research communications\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Crystal structure of catena-poly[[aqua­bis­­(4-cyano­benzoato-κO)copper(II)]-μ-N,N-di­ethyl­nicotinamide-κ2N1:O]

CROSSMARK_Color_square_no_text.svg

aSANAEM, Saray Mahallesi, Atom Caddesi, No. 27, 06980 Saray-Kazan, Ankara, Turkey, bDepartment of Chemistry, Kafkas University, 36100 Kars, Turkey, cInternational Scientific Research Centre, Baku State University, 1148 Baku, Azerbaijan, and dDepartment of Physics, Hacettepe University, 06800 Beytepe, Ankara, Turkey
*Correspondence e-mail: merzifon@hacettepe.edu.tr

Edited by M. Gdaniec, Adam Mickiewicz University, Poland (Received 7 June 2016; accepted 20 July 2016; online 22 July 2016)

The asymmetric unit of the title polymeric compound, [Cu(C8H4NO2)2(C10H14N2O)(H2O)]n, contains one CuII atom, one coordinating water mol­ecule, two 4-cyano­benzoate (CB) ligands and one coordinating N,N-di­ethyl­nicotinamide (DENA) mol­ecule. The DENA ligand acts as a bis-monodentate ligand, while the CB anions are monodentate. Two O atoms of the CB ligands, one O atom of the water mol­ecule and the pyridine N atom of the DENA ligand form a slightly distorted square-planar arrangement around the CuII atom which is completed to a square-pyramidal coordination by the apically placed O atom of the DENA ligand, with a Cu—O distance of 2.4303 (15) Å. In the two CB anions, the carboxyl­ate groups are twisted relative to the attached benzene rings by 2.19 (12) and 3.87 (15)°, while the benzene rings are oriented at a dihedral angle of 5.52 (8)°. The DENA ligands bridge adjacent Cu2+ ions, forming polymeric coordination chains running along the b axis. In the crystal, strong water–carboxyl­ate O—H⋯O hydrogen bonds link adjacent chains into layers parallel to (10-1) and weak C—H⋯O hydrogen bonds further stabilize the crystal structure. The cyano group C and N atoms of one of the CB ligands are disordered over two sets of sites with equal occupancies.

1. Chemical context

Nicotinamide (NA) is one form of niacin. A deficiency of this vitamin leads to loss of copper from the body, known as pellagra disease. Victims of pellagra show unusually high serum and urinary copper levels (Krishnamachari, 1974[Krishnamachari, K. A. V. R. (1974). Am. J. Clin. Nutr. 27, 108-111.]). The nicotinic acid derivative N,N-di­ethyl­nicotinamide (DENA) is an important respiratory stimulant (Bigoli et al., 1972[Bigoli, F., Braibanti, A., Pellinghelli, M. A. & Tiripicchio, A. (1972). Acta Cryst. B28, 962-966.]). The structures of some complexes obtained from the reactions of transition metal(II) ions with NA and DENA as ligands, e.g. [Ni(NA)2(C7H4ClO2)2(H2O)2] (Hökelek et al., 2009a[Hökelek, T., Dal, H., Tercan, B., Özbek, F. E. & Necefoğlu, H. (2009a). Acta Cryst. E65, m466-m467.]) and [Ni(C7H4ClO2)2(C10H14N2O)2(H2O)2] (Hökelek et al., 2009b[Hökelek, T., Dal, H., Tercan, B., Özbek, F. E. & Necefoğlu, H. (2009b). Acta Cryst. E65, m545-m546.]), have been the subject of much inter­est in our laboratory. Aqua complexes of CuII benzoates containing nicotinamide or N-methyl­nicotinamide ligands have been studied e.g. [Cu(4-NO2bz)2(mna)2(H2O)] and [Cu(3,5-(NO2)2bz)2(NA)2(H2O)] (4-NO2bz = 4-nitro­benzoate, mna = N-methyl­nicotinamide, 3,5-(NO2)2bz = 3,5-di­nitro­benzoate) (Vasková et al., 2014[Vasková, Z., Kitanovski, N., Jagličić, Z., Strauch, P., Růžičková, Z., Valigura, D., Koman, M., Kozlevčar, B. & Moncol, J. (2014). Polyhedron, 81, 555-563.]) and [Cu2(C8H7O3)4(C6H6N2O)2(H2O)2] (Hökelek et al., 2010[Hökelek, T., Süzen, Y., Tercan, B., Tenlik, E. & Necefoğlu, H. (2010). Acta Cryst. E66, m807-m808.]). To the best of our knowledge, the title compound is the first polymeric copper compound with a similar set of ligands.

[Scheme 1]

Transition metal complexes with biochemical mol­ecules show inter­esting physical and/or chemical properties, through which they may find applications in biological systems (Antolini et al., 1982[Antolini, L., Battaglia, L. P., Corradi, A. B., Marcotrigiano, G., Menabue, L., Pellacani, G. C. & Saladini, M. (1982). Inorg. Chem. 21, 1391-1395.]). Some benzoic acid derivatives, such as 4-amino­benzoic acid, have been extensively reported in coordination chemistry, as bifunctional organic ligands, due to the varieties of their coordination modes (Chen & Chen, 2002[Chen, H. J. & Chen, X. M. (2002). Inorg. Chim. Acta, 329, 13-21.]; Amiraslanov et al., 1979[Amiraslanov, I. R., Mamedov, Kh. S., Movsumov, E. M., Musaev, F. N. & Nadzhafov, G. N. (1979). Zh. Strukt. Khim. 20, 1075-1080.]; Hauptmann et al., 2000[Hauptmann, R., Kondo, M. & Kitagawa, S. (2000). Z. Kristallogr. New Cryst. Struct. 215, 169-172.]).

