) |
C23—N4—C22—C20 | 179.90 (19) | N2B—C16A—C16B—N2A | −3 (2) |
C25—N4—C22—O5 | −174.6 (2) | N2B—C16A—C16B—C13 | 177.3 (12) |
C25—N4—C22—C20 | 6.5 (3) | C13—C16A—C16B—N2A | 179.5 (11) |
C22—N4—C23—C24 | −85.3 (3) | C13—C16A—C16B—N2B | −177.3 (12) |
C25—N4—C23—C24 | 88.8 (3) | N2B—C16B—N2A—C16A | −176 (3) |
C22—N4—C25—C26 | −110.6 (2) | C13—C16B—N2A—C16A | 0.5 (13) |
C23—N4—C25—C26 | 75.8 (3) | C13—C16B—N2A—N2B | 176.3 (17) |
O1—C1—C2—C3 | 179.0 (2) | C16A—C16B—N2A—N2B | 176 (3) |
O1—C1—C2—C7 | −2.0 (3) | N2A—C16B—N2B—C16A | 3 (2) |
O2—C1—C2—C3 | −1.6 (3) | C16A—C16B—N2B—N2A | −3 (2) |
O2—C1—C2—C7 | 177.4 (2) | N2A—C16B—C13—C12 | 121.0 (11) |
C1—C2—C3—C4 | 179.2 (2) | N2A—C16B—C13—C14 | −71.3 (14) |
C7—C2—C3—C4 | 0.2 (4) | N2A—C16B—C13—C16A | −0.4 (11) |
C1—C2—C7—C6 | −179.3 (2) | C16A—C16B—C13—C12 | 121.4 (18) |
C3—C2—C7—C6 | −0.2 (4) | C16A—C16B—C13—C14 | −71 (2) |
C5—C4—C3—C2 | 0.1 (4) | N3—C17—C18—C19 | 0.1 (3) |
C3—C4—C5—C6 | −0.3 (4) | C17—C18—C19—C20 | 1.2 (3) |
C3—C4—C5—C8 | −179.7 (3) | C21—C20—C19—C18 | −1.4 (3) |
C4—C5—C6—C7 | 0.2 (4) | C22—C20—C19—C18 | −175.1 (2) |
C8—C5—C6—C7 | 179.7 (3) | N3—C21—C20—C19 | 0.4 (3) |
C2—C7—C6—C5 | 0.0 (4) | N3—C21—C20—C22 | 173.90 (17) |
O3—C9—C10—C11 | 177.3 (2) | O5—C22—C20—C19 | 48.0 (3) |
O3—C9—C10—C15 | −3.7 (3) | O5—C22—C20—C21 | −125.4 (2) |
O4—C9—C10—C11 | −3.3 (3) | N4—C22—C20—C19 | −133.0 (2) |
O4—C9—C10—C15 | 175.6 (2) | N4—C22—C20—C21 | 53.6 (3) |
Symmetry codes: (i) −x+1/2, y−1/2, −z+1/2; (ii) −x+1/2, y+1/2, −z+1/2. |
D—H···A | D—H | H···A | D···A | D—H···A |
O6—H61···O3iii | 0.81 (2) | 1.83 (2) | 2.630 (2) | 171 (3) |
O6—H62···O1iii | 0.79 (2) | 1.90 (2) | 2.673 (2) | 166 (3) |
C18—H18···O2iv | 0.93 | 2.55 | 3.460 (3) | 166 |
C21—H21···O5i | 0.93 | 2.45 | 3.054 (3) | 123 |
C23—H23B···O6ii | 0.97 | 2.32 | 3.208 (3) | 152 |
Symmetry codes: (i) −x+1/2, y−1/2, −z+1/2; (ii) −x+1/2, y+1/2, −z+1/2; (iii) −x, −y, −z; (iv) x, y+1, z. |
Acknowledgements
The authors acknowledge the Aksaray University, Science and Technology Application and Research Center, Aksaray, Turkey, for the use of the Bruker SMART BREEZE CCD diffractometer (purchased under grant No. 2010K120480 of the State of Planning Organization).