The structure–function–coordination relationships of the aryl­carboxyl­ate ion in CuII complexes of benzoic acid derivatives may change depending on the nature and position of the substituent on the benzene ring, the nature of the additional ligand mol­ecule or solvent, and the pH and temperature of synthesis (Shnulin et al., 1981[Shnulin, A. N., Nadzhafov, G. N., Amiraslanov, I. R., Usubaliev, B. T. & Mamedov, Kh. S. (1981). Koord. Khim. 7, 1409-1416.]; Nadzhafov et al., 1981[Nadzhafov, G. N., Shnulin, A. N. & Mamedov, Kh. S. (1981). Zh. Strukt. Khim. 22, 124-128.]; Antsyshkina et al., 1980[Antsyshkina, A. S., Chiragov, F. M. & Poray-Koshits, M. A. (1980). Koord. Khim. 15, 1098-1103.]; Adiwidjaja et al., 1978[Adiwidjaja, G., Rossmanith, E. & Küppers, H. (1978). Acta Cryst. B34, 3079-3083.]). When pyridine and its derivatives are used instead of water mol­ecules, the structure is completely different (Catterick et al., 1974[Catterick (neé Drew), J., Hursthouse, M. B., New, D. B. & Thornton, P. (1974). J. Chem. Soc. Chem. Commun. pp. 843-844.]). In this context, we synthesized a CuII-containing compound with 4-cyano­benzoate (CB) and DENA ligands, namely catena-poly[[aqua­bis­(4-cyano­benzoato-κO)copper(II)]-μ-N,N-diethyl­nicotinamide-κ2N1:O], [Cu(DENA)(CB)2(H2O)]n, and report herein its crystal structure.

2. Structural commentary

The asymmetric unit of the title polymeric compound contains one CuII atom, one coordinating water mol­ecule, two 4-cyano­benzoate (CB) anions and one N,N-di­ethyl­nicotinamide (DENA) ligand; the DENA ligand acts as a bis-monodentate ligand, while the CB anions are monodentate (Fig. 1[link]). The DENA ligands bridge adjacent CuII ions, forming polymeric chains (Fig. 2[link]) running along the b axis.

[Figure 1]
Figure 1
The asymmetric unit of the title mol­ecule with the atom-numbering scheme. Displacement ellipsoids are drawn at the 50% probability level.
[Figure 2]
Figure 2
Part of the polymeric chain in the title compound. One part of the disordered CN group and H atoms have been omitted for clarity.

The two carboxyl­ate O atoms (O2 and O4) of the CB anions, the coordinating water O atom (O6) and the N atom (N3) of the DENA ligand form a slightly distorted square-planar arrangement around the Cu atom, while the distorted square-pyramidal coordination is completed by the O atom (O5) of the DENA ligand at a distance of 2.4303 (15) Å (Table 1[link] and Fig. 2[link]). A more remote O atom at 2.8500 (15) Å defines a tetragonally distorted CuNO3+2 octahedron.

Table 1
Selected geometric parameters (Å, °)

Cu1—O1 2.8500 (15) Cu1—O5i 2.4303 (15)
Cu1—O2 1.9595 (14) Cu1—N3 1.9999 (16)
Cu1—O4 1.9400 (14) O6—Cu1 1.9503 (15)
       
O2—Cu1—O5i 90.12 (6) O6—Cu1—O2 88.67 (6)
O2—Cu1—N3 89.16 (6) O6—Cu1—O5i 93.94 (6)
O4—Cu1—O5i 90.54 (6) O6—Cu1—N3 175.09 (7)
O4—Cu1—O6 91.40 (7) N3—Cu1—O5i 90.47 (6)
O4—Cu1—N3 90.73 (6)    
Symmetry code: (i) [-x+{\script{1\over 2}}, y-{\script{1\over 2}}, -z+{\script{1\over 2}}].

In the carboxyl­ate groups, the C—O bonds for coordinating O atoms are 0.028 (3) Å {for C1—O1 [1.244 (3) Å] and C1—O2 [1.272 (3) Å]} and 0.041 (3) Å {for C9—O3 [1.232 (3) Å] and C9—O4 [1.273 (3) Å]} longer than those of the non-coordinating ones, in which they indicate delocalized bonding arrangements rather than localized single and double bonds.

The Cu1 atom lies −0.0054 (2) and −0.1184 (2) Å, respectively, out of the planes of the O1/O2/C1 and O3/O4/C9 carboxyl­ate groups. The O1—Cu1—O2 angle is 51.12 (6)°. The corresponding O—M—O (where M is a metal) angles are 59.76 (5) and 55.08 (5)° in [Cu(C7H4O2Cl)2(C6H6N2O)2] (Bozkurt et al., 2013[Bozkurt, N., Dilek, N., Çaylak Delibaş, N., Necefoğlu, H. & Hökelek, T. (2013). Acta Cryst. E69, m356-m357.]), 53.50 (14)° in [Cu2(C8H5O3)4(C6H6N2O)4] (Sertçelik et al., 2013[Sertçelik, M., Çaylak Delibaş, N., Necefoğlu, H. & Hökelek, T. (2013). Acta Cryst. E69, m290-m291.]), 57.75 (2)° in [Cu(C7H4FO2)2(C7H5FO2)(C6H6N2O)2] (Necefoğlu et al., 2011[Necefoğlu, H., Özbek, F. E., Öztürk, V., Tercan, B. & Hökelek, T. (2011). Acta Cryst. E67, m887-m888.]) and 55.2 (1)° in [Cu(Asp)2(py)2] (where Asp is acetyl­salicylate and py is pyridine) (Greenaway et al., 1984[Greenaway, F. T., Pezeshk, A., Cordes, A. W., Noble, M. C. & Sorenson, J. R. J. (1984). Inorg. Chim. Acta, 93, 67-71.]).

The dihedral angles between the carboxyl­ate groups [(O1/O2/C1) and (O3/O4/C9)] and the adjacent benzene rings [A (C2–C7) and B (C10–C15)] are 2.19 (12) and 3.87 (15)°, respectively, while the benzene and pyridine [C (N3/C17–C21)] rings are oriented at dihedral angles of A/B = 5.52 (8), A/C = 88.66 (7) and B/C = 85.85 (7)°.

3. Supra­molecular features

In the crystal, strong O—Hwater ⋯ Ocarboxyl­ate hydrogen bonds (Table 2[link]) link adjacent chains into layers parallel to (10[\overline{1}]). Weak inter­molecular C—HDENA ⋯ Ocarboxyl­ate, C—HDENA ⋯ ODENA and C—HDENA ⋯ Owater hydrogen bonds (Table 2[link]) may further stabilize the crystal structure.

Table 2
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
O6—H61⋯O3ii 0.81 (2) 1.83 (2) 2.630 (2) 171 (3)
O6—H62⋯O1ii 0.79 (2) 1.90 (2) 2.673 (2) 166 (3)
C18—H18⋯O2iii 0.93 2.55 3.460 (3) 166
C21—H21⋯O5i 0.93 2.45 3.054 (3) 123
C23—H23B⋯O6iv 0.97 2.32 3.208 (3) 152
Symmetry codes: (i) [-x+{\script{1\over 2}}, y-{\script{1\over 2}}, -z+{\script{1\over 2}}]; (ii) -x, -y, -z; (iii) x, y+1, z; (iv) [-x+{\script{1\over 2}}, y+{\script{1\over 2}}, -z+{\script{1\over 2}}].

4. Synthesis and crystallization

The title compound was prepared by the reaction of CuSO4·5H2O (1.24 g, 5 mmol) in H2O (50 ml) and di­ethyl­nicotinamide (1.78 g, 10 mmol) in H2O (10 ml) with sodium 4-cyano­benzoate (1.69 g, 10 mmol) in H2O (100 ml). The mixture was filtered and set aside to crystallize at ambient temperature for several days, giving translucent dark-blue single crystals.

5. Refinement

The experimental details including the crystal data, data collection and refinement are summarized in Table 3[link]. Atoms H61 and H62 (for H2O) were located in a difference Fourier map and were refined by applying restrains [O—H = 0.85 (2) Å]. The C-bound H atoms were positioned geometrically with C—H = 0.93, 0.97 and 0.96 Å, for aromatic, methyl­ene and methyl H-atoms, respectively, and constrained to ride on their parent atoms, with Uiso(H) = k × Ueq(C), where k = 1.5 for methyl H atoms and k = 1.2 for aromatic and methyl­ene H atoms. The CN substituents of one of the benzoate ligands are disordered over two sets of sites with equal occupancies.

Table 3
Experimental details

Crystal data
Chemical formula [Cu(C8H4NO2)2(C10H14N2O)(H2O)]
Mr 552.04
Crystal system, space group Monoclinic, P21/n
Temperature (K) 296
a, b, c (Å) 14.6207 (4), 8.0160 (3), 22.2892 (5)
β (°) 101.725 (3)
V3) 2557.78 (13)
Z 4
Radiation type Mo Kα
μ (mm−1) 0.90
Crystal size (mm) 0.45 × 0.36 × 0.11
 
Data collection
Diffractometer Bruker SMART BREEZE CCD
Absorption correction Multi-scan (SADABS; Bruker, 2012[Bruker (2012). APEX2, SAINT and SADABS. Bruker AXS Inc. Madison, Wisconsin, USA.])
Tmin, Tmax 0.671, 0.912
No. of measured, independent and observed [I > 2σ(I)] reflections 42530, 6403, 4871
Rint 0.044
(sin θ/λ)max−1) 0.669
 
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.042, 0.103, 1.05
No. of reflections 6403
No. of parameters 362
No. of restraints 2
H-atom treatment H atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å−3) 0.44, −0.47
Computer programs: APEX2 and SAINT (Bruker, 2012[Bruker (2012). APEX2, SAINT and SADABS. Bruker AXS Inc. Madison, Wisconsin, USA.]), SHELXS97 and SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]), ORTEP-3 for Windows and WinGX (Farrugia, 2012[Farrugia, L. J. (2012). J. Appl. Cryst. 45, 849-854.]) and PLATON (Spek, 2009[Spek, A. L. (2009). Acta Cryst. D65, 148-155.]).