References
Adiwidjaja, G., Rossmanith, E. & Küppers, H. (1978). Acta Cryst. B34, 3079–3083. CSD CrossRef CAS IUCr Journals Web of Science Google Scholar
Amiraslanov, I. R., Mamedov, Kh. S., Movsumov, E. M., Musaev, F. N. & Nadzhafov, G. N. (1979). Zh. Strukt. Khim. 20, 1075–1080. CAS Google Scholar
Antolini, L., Battaglia, L. P., Corradi, A. B., Marcotrigiano, G., Menabue, L., Pellacani, G. C. & Saladini, M. (1982). Inorg. Chem. 21, 1391–1395. CSD CrossRef CAS Web of Science Google Scholar
Antsyshkina, A. S., Chiragov, F. M. & Poray-Koshits, M. A. (1980). Koord. Khim. 15, 1098–1103. Google Scholar
Bigoli, F., Braibanti, A., Pellinghelli, M. A. & Tiripicchio, A. (1972). Acta Cryst. B28, 962–966. CSD CrossRef CAS IUCr Journals Web of Science Google Scholar
Bozkurt, N., Dilek, N., Çaylak Delibaş, N., Necefoğlu, H. & Hökelek, T. (2013). Acta Cryst. E69, m356–m357. CSD CrossRef IUCr Journals Google Scholar
Bruker (2012). APEX2, SAINT and SADABS. Bruker AXS Inc. Madison, Wisconsin, USA. Google Scholar
Catterick (neé Drew), J., Hursthouse, M. B., New, D. B. & Thornton, P. (1974). J. Chem. Soc. Chem. Commun. pp. 843–844. Google Scholar
Chen, H. J. & Chen, X. M. (2002). Inorg. Chim. Acta, 329, 13–21. Web of Science CSD CrossRef CAS Google Scholar
Farrugia, L. J. (2012). J. Appl. Cryst. 45, 849–854. Web of Science CrossRef CAS IUCr Journals Google Scholar
Greenaway, F. T., Pezeshk, A., Cordes, A. W., Noble, M. C. & Sorenson, J. R. J. (1984). Inorg. Chim. Acta, 93, 67–71. CSD CrossRef CAS Web of Science Google Scholar
Hauptmann, R., Kondo, M. & Kitagawa, S. (2000). Z. Kristallogr. New Cryst. Struct. 215, 169–172. CAS Google Scholar
Hökelek, T., Dal, H., Tercan, B., Özbek, F. E. & Necefoğlu, H. (2009a). Acta Cryst. E65, m466–m467. Web of Science CSD CrossRef IUCr Journals Google Scholar
Hökelek, T., Dal, H., Tercan, B., Özbek, F. E. & Necefoğlu, H. (2009b). Acta Cryst. E65, m545–m546. Web of Science CSD CrossRef IUCr Journals Google Scholar
Hökelek, T., Süzen, Y., Tercan, B., Tenlik, E. & Necefoğlu, H. (2010). Acta Cryst. E66, m807–m808. Web of Science CSD CrossRef IUCr Journals Google Scholar
Krishnamachari, K. A. V. R. (1974). Am. J. Clin. Nutr. 27, 108–111. CAS PubMed Web of Science Google Scholar
Nadzhafov, G. N., Shnulin, A. N. & Mamedov, Kh. S. (1981). Zh. Strukt. Khim. 22, 124–128. CAS Google Scholar
Necefoğlu, H., Özbek, F. E., Öztürk, V., Tercan, B. & Hökelek, T. (2011). Acta Cryst. E67, m887–m888. Web of Science CSD CrossRef IUCr Journals Google Scholar
Sertçelik, M., Çaylak Delibaş, N., Necefoğlu, H. & Hökelek, T. (2013). Acta Cryst. E69, m290–m291. CSD CrossRef IUCr Journals Google Scholar
Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. Web of Science CrossRef CAS IUCr Journals Google Scholar
Shnulin, A. N., Nadzhafov, G. N., Amiraslanov, I. R., Usubaliev, B. T. & Mamedov, Kh. S. (1981). Koord. Khim. 7, 1409–1416. CAS Google Scholar
Spek, A. L. (2009). Acta Cryst. D65, 148–155. Web of Science CrossRef CAS IUCr Journals Google Scholar
Vasková, Z., Kitanovski, N., Jagličić, Z., Strauch, P., Růžičková, Z., Valigura, D., Koman, M., Kozlevčar, B. & Moncol, J. (2014). Polyhedron, 81, 555–563. Google Scholar
This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.