Supporting information


Computing details top

Data collection: APEX2 (Bruker, 2012); cell refinement: SAINT (Bruker, 2012); data reduction: SAINT (Bruker, 2012); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 for Windows (Farrugia, 2012); software used to prepare material for publication: WinGX (Farrugia, 2012) and PLATON (Spek, 2009).

catena-Poly[[aquabis(4-cyanobenzoato-κO)copper(II)]-µ-N,N-diethylnicotinamide-κ2N1:O] top
Crystal data top
[Cu(C8H4NO2)2(C10H14N2O)(H2O)]F(000) = 1140
Mr = 552.04Dx = 1.434 Mg m3
Monoclinic, P21/nMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ynCell parameters from 9911 reflections
a = 14.6207 (4) Åθ = 2.7–28.3°
b = 8.0160 (3) ŵ = 0.90 mm1
c = 22.2892 (5) ÅT = 296 K
β = 101.725 (3)°Prism, translucent dark blue
V = 2557.78 (13) Å30.45 × 0.36 × 0.11 mm
Z = 4
Data collection top
Bruker SMART BREEZE CCD
diffractometer
6403 independent reflections
Radiation source: fine-focus sealed tube4871 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.044
φ and ω scansθmax = 28.4°, θmin = 1.5°
Absorption correction: multi-scan
(SADABS; Bruker, 2012)
h = 1919
Tmin = 0.671, Tmax = 0.912k = 1010
42530 measured reflectionsl = 2929
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.042Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.103H atoms treated by a mixture of independent and constrained refinement
S = 1.05 w = 1/[σ2(Fo2) + (0.0489P)2 + 0.8094P]
where P = (Fo2 + 2Fc2)/3
6403 reflections(Δ/σ)max < 0.001
362 parametersΔρmax = 0.44 e Å3
2 restraintsΔρmin = 0.47 e Å3
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > 2sigma(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/UeqOcc. (<1)
Cu10.090509 (15)0.08013 (3)0.097687 (11)0.03134 (9)
O10.16527 (10)0.1123 (2)0.01029 (8)0.0518 (4)
O20.20187 (9)0.02498 (18)0.07812 (7)0.0381 (3)
O30.07154 (12)0.2958 (2)0.02356 (8)0.0556 (4)
O40.01992 (9)0.18571 (19)0.11618 (7)0.0444 (4)
O50.37494 (11)0.45382 (19)0.30110 (7)0.0472 (4)
O60.01725 (10)0.10957 (19)0.05986 (7)0.0365 (3)
H610.0397 (17)0.162 (3)0.0354 (11)0.063 (9)*
H620.0380 (12)0.108 (3)0.0510 (12)0.060 (8)*
N10.5925 (2)0.3371 (4)0.06545 (14)0.0950 (10)
N2A0.4017 (6)0.7313 (12)0.1822 (4)0.109 (3)0.50
N2B0.4394 (6)0.6248 (14)0.1870 (5)0.116 (3)0.50
N30.16793 (10)0.2791 (2)0.12940 (7)0.0314 (4)
N40.43627 (11)0.2351 (2)0.25951 (7)0.0358 (4)
C10.21593 (13)0.0157 (3)0.02560 (10)0.0376 (5)
C20.29915 (14)0.0606 (3)0.00607 (10)0.0374 (5)
C30.35893 (15)0.1668 (3)0.04427 (11)0.0451 (5)
H30.34800.19060.08300.054*
C40.43431 (16)0.2378 (3)0.02588 (12)0.0532 (6)
H40.47390.30920.05200.064*
C50.45085 (16)0.2027 (3)0.03156 (12)0.0506 (6)
C60.39130 (18)0.0968 (3)0.07040 (12)0.0572 (7)
H60.40220.07330.10920.069*
C70.31624 (16)0.0267 (3)0.05161 (11)0.0501 (6)
H70.27650.04430.07780.060*
C80.5301 (2)0.2783 (4)0.05100 (13)0.0676 (8)
C90.07600 (14)0.2734 (3)0.07759 (11)0.0385 (5)
C100.15334 (13)0.3569 (3)0.10182 (10)0.0371 (5)
C110.16399 (15)0.3308 (3)0.16119 (11)0.0476 (6)
H110.12390.25850.18660.057*
C120.23369 (18)0.4116 (4)0.18294 (13)0.0642 (8)
H120.24050.39490.22310.077*
C130.29347 (19)0.5176 (4)0.14476 (13)0.0706 (9)
C140.2838 (2)0.5436 (4)0.08554 (13)0.0692 (9)
H140.32450.61490.06000.083*
C150.21392 (17)0.4638 (3)0.06426 (11)0.0521 (6)
H150.20700.48170.02420.062*
C16A0.3521 (8)0.6441 (15)0.1651 (6)0.073 (3)0.50
C16B0.3782 (8)0.5688 (14)0.1706 (6)0.081 (3)0.50
C170.15321 (14)0.4322 (3)0.10551 (10)0.0382 (5)
H170.10370.44860.07250.046*
C180.20800 (16)0.5653 (3)0.12768 (11)0.0440 (5)
H180.19590.67030.11010.053*
C190.28183 (15)0.5417 (3)0.17672 (11)0.0401 (5)
H190.31930.63120.19300.048*
C200.29939 (13)0.3835 (2)0.20134 (9)0.0297 (4)
C210.24061 (12)0.2563 (2)0.17641 (9)0.0308 (4)
H210.25160.14970.19280.037*
C220.37445 (13)0.3587 (3)0.25778 (9)0.0316 (4)
C230.50883 (16)0.2147 (3)0.31541 (11)0.0538 (6)
H23A0.52850.09900.31900.065*
H23B0.48250.24170.35080.065*
C240.59187 (19)0.3226 (5)0.31558 (17)0.0892 (11)
H24A0.63630.30720.35330.134*
H24B0.57270.43730.31180.134*
H24C0.62010.29270.28180.134*
C250.44567 (16)0.1255 (3)0.20873 (11)0.0484 (6)
H25A0.51030.12550.20420.058*
H25B0.40790.16900.17110.058*
C260.4156 (2)0.0535 (3)0.21815 (15)0.0693 (8)
H26A0.43430.12490.18820.104*
H26B0.34900.05780.21370.104*
H26C0.44470.09050.25850.104*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Cu10.02943 (12)0.03170 (15)0.03000 (15)0.00186 (9)0.00075 (9)0.00126 (10)
O10.0366 (8)0.0593 (11)0.0556 (11)0.0051 (7)0.0006 (7)0.0137 (8)
O20.0365 (7)0.0379 (8)0.0394 (9)0.0017 (6)0.0066 (6)0.0021 (7)
O30.0702 (11)0.0561 (11)0.0428 (10)0.0174 (9)0.0170 (8)0.0003 (8)
O40.0369 (7)0.0483 (9)0.0470 (9)0.0091 (7)0.0059 (6)0.0029 (8)
O50.0543 (9)0.0412 (9)0.0399 (9)0.0110 (7)0.0054 (7)0.0162 (7)
O60.0322 (7)0.0422 (9)0.0322 (9)0.0014 (6)0.0004 (6)0.0043 (7)
N10.103 (2)0.105 (2)0.091 (2)0.0460 (19)0.0533 (17)0.0233 (18)
N2A0.093 (6)0.148 (9)0.090 (5)0.064 (6)0.032 (4)0.015 (6)
N2B0.099 (7)0.158 (9)0.098 (6)0.068 (6)0.036 (5)0.006 (7)
N30.0340 (8)0.0276 (9)0.0306 (9)0.0021 (6)0.0018 (6)0.0009 (7)
N40.0389 (8)0.0356 (10)0.0299 (9)0.0041 (7)0.0001 (7)0.0068 (8)
C10.0310 (9)0.0347 (11)0.0432 (13)0.0045 (8)0.0015 (8)0.0038 (10)
C20.0353 (10)0.0383 (12)0.0367 (12)0.0047 (8)0.0030 (8)0.0025 (9)
C30.0458 (11)0.0527 (14)0.0372 (13)0.0051 (10)0.0095 (9)0.0072 (11)
C40.0512 (12)0.0591 (16)0.0498 (15)0.0164 (12)0.0118 (11)0.0128 (13)
C50.0551 (13)0.0514 (15)0.0488 (15)0.0079 (11)0.0189 (11)0.0030 (12)
C60.0656 (15)0.0691 (18)0.0408 (15)0.0088 (13)0.0203 (12)0.0098 (13)
C70.0529 (13)0.0542 (15)0.0424 (14)0.0090 (11)0.0078 (10)0.0116 (12)
C80.0784 (18)0.070 (2)0.0616 (18)0.0225 (15)0.0322 (15)0.0129 (15)
C90.0379 (10)0.0317 (11)0.0443 (14)0.0021 (9)0.0044 (9)0.0083 (10)
C100.0354 (10)0.0354 (11)0.0379 (13)0.0013 (8)0.0011 (8)0.0082 (10)
C110.0433 (11)0.0529 (15)0.0442 (14)0.0105 (10)0.0030 (9)0.0005 (12)
C120.0574 (15)0.094 (2)0.0420 (15)0.0211 (14)0.0116 (11)0.0047 (14)
C130.0578 (15)0.098 (2)0.0520 (18)0.0357 (16)0.0013 (12)0.0187 (16)
C140.0707 (17)0.075 (2)0.0542 (18)0.0394 (15)0.0058 (13)0.0091 (15)
C150.0583 (14)0.0550 (15)0.0394 (14)0.0155 (12)0.0017 (10)0.0026 (12)
C16A0.063 (5)0.107 (9)0.051 (4)0.027 (5)0.015 (4)0.001 (6)
C16B0.070 (7)0.099 (9)0.075 (6)0.045 (5)0.018 (5)0.006 (6)
C170.0398 (10)0.0375 (12)0.0346 (12)0.0057 (9)0.0011 (8)0.0067 (9)
C180.0517 (12)0.0284 (11)0.0502 (15)0.0034 (9)0.0063 (10)0.0109 (10)
C190.0459 (11)0.0265 (11)0.0460 (13)0.0051 (9)0.0052 (9)0.0006 (9)
C200.0341 (9)0.0281 (10)0.0271 (10)0.0003 (8)0.0067 (7)0.0008 (8)
C210.0342 (9)0.0256 (10)0.0311 (11)0.0018 (8)0.0028 (7)0.0029 (8)
C220.0350 (9)0.0281 (10)0.0305 (11)0.0035 (8)0.0038 (8)0.0024 (9)
C230.0525 (13)0.0561 (16)0.0438 (14)0.0200 (11)0.0113 (10)0.0138 (12)
C240.0473 (15)0.101 (3)0.108 (3)0.0012 (16)0.0109 (15)0.035 (2)
C250.0451 (12)0.0628 (16)0.0362 (13)0.0142 (11)0.0057 (9)0.0108 (11)
C260.0722 (18)0.0439 (16)0.083 (2)0.0149 (13)0.0048 (15)0.0242 (14)
Geometric parameters (Å, º) top
Cu1—O12.8500 (15)C11—C121.376 (3)
Cu1—O21.9595 (14)C11—H110.9300
Cu1—O41.9400 (14)C12—H120.9300
Cu1—O5i2.4303 (15)C13—C141.372 (4)
Cu1—N31.9999 (16)C13—C121.381 (4)
O1—C11.244 (3)C14—C151.370 (4)
O2—C11.272 (3)C14—H140.9300
O3—C91.232 (3)C15—H150.9300
O4—C91.273 (3)C16A—N2A1.128 (14)
O5—Cu1ii2.4303 (15)C16A—N2B1.464 (13)
O5—C221.229 (2)C16A—C131.458 (13)
O6—Cu11.9503 (15)C16A—C16B0.737 (13)
O6—H610.810 (17)C16B—N2A1.385 (15)
O6—H620.791 (17)C16B—N2B1.126 (13)
N2A—N2B1.034 (11)C16B—C131.525 (11)
N3—C171.338 (2)C17—C181.365 (3)
N3—C211.345 (2)C17—H170.9300
N4—C221.336 (2)C18—C191.384 (3)
N4—C231.472 (3)C18—H180.9300
N4—C251.461 (3)C19—H190.9300
C1—C21.503 (3)C20—C191.385 (3)
C2—C31.383 (3)C21—C201.376 (3)
C2—C71.386 (3)C21—H210.9300
C3—H30.9300C22—C201.505 (3)
C4—C31.375 (3)C23—C241.490 (4)
C4—C51.379 (3)C23—H23A0.9700
C4—H40.9300C23—H23B0.9700
C5—C61.387 (3)C24—H24A0.9600
C5—C81.449 (3)C24—H24B0.9600
C6—H60.9300C24—H24C0.9600
C7—C61.372 (3)C25—C261.528 (4)
C7—H70.9300C25—H25A0.9700
C8—N11.130 (3)C25—H25B0.9700
C9—C101.506 (3)C26—H26A0.9600
C10—C111.379 (3)C26—H26B0.9600
C10—C151.385 (3)C26—H26C0.9600
O1—Cu1—O251.12 (6)C14—C13—C12120.7 (2)
O2—Cu1—O5i90.12 (6)C14—C13—C16A112.0 (5)
O2—Cu1—N389.16 (6)C14—C13—C16B124.9 (6)
O4—Cu1—O2179.33 (7)C13—C14—H14120.3
O4—Cu1—O5i90.54 (6)C15—C14—C13119.5 (2)
O4—Cu1—O691.40 (7)C15—C14—H14120.3
O4—Cu1—N390.73 (6)C10—C15—H15119.7
O6—Cu1—O288.67 (6)C14—C15—C10120.7 (2)
O6—Cu1—O5i93.94 (6)C14—C15—H15119.7
O6—Cu1—N3175.09 (7)N2A—C16A—C13174.3 (11)
N3—Cu1—O5i90.47 (6)C13—C16A—N2B129.6 (10)
C1—O2—Cu1113.07 (13)C16B—C16A—N2A93.5 (18)
C9—O4—Cu1123.16 (14)C16B—C16A—N2B48.9 (14)
C22—O5—Cu1ii162.66 (14)C16B—C16A—C1380.8 (18)
Cu1—O6—H61116 (2)N2A—C16B—C13125.1 (9)
Cu1—O6—H62123 (2)N2B—C16B—N2A47.3 (7)
H61—O6—H62112 (3)N2B—C16B—C13171.9 (12)
N2B—N2A—C16A85.2 (11)C16A—C16B—N2A54.4 (16)
N2B—N2A—C16B53.1 (8)C16A—C16B—N2B102 (2)
N2A—N2B—C16A50.1 (8)C16A—C16B—C1370.7 (16)
N2A—N2B—C16B79.6 (10)N3—C17—C18122.52 (19)
C17—N3—Cu1123.86 (13)N3—C17—H17118.7
C17—N3—C21118.21 (17)C18—C17—H17118.7
C21—N3—Cu1117.90 (13)C17—C18—C19119.05 (19)
C22—N4—C23118.27 (17)C17—C18—H18120.5
C22—N4—C25126.36 (17)C19—C18—H18120.5
C25—N4—C23115.08 (17)C18—C19—C20119.32 (19)
O1—C1—O2124.4 (2)C18—C19—H19120.3
O1—C1—C2118.6 (2)C20—C19—H19120.3
O2—C1—C2117.02 (18)C19—C20—C22119.78 (18)
C3—C2—C7118.8 (2)C21—C20—C19117.93 (18)
C3—C2—C1121.3 (2)C21—C20—C22121.97 (17)
C7—C2—C1119.89 (19)N3—C21—C20122.95 (18)
C2—C3—H3119.5N3—C21—H21118.5
C4—C3—C2121.1 (2)C20—C21—H21118.5
C4—C3—H3119.5O5—C22—N4122.77 (18)
C3—C4—C5119.6 (2)O5—C22—C20117.50 (17)
C3—C4—H4120.2N4—C22—C20119.73 (17)
C5—C4—H4120.2N4—C23—C24112.6 (2)
C4—C5—C6119.9 (2)N4—C23—H23A109.1
C4—C5—C8119.6 (2)N4—C23—H23B109.1
C6—C5—C8120.5 (2)C24—C23—H23A109.1
C5—C6—H6120.0C24—C23—H23B109.1
C7—C6—C5120.0 (2)H23A—C23—H23B107.8
C7—C6—H6120.0C23—C24—H24A109.5
C2—C7—H7119.7C23—C24—H24B109.5
C6—C7—C2120.6 (2)C23—C24—H24C109.5
C6—C7—H7119.7H24A—C24—H24B109.5
N1—C8—C5179.2 (4)H24A—C24—H24C109.5
O3—C9—O4125.9 (2)H24B—C24—H24C109.5
O3—C9—C10118.58 (19)N4—C25—C26112.5 (2)
O4—C9—C10115.5 (2)N4—C25—H25A109.1
C11—C10—C9121.09 (19)N4—C25—H25B109.1
C11—C10—C15119.4 (2)C26—C25—H25A109.1
C15—C10—C9119.5 (2)C26—C25—H25B109.1
C10—C11—H11119.9H25A—C25—H25B107.8
C12—C11—C10120.2 (2)C25—C26—H26A109.5
C12—C11—H11119.9C25—C26—H26B109.5
C11—C12—C13119.6 (2)C25—C26—H26C109.5
C11—C12—H12120.2H26A—C26—H26B109.5
C13—C12—H12120.2H26A—C26—H26C109.5
C12—C13—C16A125.1 (5)H26B—C26—H26C109.5
C12—C13—C16B113.2 (5)
O5i—Cu1—O2—C1176.78 (14)C9—C10—C11—C12178.4 (2)
O6—Cu1—O2—C189.28 (14)C15—C10—C11—C120.5 (4)
N3—Cu1—O2—C186.32 (14)C11—C10—C15—C140.1 (4)
O5i—Cu1—O4—C9177.31 (16)C9—C10—C15—C14178.9 (2)
O6—Cu1—O4—C983.35 (16)C10—C11—C12—C130.6 (4)
N3—Cu1—O4—C992.22 (16)C14—C13—C12—C110.2 (5)
O2—Cu1—N3—C17117.84 (16)C16A—C13—C12—C11162.1 (6)
O2—Cu1—N3—C2160.21 (14)C16B—C13—C12—C11168.1 (6)
O4—Cu1—N3—C1761.50 (16)C12—C13—C14—C150.2 (5)
O4—Cu1—N3—C21120.45 (14)C16A—C13—C14—C15163.8 (5)
O5i—Cu1—N3—C17152.04 (16)C16B—C13—C14—C15167.1 (6)
O5i—Cu1—N3—C2129.90 (14)C13—C14—C15—C100.3 (5)
Cu1—O2—C1—O10.2 (3)N2B—C16A—N2A—C16B3 (2)
Cu1—O2—C1—C2179.20 (13)C16B—C16A—N2A—N2B3 (2)
Cu1—O4—C9—O34.2 (3)N2A—C16A—N2B—C16B176 (3)
Cu1—O4—C9—C10175.13 (13)C13—C16A—N2B—N2A179.0 (17)
Cu1ii—O5—C22—N410.6 (6)C13—C16A—N2B—C16B3.5 (15)
Cu1ii—O5—C22—C20168.3 (4)C16B—C16A—N2B—N2A176 (3)
C16A—N2A—N2B—C16B2.2 (15)N2B—C16A—C13—C1276.1 (13)
C16B—N2A—N2B—C16A2.2 (15)N2B—C16A—C13—C14120.7 (11)
Cu1—N3—C17—C18179.16 (17)N2B—C16A—C13—C16B2.6 (11)
C21—N3—C17—C181.1 (3)C16B—C16A—C13—C1273 (2)
Cu1—N3—C21—C20179.03 (14)C16B—C16A—C13—C14123.4 (18)
C17—N3—C21—C200.9 (3)N2A—C16A—C16B—N2B3 (2)
C23—N4—C22—O51.1 (3)N2A—C16A—C16B—C13179.5 (11)
C23—N4—C22—C20179.90 (19)N2B—C16A—C16B—N2A3 (2)
C25—N4—C22—O5174.6 (2)N2B—C16A—C16B—C13177.3 (12)
C25—N4—C22—C206.5 (3)C13—C16A—C16B—N2A179.5 (11)
C22—N4—C23—C2485.3 (3)C13—C16A—C16B—N2B177.3 (12)
C25—N4—C23—C2488.8 (3)N2B—C16B—N2A—C16A176 (3)
C22—N4—C25—C26110.6 (2)C13—C16B—N2A—C16A0.5 (13)
C23—N4—C25—C2675.8 (3)C13—C16B—N2A—N2B176.3 (17)
O1—C1—C2—C3179.0 (2)C16A—C16B—N2A—N2B176 (3)
O1—C1—C2—C72.0 (3)N2A—C16B—N2B—C16A3 (2)
O2—C1—C2—C31.6 (3)C16A—C16B—N2B—N2A3 (2)
O2—C1—C2—C7177.4 (2)N2A—C16B—C13—C12121.0 (11)
C1—C2—C3—C4179.2 (2)N2A—C16B—C13—C1471.3 (14)
C7—C2—C3—C40.2 (4)N2A—C16B—C13—C16A0.4 (11)
C1—C2—C7—C6179.3 (2)C16A—C16B—C13—C12121.4 (18)
C3—C2—C7—C60.2 (4)C16A—C16B—C13—C1471 (2)
C5—C4—C3—C20.1 (4)N3—C17—C18—C190.1 (3)
C3—C4—C5—C60.3 (4)C17—C18—C19—C201.2 (3)
C3—C4—C5—C8179.7 (3)C21—C20—C19—C181.4 (3)
C4—C5—C6—C70.2 (4)C22—C20—C19—C18175.1 (2)
C8—C5—C6—C7179.7 (3)N3—C21—C20—C190.4 (3)
C2—C7—C6—C50.0 (4)N3—C21—C20—C22173.90 (17)
O3—C9—C10—C11177.3 (2)O5—C22—C20—C1948.0 (3)
O3—C9—C10—C153.7 (3)O5—C22—C20—C21125.4 (2)
O4—C9—C10—C113.3 (3)N4—C22—C20—C19133.0 (2)
O4—C9—C10—C15175.6 (2)N4—C22—C20—C2153.6 (3)
Symmetry codes: (i) x+1/2, y1/2, z+1/2; (ii) x+1/2, y+1/2, z+1/2.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O6—H61···O3iii0.81 (2)1.83 (2)2.630 (2)171 (3)
O6—H62···O1iii0.79 (2)1.90 (2)2.673 (2)166 (3)
C18—H18···O2iv0.932.553.460 (3)166
C21—H21···O5i0.932.453.054 (3)123
C23—H23B···O6ii0.972.323.208 (3)152
Symmetry codes: (i) x+1/2, y1/2, z+1/2; (ii) x+1/2, y+1/2, z+1/2; (iii) x, y, z; (iv) x, y+1, z.
 

Acknowledgements

The authors acknowledge the Aksaray University, Science and Technology Application and Research Center, Aksaray, Turkey, for the use of the Bruker SMART BREEZE CCD diffractometer (purchased under grant No. 2010K120480 of the State of Planning Organization).

References

First citationAdiwidjaja, G., Rossmanith, E. & Küppers, H. (1978). Acta Cryst. B34, 3079–3083.  CSD CrossRef CAS IUCr Journals Web of Science Google Scholar
First citationAmiraslanov, I. R., Mamedov, Kh. S., Movsumov, E. M., Musaev, F. N. & Nadzhafov, G. N. (1979). Zh. Strukt. Khim. 20, 1075–1080.  CAS Google Scholar
First citationAntolini, L., Battaglia, L. P., Corradi, A. B., Marcotrigiano, G., Menabue, L., Pellacani, G. C. & Saladini, M. (1982). Inorg. Chem. 21, 1391–1395.  CSD CrossRef CAS Web of Science Google Scholar
First citationAntsyshkina, A. S., Chiragov, F. M. & Poray-Koshits, M. A. (1980). Koord. Khim. 15, 1098–1103.  Google Scholar
First citationBigoli, F., Braibanti, A., Pellinghelli, M. A. & Tiripicchio, A. (1972). Acta Cryst. B28, 962–966.  CSD CrossRef CAS IUCr Journals Web of Science Google Scholar
First citationBozkurt, N., Dilek, N., Çaylak Delibaş, N., Necefoğlu, H. & Hökelek, T. (2013). Acta Cryst. E69, m356–m357.  CSD CrossRef IUCr Journals Google Scholar
First citationBruker (2012). APEX2, SAINT and SADABS. Bruker AXS Inc. Madison, Wisconsin, USA.  Google Scholar
First citationCatterick (neé Drew), J., Hursthouse, M. B., New, D. B. & Thornton, P. (1974). J. Chem. Soc. Chem. Commun. pp. 843–844.  Google Scholar
First citationChen, H. J. & Chen, X. M. (2002). Inorg. Chim. Acta, 329, 13–21.  Web of Science CSD CrossRef CAS Google Scholar
First citationFarrugia, L. J. (2012). J. Appl. Cryst. 45, 849–854.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationGreenaway, F. T., Pezeshk, A., Cordes, A. W., Noble, M. C. & Sorenson, J. R. J. (1984). Inorg. Chim. Acta, 93, 67–71.  CSD CrossRef CAS Web of Science Google Scholar
First citationHauptmann, R., Kondo, M. & Kitagawa, S. (2000). Z. Kristallogr. New Cryst. Struct. 215, 169–172.  CAS Google Scholar
First citationHökelek, T., Dal, H., Tercan, B., Özbek, F. E. & Necefoğlu, H. (2009a). Acta Cryst. E65, m466–m467.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationHökelek, T., Dal, H., Tercan, B., Özbek, F. E. & Necefoğlu, H. (2009b). Acta Cryst. E65, m545–m546.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationHökelek, T., Süzen, Y., Tercan, B., Tenlik, E. & Necefoğlu, H. (2010). Acta Cryst. E66, m807–m808.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationKrishnamachari, K. A. V. R. (1974). Am. J. Clin. Nutr. 27, 108–111.  CAS PubMed Web of Science Google Scholar
First citationNadzhafov, G. N., Shnulin, A. N. & Mamedov, Kh. S. (1981). Zh. Strukt. Khim. 22, 124–128.  CAS Google Scholar
First citationNecefoğlu, H., Özbek, F. E., Öztürk, V., Tercan, B. & Hökelek, T. (2011). Acta Cryst. E67, m887–m888.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationSertçelik, M., Çaylak Delibaş, N., Necefoğlu, H. & Hökelek, T. (2013). Acta Cryst. E69, m290–m291.  CSD CrossRef IUCr Journals Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationShnulin, A. N., Nadzhafov, G. N., Amiraslanov, I. R., Usubaliev, B. T. & Mamedov, Kh. S. (1981). Koord. Khim. 7, 1409–1416.  CAS Google Scholar
First citationSpek, A. L. (2009). Acta Cryst. D65, 148–155.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationVasková, Z., Kitanovski, N., Jagličić, Z., Strauch, P., Růžičková, Z., Valigura, D., Koman, M., Kozlevčar, B. & Moncol, J. (2014). Polyhedron, 81, 555–563.  Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds