research communications\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Sulfate-bridged dimeric trinuclear copper(II)–pyrazolate complex with three different terminal ligands

CROSSMARK_Color_square_no_text.svg

aDepartment of Chemistry, Western Michigan University, Kalamazoo, Michigan, USA
*Correspondence e-mail: gellert.mezei@wmich.edu

Edited by M. Gdaniec, Adam Mickiewicz University, Poland (Received 9 June 2016; accepted 1 July 2016; online 8 July 2016)

The reaction of CuSO4·5H2O, 4-chloro­pyrazole (4-Cl-pzH) and tri­ethyl­amine (Et3N) in di­methyl­formamide (DMF) produced crystals of di­aqua­hexa­kis­(μ-4-chloro­pyrazolato-κ2N:N′)bis­(N,N-di­methyl­formamide)di-μ3-hydroxido-bis­(μ4-sulfato-κ4O:O′:O′′:O′′)hexa­copper(II) N,N-di­methyl­formamide tetra­solvate dihydrate, [Cu3(OH)(SO4)(C3H2ClN2)3(C3H7NO)(H2O)]2·4C3H7NO·2H2O. The centrosymmetric dimeric molecule consists of two trinuclear copper–pyrazolate units bridged by two sulfate ions. The title compound provides the first example of a trinuclear copper–pyrazolate complex with three different terminal ligands on the Cu atoms, and also the first example of such complex with a strongly binding basal sulfate ion. Within each trinuclear unit, the CuII atoms are bridged by μ-pyrazolate groups and a central μ3-OH group, and are coordinated by terminal sulfate, H2O and DMF ligands, respectively. Moreover, the sulfate O atoms coordinate at the apical position to the Cu atoms of the symmetry-related unit, providing square–pyramidal coordination geometry around each copper cation. The metal complex and solvent mol­ecules are involved in O—H⋯O hydrogen bonds, leading to a two-dimensional network parallel to (10-1).

1. Chemical context

Trinuclear copper(II) complexes are primarily studied for their relevance to multicopper enzymes, such as oxidases (e.g., laccase, ascorbate oxidase, ceruloplasmin), oxygenases (e.g., tyrosinase, particulate methane monooxygenase, ammonia monooxygenase) and reductases (e.g., nitrite reductase, nitrous oxide reductase) (Solomon et al., 1996[Solomon, E. I., Sundaram, U. M. & Machonkin, T. E. (1996). Chem. Rev. 96, 2563-2606.], 2014[Solomon, E. I., Heppner, D. E., Johnston, E. M., Ginsbach, J. W., Cirera, J., Qayyum, M., Kieber-Emmons, M. T., Kjaergaard, C. H., Hadt, R. G. & Tian, L. (2014). Chem. Rev. 114, 3659-3853.]). Thus, such complexes are important targets from synthesis, redox chemistry and catalysis viewpoints (Di Nicola et al., 2009[Di Nicola, C., Garau, F., Karabach, Y. Y., Martins, L. M. D. R. S., Monari, M., Pandolfo, L., Pettinari, C. & Pombeiro, A. J. L. (2009). Eur. J. Inorg. Chem. pp. 666-676.]; Mimmi et al., 2004[Mimmi, M. C., Gullotti, M., Santagostini, L., Battaini, G., Monzani, E., Pagliarin, R., Zoppellaro, G. & Casella, L. (2004). Dalton Trans. pp. 2192-2201.]; Tsui et al., 2011[Tsui, E. Y., Day, M. W. & Agapie, T. (2011). Angew. Chem. Int. Ed. 50, 1668-1672.]; Lionetti et al., 2013[Lionetti, D., Day, M. W. & Agapie, T. (2013). Chem. Sci. 4, 785-790.]; Grundner et al., 2015[Grundner, S., Markovits, M. A. C., Li, G., Tromp, M., Pidko, E. A., Hensen, E. J. M., Jentys, A., Sanchez-Sanchez, M. & Lercher, J. A. (2015). Nat. Commun. 6, 7546.]). Trinuclear copper(II) complexes also display inter­esting spectroscopic and magnetic properties (Boča et al., 2003[Boča, R., Dlháň, L., Mezei, G., Ortiz-Pérez, T., Raptis, R. G. & Telser, J. (2003). Inorg. Chem. 42, 5801-5803.]; Rivera-Carrillo et al., 2008[Rivera-Carrillo, M., Chakraborty, I., Mezei, G., Webster, R. D. & Raptis, R. G. (2008). Inorg. Chem. 47, 7644-7650.]; Spielberg et al., 2015[Spielberg, E. T., Gilb, A., Plaul, D., Geibig, D., Hornig, D., Schuch, D., Buchholz, A., Ardavan, A. & Plass, W. (2015). Inorg. Chem. 54, 3432-3438.]), and have been crucial in studying concepts such as spin frustration (Fu et al., 2015[Fu, M., Imai, T., Han, T.-H. & Lee, Y. S. (2015). Science, 350, 655-658.]). The pyrazolate anion is an excellent ligand for the construction of cyclic trinuclear and higher nuclearity metal complexes, leading to a variety of mol­ecular architectures based on copper or other metals (Halcrow, 2009[Halcrow, M. A. (2009). Dalton Trans. pp. 2059-2073.]; Viciano-Chumillas et al., 2010[Viciano-Chumillas, M., Tanase, S., de Jongh, L. J. & Reedijk, J. (2010). Eur. J. Inorg. Chem. pp. 3403-3418.]).

A unique class of copper–pyrazolate complexes is defined by nanojars, based on a series of cyclic polymerization isomers, [cis-CuII(μ-OH)(μ-pz)]n (pz = pyrazolate anion, n = 6–14, except 11), which incarcerate anions with large hydration energies (e.g., sulfate, phosphate, carbonate) with unprecedented strength (Fernando et al., 2012[Fernando, I. R., Surmann, S. A., Urech, A. A., Poulsen, A. M. & Mezei, G. (2012). Chem. Commun. 48, 6860-6862.]; Mezei, 2015[Mezei, G. (2015). Chem. Commun. 51, 10341-10344.]; Ahmed, Szymczyna et al., 2016[Ahmed, B. M., Szymczyna, B. R., Jianrattanasawat, S., Surmann, S. A. & Mezei, G. (2016). Chem. Eur. J. 22, 5499-5503.]) and permits the extraction of such anions from water into aliphatic solvents (Ahmed, Calco et al., 2016[Ahmed, B. M., Calco, B. & Mezei, G. (2016). Dalton Trans. 45, 8327-8339.]). Nanojars are obtained by self-assembly from a copper salt, pyrazole and a base (needed both for deprotonating pyrazole and as a hydroxide ion source) in the presence of an anion with large hydration energy, via a trinuclear inter­mediate, which is isolable and can be converted into nanojars by adding a base (Ahmed & Mezei, 2016[Ahmed, B. M. & Mezei, G. (2016). Inorg. Chem. Submitted.]). Use of a strong base, such as sodium or tetra­butyl­ammonium hydroxide, allows the preparation of nanojar solutions in different organic solvents. In contrast, a weak base, such as tri­ethyl­amine, can only be employed as hydroxide source (Et3N + H2O ↔ Et3NH+ + HO) if the nanojar product is precipitated out of the solution by dilution with excess water, in which the nanojar is not soluble (Fernando et al., 2012[Fernando, I. R., Surmann, S. A., Urech, A. A., Poulsen, A. M. & Mezei, G. (2012). Chem. Commun. 48, 6860-6862.]). Isolation of the title compound provides further evidence that in a neat organic solvent, such as N,N-di­methyl­formamide, the self-assembly process using tri­ethyl­amine halts at the trinuclear stage, due to the acidity of the conjugate acid (tri­ethyl­ammonium cation, pKa = 10.75 in H2O).

[Scheme 1]

2. Structural commentary

The title metal complex mol­ecule, located around an inversion center, consists of two symmetry-related trinuclear copper pyrazolate units (Fig. 1[link]) connected together by sulfate ions (Fig. 2[link]). One O atom of the sulfate moiety coordinates to one of the three independent CuII atoms as basal donor [Cu1—O2: 1.976 (2) Å], and to the corresponding symmetry-related CuII atom as apical donor [Cu1′—O2: 2.277 (2) Å]. The other two O atoms of the sulfate moiety coordinate apically to the other two Cu atoms of the symmetry-related trinuclear unit, whereas the fourth O atom accepts a hydrogen bond from the solvent water mol­ecule (Table 1[link]). A square–pyramidal coordination geometry around each of the CuII atoms is completed by the bridging μ-pyrazolate and μ3-OH moieties, and terminal water or di­methyl­formamide mol­ecules in basal positions. The Cu3(μ-4-Cl-pz)3 core is relatively flat, with dihedral angles between the 4-chloro­pyrazolate mean planes and the Cu3 mean plane of 1.74 (6), 7.20 (6) and 14.10 (4)°. The μ3-OH group is located 0.5615 (15) Å above the Cu3 mean plane. Bond lengths and angles within the Cu3(μ-4-Cl-pz)3 framework are similar to the ones found in related complexes (Mezei et al., 2007[Mezei, G., Rivera-Carrillo, M. & Raptis, R. G. (2007). Dalton Trans. pp. 37-40.]; Rivera-Carrillo et al., 2008[Rivera-Carrillo, M., Chakraborty, I., Mezei, G., Webster, R. D. & Raptis, R. G. (2008). Inorg. Chem. 47, 7644-7650.]). The sulfate-bridged dimeric structure presented here is reminiscent of dimeric trinuclear copper–pyrazolate complexes with bridging carboxyl­ates (Mezei et al., 2004[Mezei, G., Rivera-Carrillo, M. & Raptis, R. G. (2004). Inorg. Chim. Acta, 357, 3721-3732.]; Casarin et al., 2005[Casarin, M., Corvaja, C., Di Nicola, C., Falcomer, D., Franco, L., Monari, M., Pandolfo, L., Pettinari, C. & Piccinelli, F. (2005). Inorg. Chem. 44, 6265-6276.]).

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
C13—H13⋯O5i 0.93 2.23 3.155 (3) 170
C6—H6⋯O10ii 0.93 2.38 3.234 (4) 153
O10—H10B⋯O9iii 0.81 (2) 1.96 (2) 2.751 (3) 165 (4)
O10—H10A⋯O3iv 0.81 (2) 1.91 (2) 2.700 (3) 165 (4)
O7—H7B⋯O8v 0.83 (2) 1.83 (2) 2.658 (3) 175 (3)
O7—H7A⋯O10ii 0.80 (2) 1.83 (2) 2.625 (3) 172 (3)
O1—H1O⋯O9vi 0.78 (2) 1.95 (2) 2.711 (3) 166 (3)
O1—H1O⋯O9vi 0.78 (2) 1.95 (2) 2.711 (3) 166 (3)
O7—H7A⋯O10ii 0.80 (2) 1.83 (2) 2.625 (3) 172 (3)
O7—H7B⋯O8v 0.83 (2) 1.83 (2) 2.658 (3) 175 (3)
O10—H10A⋯O3iv 0.81 (2) 1.91 (2) 2.700 (3) 165 (4)
O10—H10B⋯O9iii 0.81 (2) 1.96 (2) 2.751 (3) 165 (4)
Symmetry codes: (i) -x+1, -y+2, -z+1; (ii) -x+1, -y+1, -z+1; (iii) -x, -y+1, -z+1; (iv) [x-{\script{1\over 2}}, -y+{\script{3\over 2}}, z-{\script{1\over 2}}]; (v) x+1, y, z+1; (vi) [-x+{\script{1\over 2}}, y+{\script{1\over 2}}, -z+{\script{3\over 2}}].
[Figure 1]
Figure 1
Displacement ellipsoid plot (50% probability level) of the asymmetric unit of the title complex, showing the atom-labeling scheme (DMF and H2O solvent mol­ecules omitted).
[Figure 2]
Figure 2
Dimeric structure formed by mutual apical coordination of three sulfate O atoms to the Cu atoms of the symmetry-related trinuclear copper(II)–pyrazolate complex.

3. Supra­molecular features

The dimeric metal complex participates in an intricate hydrogen-bond network with the solvent DMF and H2O mol­ecules. Numerical details of the hydrogen bonding are given in Table 1[link]. The μ3-OH group donates a hydrogen bond to a solvent DMF mol­ecule [O1⋯O9: 2.711 (3) Å], whereas the coordinating water mol­ecule donates two hydrogen bonds, one to the solvent water mol­ecule [O7⋯O10: 2.625 (3) Å] and one to the other independent DMF solvent mol­ecule [O7⋯O8: 2.658 (3) Å]. The solvent water mol­ecule donates two hydrogen bonds, one to a sulfate O atom [O10⋯O3: 2.700 (3) Å] and one to a DMF solvent mol­ecule [O10⋯O9: 2.751 (3) Å]. Within the dimeric unit, ππ inter­actions are identified between pairs of pyrazolate moieties along the sulfate-bridged sides of the trinuclear units [centroid–centroid distance: 3.641 (1) Å; dihedral angle: 7.5 (1)°].

4. Database survey

A search of the Cambridge Structural Database (Groom et al., 2016[Groom, C. R., Bruno, I. J., Lightfoot, M. P. & Ward, S. C. (2016). Acta Cryst. B72, 171-179.]) reveals only three trinuclear copper pyrazolate structures that contain sulfate (Zheng et al., 2008[Zheng, L.-L., Leng, J.-D., Zheng, S.-L., Zhaxi, Y.-C., Zhang, W.-X. & Tong, M.-L. (2008). CrystEngComm, 10, 1467-1473.]; Di Nicola et al., 2010[Di Nicola, C., Garau, F., Gazzano, M., Monari, M., Pandolfo, L., Pettinari, C. & Pettinari, R. (2010). Cryst. Growth Des. 10, 3120-3131.]). In all three cases, the sulfate ion coordinates weakly at the apical position of the copper cations (Cu—O bonds lengths >2.3 Å). Thus, the complex presented here is the first example of a trinuclear copper pyrazolate with the sulfate anion strongly binding at the basal position to a penta­coordinate Cu-atom [Cu1—O2: 1.976 (2) Å].

5. Synthesis and crystallization

Copper sulfate penta­hydrate (1.000 g), 4-chloro­pyrazole (411 mg) and Et3N (1.2 mL) were dissolved in DMF (20 mL) yielding a deep-blue solution. Dark-blue prismatic crystals of the title compound were obtained upon slow evaporation of the solvent.

6. Refinement

Crystal data, data collection and structure refinement details are summarized in Table 2[link]. C—H hydrogen atoms were placed in idealized positions and refined using the riding-model approximation. The OH hydrogen atoms were located from difference Fourier maps; their displacement parameters were fixed to be 20% larger than those of the attached O atoms. O—H distances were restrained to 0.82 (2) Å.

Table 2
Experimental details

Crystal data
Chemical formula [Cu6(OH)2(SO4)2(C3H2ClN2)6(C3H7NO)2(H2O)2]·4C3H7NO·2H2O
Mr 1727.11
Crystal system, space group Monoclinic, P21/n
Temperature (K) 100
a, b, c (Å) 12.7038 (1), 16.5265 (2), 16.6830 (2)
β (°) 109.774 (1)
V3) 3296.05 (6)
Z 2
Radiation type Mo Kα
μ (mm−1) 2.29
Crystal size (mm) 0.24 × 0.10 × 0.05
 
Data collection
Diffractometer Bruker APEXII CCD
Absorption correction Multi-scan (SADABS; Bruker, 2014[Bruker (2014). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.])
Tmin, Tmax 0.610, 0.894
No. of measured, independent and observed [I > 2σ(I)] reflections 39853, 8504, 6351
Rint 0.061
(sin θ/λ)max−1) 0.676
 
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.035, 0.075, 1.01
No. of reflections 8504
No. of parameters 418
No. of restraints 5
H-atom treatment H atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å−3) 0.59, −0.52
Computer programs: APEX2 and SAINT (Bruker, 2014[Bruker (2014). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]), SHELXS97 and SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]) and SHELXL2014 (Sheldrick, 2015[Sheldrick, G. M. (2015). Acta Cryst. C71, 3-8.]).

Supporting information


Computing details top

Data collection: APEX2 (Bruker, 2014); cell refinement: SAINT (Bruker, 2014); data reduction: SAINT (Bruker, 2014); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL2014 (Sheldrick, 2015); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008).

Diaquahexakis(µ-4-chloropyrazolato-κ2N:N')bis(N,N-dimethylformamide)di-µ3-hydroxido-bis(µ4-sulfato-κ4O:O':O'':O'')hexacopper(II) N,N-dimethylformamide tetrasolvate dihydrate top
Crystal data top
[Cu6(OH)2(SO4)2(C3H2ClN2)6(C3H7NO)2(H2O)2]·4C3H7NO·2H2OF(000) = 1748
Mr = 1727.11Dx = 1.740 Mg m3
Monoclinic, P21/nMo Kα radiation, λ = 0.71073 Å
a = 12.7038 (1) ÅCell parameters from 6640 reflections
b = 16.5265 (2) Åθ = 2.6–26.9°
c = 16.6830 (2) ŵ = 2.29 mm1
β = 109.774 (1)°T = 100 K
V = 3296.05 (6) Å3Prism, blue
Z = 20.24 × 0.10 × 0.05 mm
Data collection top
Bruker APEXII CCD
diffractometer
6351 reflections with I > 2σ(I)
φ and ω scansRint = 0.061
Absorption correction: multi-scan
(SADABS; Bruker, 2014)
θmax = 28.7°, θmin = 1.8°
Tmin = 0.610, Tmax = 0.894h = 1717
39853 measured reflectionsk = 2022
8504 independent reflectionsl = 2222
Refinement top
Refinement on F25 restraints
Least-squares matrix: fullHydrogen site location: mixed
R[F2 > 2σ(F2)] = 0.035H atoms treated by a mixture of independent and constrained refinement
wR(F2) = 0.075 w = 1/[σ2(Fo2) + (0.0294P)2 + 1.238P]
where P = (Fo2 + 2Fc2)/3
S = 1.01(Δ/σ)max = 0.001
8504 reflectionsΔρmax = 0.59 e Å3
418 parametersΔρmin = 0.52 e Å3
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Cu10.88533 (2)0.98432 (2)0.92266 (2)0.01205 (7)
Cu20.84732 (2)0.78607 (2)0.89552 (2)0.01339 (8)
Cu30.71256 (3)0.89070 (2)1.00006 (2)0.01415 (8)
S11.02182 (5)1.14500 (4)0.90916 (4)0.01287 (13)
Cl11.14671 (7)0.88248 (5)0.71858 (6)0.0362 (2)
Cl20.50045 (6)0.57973 (5)0.93424 (6)0.0375 (2)
Cl30.69134 (6)1.23152 (4)1.07089 (5)0.02872 (17)
O10.78020 (14)0.89300 (10)0.90866 (11)0.0124 (4)
H1O0.7316 (19)0.8995 (17)0.8661 (13)0.015*
O21.00215 (13)1.06890 (10)0.95164 (11)0.0137 (4)
O30.92608 (14)1.15827 (11)0.83199 (12)0.0181 (4)
O41.12603 (14)1.13455 (11)0.89049 (12)0.0162 (4)
O51.03357 (14)1.21179 (10)0.96983 (11)0.0156 (4)
O60.62509 (15)0.88937 (11)1.07932 (12)0.0193 (4)
O70.89793 (15)0.68175 (11)0.86138 (13)0.0191 (4)
H7A0.855 (2)0.6528 (16)0.8274 (16)0.023*
H7B0.9493 (19)0.6535 (16)0.8930 (17)0.023*
O80.07007 (16)0.59491 (12)0.04174 (13)0.0265 (5)
O90.13195 (15)0.43846 (12)0.74393 (13)0.0264 (5)
O100.24177 (18)0.42323 (14)0.23718 (17)0.0412 (7)
H10A0.293 (2)0.401 (2)0.2728 (19)0.049*
H10B0.219 (3)0.4655 (15)0.251 (2)0.049*
N10.95307 (17)0.92644 (13)0.85102 (14)0.0147 (5)
N20.94773 (17)0.84403 (13)0.84797 (14)0.0149 (5)
N30.72096 (17)0.73695 (13)0.92013 (14)0.0155 (5)
N40.67343 (17)0.77874 (13)0.96960 (14)0.0154 (5)
N50.72004 (17)1.00879 (13)1.00420 (14)0.0156 (5)
N60.79401 (16)1.04688 (13)0.97334 (14)0.0142 (5)
N70.61860 (18)0.90095 (14)1.21195 (15)0.0201 (5)
N80.21667 (19)0.62870 (14)0.07710 (15)0.0218 (5)
N90.03464 (18)0.37758 (13)0.81585 (15)0.0195 (5)
C11.0125 (2)0.81766 (16)0.80436 (17)0.0175 (6)
H11.02440.76380.79370.021*
C21.0585 (2)0.88365 (17)0.77797 (18)0.0196 (6)
C31.0202 (2)0.95107 (17)0.80841 (17)0.0183 (6)
H31.03781.00450.80080.022*
C40.5943 (2)0.73193 (16)0.98217 (18)0.0185 (6)
H4A0.54980.74591.01430.022*
C50.5894 (2)0.65981 (16)0.93968 (19)0.0207 (6)
C60.6705 (2)0.66438 (16)0.90177 (19)0.0201 (6)
H60.68740.62410.86910.024*
C70.7943 (2)1.12579 (16)0.99150 (18)0.0175 (6)
H70.83771.16510.97770.021*
C80.7200 (2)1.13943 (16)1.03396 (18)0.0192 (6)
C90.6751 (2)1.06498 (16)1.04087 (18)0.0187 (6)
H90.62211.05521.06680.022*
C100.6727 (2)0.89642 (16)1.15752 (19)0.0199 (6)
H100.75040.89861.17850.024*
C110.4967 (2)0.8972 (2)1.1816 (2)0.0321 (8)
H11A0.47140.86021.13470.048*
H11B0.46670.95001.16340.048*
H11C0.47190.87901.22690.048*
C120.6772 (3)0.9130 (2)1.30266 (19)0.0300 (7)
H12A0.65610.96431.31970.045*
H12B0.75650.91241.31380.045*
H12C0.65780.87051.33420.045*
C130.1149 (2)0.63767 (17)0.02161 (19)0.0216 (6)
H130.07280.68030.03100.026*
C140.2914 (3)0.5656 (2)0.0675 (2)0.0379 (8)
H14A0.25270.53240.01930.057*
H14B0.31530.53280.11800.057*
H14C0.35540.58990.05890.057*
C150.2608 (3)0.6836 (2)0.1482 (2)0.0341 (8)
H15A0.20410.72180.14850.051*
H15B0.32410.71190.14280.051*
H15C0.28360.65340.20050.051*
C160.0465 (2)0.43014 (17)0.80778 (19)0.0225 (6)
H160.03920.46400.85390.027*
C170.1313 (2)0.37298 (19)0.89417 (19)0.0273 (7)
H17A0.12060.40900.93590.041*
H17B0.19750.38840.88240.041*
H17C0.13940.31860.91560.041*
C180.0309 (2)0.32090 (18)0.7482 (2)0.0278 (7)
H18A0.03470.33100.69970.042*
H18B0.02860.26660.76790.042*
H18C0.09630.32770.73240.042*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Cu10.00914 (14)0.01448 (16)0.01225 (16)0.00096 (12)0.00324 (12)0.00052 (13)
Cu20.01008 (14)0.01517 (16)0.01420 (17)0.00047 (12)0.00315 (12)0.00099 (13)
Cu30.01137 (15)0.01748 (17)0.01439 (17)0.00170 (12)0.00540 (13)0.00102 (13)
S10.0095 (3)0.0152 (3)0.0120 (3)0.0015 (2)0.0013 (2)0.0007 (2)
Cl10.0364 (4)0.0423 (5)0.0444 (5)0.0025 (4)0.0326 (4)0.0004 (4)
Cl20.0273 (4)0.0200 (4)0.0715 (7)0.0091 (3)0.0247 (4)0.0017 (4)
Cl30.0227 (3)0.0219 (4)0.0440 (5)0.0035 (3)0.0146 (3)0.0092 (3)
O10.0079 (8)0.0164 (9)0.0111 (10)0.0004 (7)0.0010 (7)0.0014 (8)
O20.0103 (8)0.0159 (9)0.0139 (10)0.0013 (7)0.0025 (7)0.0031 (7)
O30.0127 (9)0.0206 (10)0.0144 (10)0.0021 (7)0.0039 (8)0.0042 (8)
O40.0118 (8)0.0215 (10)0.0156 (10)0.0023 (7)0.0052 (8)0.0007 (8)
O50.0130 (8)0.0163 (9)0.0156 (10)0.0003 (7)0.0024 (7)0.0019 (8)
O60.0172 (9)0.0256 (11)0.0172 (11)0.0035 (8)0.0088 (8)0.0015 (8)
O70.0145 (9)0.0183 (10)0.0205 (11)0.0018 (7)0.0006 (8)0.0050 (8)
O80.0224 (10)0.0286 (11)0.0237 (12)0.0038 (9)0.0014 (9)0.0041 (9)
O90.0201 (10)0.0254 (11)0.0236 (12)0.0033 (8)0.0059 (9)0.0051 (9)
O100.0244 (12)0.0337 (14)0.0449 (16)0.0136 (10)0.0152 (11)0.0228 (12)
N10.0117 (10)0.0180 (11)0.0149 (12)0.0020 (8)0.0053 (9)0.0007 (9)
N20.0133 (10)0.0160 (11)0.0149 (12)0.0002 (8)0.0043 (9)0.0030 (9)
N30.0117 (10)0.0182 (12)0.0145 (12)0.0015 (8)0.0015 (9)0.0001 (9)
N40.0115 (10)0.0198 (12)0.0159 (12)0.0005 (9)0.0060 (9)0.0016 (9)
N50.0115 (10)0.0185 (12)0.0172 (12)0.0012 (8)0.0054 (9)0.0005 (9)
N60.0102 (10)0.0181 (11)0.0142 (12)0.0011 (8)0.0040 (9)0.0005 (9)
N70.0206 (12)0.0241 (13)0.0179 (13)0.0045 (10)0.0094 (10)0.0009 (10)
N80.0191 (12)0.0230 (13)0.0195 (13)0.0034 (10)0.0015 (10)0.0023 (10)
N90.0155 (11)0.0210 (12)0.0177 (13)0.0006 (9)0.0002 (10)0.0024 (10)
C10.0143 (12)0.0209 (14)0.0164 (14)0.0012 (10)0.0039 (11)0.0029 (11)
C20.0148 (13)0.0284 (15)0.0189 (15)0.0016 (11)0.0101 (12)0.0021 (12)
C30.0155 (13)0.0226 (14)0.0188 (15)0.0024 (11)0.0084 (11)0.0005 (11)
C40.0122 (12)0.0206 (14)0.0238 (16)0.0019 (10)0.0075 (11)0.0015 (11)
C50.0135 (12)0.0168 (14)0.0310 (17)0.0026 (10)0.0065 (12)0.0027 (12)
C60.0163 (13)0.0164 (14)0.0254 (16)0.0002 (10)0.0040 (12)0.0000 (12)
C70.0131 (12)0.0157 (13)0.0219 (15)0.0007 (10)0.0036 (11)0.0001 (11)
C80.0138 (12)0.0187 (14)0.0248 (16)0.0031 (10)0.0061 (12)0.0033 (12)
C90.0150 (13)0.0237 (15)0.0191 (15)0.0034 (11)0.0077 (11)0.0014 (12)
C100.0197 (14)0.0207 (14)0.0226 (16)0.0017 (11)0.0114 (12)0.0013 (12)
C110.0202 (15)0.052 (2)0.0276 (18)0.0047 (14)0.0125 (14)0.0045 (15)
C120.0308 (16)0.0405 (19)0.0193 (16)0.0059 (14)0.0093 (13)0.0009 (14)
C130.0174 (13)0.0245 (15)0.0217 (16)0.0035 (11)0.0051 (12)0.0018 (12)
C140.0251 (16)0.039 (2)0.043 (2)0.0143 (14)0.0026 (15)0.0005 (16)
C150.0299 (17)0.0330 (18)0.0291 (19)0.0012 (14)0.0036 (14)0.0036 (15)
C160.0213 (14)0.0230 (15)0.0206 (16)0.0041 (11)0.0035 (12)0.0012 (12)
C170.0187 (14)0.0349 (18)0.0221 (17)0.0027 (12)0.0013 (12)0.0097 (13)
C180.0240 (15)0.0244 (16)0.0324 (19)0.0040 (12)0.0063 (14)0.0025 (13)
Geometric parameters (Å, º) top
Cu1—N11.944 (2)N7—C101.313 (3)
Cu1—N61.948 (2)N7—C121.457 (4)
Cu1—O21.9760 (17)N7—C111.458 (3)
Cu1—O11.9761 (17)N8—C131.319 (3)
Cu1—O2i2.2773 (17)N8—C151.447 (4)
Cu2—N31.962 (2)N8—C141.455 (4)
Cu2—N21.964 (2)N9—C161.320 (3)
Cu2—O71.9895 (19)N9—C181.455 (4)
Cu2—O12.0061 (17)N9—C171.461 (3)
Cu2—O5i2.2444 (18)C1—C21.378 (4)
Cu3—N41.939 (2)C1—H10.9300
Cu3—N51.954 (2)C2—C31.380 (4)
Cu3—O11.9879 (18)C3—H30.9300
Cu3—O61.9945 (18)C4—C51.377 (4)
Cu3—O4i2.2759 (18)C4—H4A0.9300
S1—O31.4579 (18)C5—C61.382 (4)
S1—O41.4691 (18)C6—H60.9300
S1—O51.4708 (18)C7—C81.377 (4)
S1—O21.5055 (18)C7—H70.9300
Cl1—C21.729 (3)C8—C91.377 (4)
Cl2—C51.723 (3)C9—H90.9300
Cl3—C81.726 (3)C10—H100.9300
O1—H1O0.775 (17)C11—H11A0.9600
O2—Cu1i2.2774 (17)C11—H11B0.9600
O4—Cu3i2.2759 (18)C11—H11C0.9600
O5—Cu2i2.2444 (18)C12—H12A0.9600
O6—C101.244 (3)C12—H12B0.9600
O7—H7A0.801 (17)C12—H12C0.9600
O7—H7B0.831 (17)C13—H130.9300
O8—C131.238 (3)C14—H14A0.9600
O9—C161.245 (3)C14—H14B0.9600
O10—H10A0.808 (18)C14—H14C0.9600
O10—H10B0.814 (18)C15—H15A0.9600
N1—C31.345 (3)C15—H15B0.9600
N1—N21.364 (3)C15—H15C0.9600
N2—C11.342 (3)C16—H160.9300
N3—C61.345 (3)C17—H17A0.9600
N3—N41.364 (3)C17—H17B0.9600
N4—C41.340 (3)C17—H17C0.9600
N5—C91.341 (3)C18—H18A0.9600
N5—N61.368 (3)C18—H18B0.9600
N6—C71.339 (3)C18—H18C0.9600
N1—Cu1—N6168.69 (9)C16—N9—C18121.7 (2)
N1—Cu1—O292.66 (8)C16—N9—C17121.1 (3)
N6—Cu1—O291.53 (8)C18—N9—C17117.2 (2)
N1—Cu1—O188.49 (8)N2—C1—C2108.7 (2)
N6—Cu1—O188.78 (8)N2—C1—H1125.7
O2—Cu1—O1172.22 (7)C2—C1—H1125.7
N1—Cu1—O2i96.06 (8)C1—C2—C3106.3 (2)
N6—Cu1—O2i94.92 (8)C1—C2—Cl1127.0 (2)
O2—Cu1—O2i82.09 (7)C3—C2—Cl1126.7 (2)
O1—Cu1—O2i90.14 (7)N1—C3—C2108.4 (2)
N3—Cu2—N2167.22 (9)N1—C3—H3125.8
N3—Cu2—O793.89 (8)C2—C3—H3125.8
N2—Cu2—O789.43 (8)N4—C4—C5108.9 (2)
N3—Cu2—O186.18 (8)N4—C4—H4A125.5
N2—Cu2—O188.44 (8)C5—C4—H4A125.5
O7—Cu2—O1170.11 (8)C4—C5—C6106.1 (2)
N3—Cu2—O5i96.85 (8)C4—C5—Cl2127.3 (2)
N2—Cu2—O5i94.96 (8)C6—C5—Cl2126.6 (2)
O7—Cu2—O5i97.26 (7)N3—C6—C5108.4 (2)
O1—Cu2—O5i92.54 (7)N3—C6—H6125.8
N4—Cu3—N5165.39 (9)C5—C6—H6125.8
N4—Cu3—O187.49 (8)N6—C7—C8109.0 (2)
N5—Cu3—O188.83 (8)N6—C7—H7125.5
N4—Cu3—O690.70 (8)C8—C7—H7125.5
N5—Cu3—O691.08 (8)C7—C8—C9105.8 (2)
O1—Cu3—O6172.37 (7)C7—C8—Cl3126.3 (2)
N4—Cu3—O4i96.70 (8)C9—C8—Cl3127.9 (2)
N5—Cu3—O4i97.76 (8)N5—C9—C8109.2 (2)
O1—Cu3—O4i96.49 (7)N5—C9—H9125.4
O6—Cu3—O4i91.08 (7)C8—C9—H9125.4
O3—S1—O4111.90 (11)O6—C10—N7123.2 (3)
O3—S1—O5110.78 (11)O6—C10—H10118.4
O4—S1—O5110.20 (10)N7—C10—H10118.4
O3—S1—O2108.64 (10)N7—C11—H11A109.5
O4—S1—O2107.86 (10)N7—C11—H11B109.5
O5—S1—O2107.30 (10)H11A—C11—H11B109.5
Cu1—O1—Cu3111.97 (8)N7—C11—H11C109.5
Cu1—O1—Cu2112.98 (8)H11A—C11—H11C109.5
Cu3—O1—Cu2112.15 (8)H11B—C11—H11C109.5
Cu1—O1—H1O107 (2)N7—C12—H12A109.5
Cu3—O1—H1O107 (2)N7—C12—H12B109.5
Cu2—O1—H1O105 (2)H12A—C12—H12B109.5
S1—O2—Cu1134.93 (11)N7—C12—H12C109.5
S1—O2—Cu1i127.14 (10)H12A—C12—H12C109.5
Cu1—O2—Cu1i97.91 (7)H12B—C12—H12C109.5
S1—O4—Cu3i118.91 (11)O8—C13—N8126.4 (3)
S1—O5—Cu2i125.29 (10)O8—C13—H13116.8
C10—O6—Cu3120.80 (17)N8—C13—H13116.8
Cu2—O7—H7A121 (2)N8—C14—H14A109.5
Cu2—O7—H7B125 (2)N8—C14—H14B109.5
H7A—O7—H7B108 (3)H14A—C14—H14B109.5
H10A—O10—H10B118 (4)N8—C14—H14C109.5
C3—N1—N2108.4 (2)H14A—C14—H14C109.5
C3—N1—Cu1131.89 (19)H14B—C14—H14C109.5
N2—N1—Cu1119.18 (16)N8—C15—H15A109.5
C1—N2—N1108.2 (2)N8—C15—H15B109.5
C1—N2—Cu2131.42 (18)H15A—C15—H15B109.5
N1—N2—Cu2120.19 (15)N8—C15—H15C109.5
C6—N3—N4108.4 (2)H15A—C15—H15C109.5
C6—N3—Cu2132.94 (19)H15B—C15—H15C109.5
N4—N3—Cu2118.57 (16)O9—C16—N9125.8 (3)
C4—N4—N3108.2 (2)O9—C16—H16117.1
C4—N4—Cu3130.49 (18)N9—C16—H16117.1
N3—N4—Cu3121.01 (15)N9—C17—H17A109.5
C9—N5—N6107.8 (2)N9—C17—H17B109.5
C9—N5—Cu3133.20 (18)H17A—C17—H17B109.5
N6—N5—Cu3118.53 (16)N9—C17—H17C109.5
C7—N6—N5108.2 (2)H17A—C17—H17C109.5
C7—N6—Cu1131.22 (18)H17B—C17—H17C109.5
N5—N6—Cu1120.33 (16)N9—C18—H18A109.5
C10—N7—C12121.5 (2)N9—C18—H18B109.5
C10—N7—C11120.0 (2)H18A—C18—H18B109.5
C12—N7—C11118.4 (2)N9—C18—H18C109.5
C13—N8—C15121.4 (2)H18A—C18—H18C109.5
C13—N8—C14121.6 (3)H18B—C18—H18C109.5
C15—N8—C14116.9 (2)
Symmetry code: (i) x+2, y+2, z+2.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C18—H18B···O3ii0.962.643.494 (4)148
C17—H17C···O5ii0.962.563.360 (3)141
C15—H15C···N2iii0.962.633.406 (4)138
C13—H13···O5iv0.932.233.155 (3)170
C10—H10···O4i0.932.302.971 (3)128
C7—H7···O50.932.653.483 (3)149
C7—H7···S10.932.953.610 (3)129
C6—H6···O10v0.932.383.234 (4)153
C4—H4A···Cl3vi0.932.933.484 (3)119
C3—H3···O40.932.643.411 (3)140
C3—H3···S10.932.993.616 (3)126
O10—H10B···O9vii0.81 (2)1.96 (2)2.751 (3)165 (4)
O10—H10A···O3iii0.81 (2)1.91 (2)2.700 (3)165 (4)
O7—H7B···O8viii0.83 (2)1.83 (2)2.658 (3)175 (3)
O7—H7A···O10v0.80 (2)1.83 (2)2.625 (3)172 (3)
O1—H1O···O9ix0.78 (2)1.95 (2)2.711 (3)166 (3)
O1—H1O···O9ix0.78 (2)1.95 (2)2.711 (3)166 (3)
O7—H7A···O10v0.80 (2)1.83 (2)2.625 (3)172 (3)
O7—H7B···O8viii0.83 (2)1.83 (2)2.658 (3)175 (3)
O10—H10A···O3iii0.81 (2)1.91 (2)2.700 (3)165 (4)
O10—H10B···O9vii0.81 (2)1.96 (2)2.751 (3)165 (4)
C3—H3···S10.932.993.616 (3)126
C3—H3···O40.932.643.411 (3)140
C4—H4A···Cl3vi0.932.933.484 (3)119
C6—H6···O10v0.932.383.234 (4)153
C7—H7···S10.932.953.610 (3)129
C7—H7···O50.932.653.483 (3)149
C10—H10···O4i0.932.302.971 (3)128
C13—H13···O5iv0.932.233.155 (3)170
C15—H15C···N2iii0.962.633.406 (4)138
C17—H17C···O5ii0.962.563.360 (3)141
C18—H18B···O3ii0.962.643.494 (4)148
Symmetry codes: (i) x+2, y+2, z+2; (ii) x1, y1, z; (iii) x1/2, y+3/2, z1/2; (iv) x+1, y+2, z+1; (v) x+1, y+1, z+1; (vi) x+1, y+2, z+2; (vii) x, y+1, z+1; (viii) x+1, y, z+1; (ix) x+1/2, y+1/2, z+3/2.
 

Acknowledgements

This material is based upon work supported by the National Science Foundation under grant No. CHE-1404730.

References

First citationAhmed, B. M., Calco, B. & Mezei, G. (2016). Dalton Trans. 45, 8327–8339.  Web of Science CSD CrossRef CAS PubMed Google Scholar
First citationAhmed, B. M. & Mezei, G. (2016). Inorg. Chem. Submitted.  Google Scholar
First citationAhmed, B. M., Szymczyna, B. R., Jianrattanasawat, S., Surmann, S. A. & Mezei, G. (2016). Chem. Eur. J. 22, 5499–5503.  Web of Science CSD CrossRef CAS PubMed Google Scholar
First citationBoča, R., Dlháň, L., Mezei, G., Ortiz-Pérez, T., Raptis, R. G. & Telser, J. (2003). Inorg. Chem. 42, 5801–5803.  Web of Science PubMed Google Scholar
First citationBruker (2014). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationCasarin, M., Corvaja, C., Di Nicola, C., Falcomer, D., Franco, L., Monari, M., Pandolfo, L., Pettinari, C. & Piccinelli, F. (2005). Inorg. Chem. 44, 6265–6276.  Web of Science CSD CrossRef PubMed CAS Google Scholar
First citationDi Nicola, C., Garau, F., Gazzano, M., Monari, M., Pandolfo, L., Pettinari, C. & Pettinari, R. (2010). Cryst. Growth Des. 10, 3120–3131.  Web of Science CSD CrossRef CAS Google Scholar
First citationDi Nicola, C., Garau, F., Karabach, Y. Y., Martins, L. M. D. R. S., Monari, M., Pandolfo, L., Pettinari, C. & Pombeiro, A. J. L. (2009). Eur. J. Inorg. Chem. pp. 666–676.  Web of Science CSD CrossRef Google Scholar
First citationFernando, I. R., Surmann, S. A., Urech, A. A., Poulsen, A. M. & Mezei, G. (2012). Chem. Commun. 48, 6860–6862.  Web of Science CSD CrossRef CAS Google Scholar
First citationFu, M., Imai, T., Han, T.-H. & Lee, Y. S. (2015). Science, 350, 655–658.  Web of Science CrossRef CAS PubMed Google Scholar
First citationGroom, C. R., Bruno, I. J., Lightfoot, M. P. & Ward, S. C. (2016). Acta Cryst. B72, 171–179.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationGrundner, S., Markovits, M. A. C., Li, G., Tromp, M., Pidko, E. A., Hensen, E. J. M., Jentys, A., Sanchez-Sanchez, M. & Lercher, J. A. (2015). Nat. Commun. 6, 7546.  CrossRef PubMed Google Scholar
First citationHalcrow, M. A. (2009). Dalton Trans. pp. 2059–2073.  Web of Science CrossRef Google Scholar
First citationLionetti, D., Day, M. W. & Agapie, T. (2013). Chem. Sci. 4, 785–790.  Web of Science CSD CrossRef CAS PubMed Google Scholar
First citationMezei, G. (2015). Chem. Commun. 51, 10341–10344.  Web of Science CSD CrossRef CAS Google Scholar
First citationMezei, G., Rivera-Carrillo, M. & Raptis, R. G. (2004). Inorg. Chim. Acta, 357, 3721–3732.  Web of Science CSD CrossRef CAS Google Scholar
First citationMezei, G., Rivera-Carrillo, M. & Raptis, R. G. (2007). Dalton Trans. pp. 37–40.  Web of Science CSD CrossRef Google Scholar
First citationMimmi, M. C., Gullotti, M., Santagostini, L., Battaini, G., Monzani, E., Pagliarin, R., Zoppellaro, G. & Casella, L. (2004). Dalton Trans. pp. 2192–2201.  Web of Science CrossRef PubMed Google Scholar
First citationRivera-Carrillo, M., Chakraborty, I., Mezei, G., Webster, R. D. & Raptis, R. G. (2008). Inorg. Chem. 47, 7644–7650.  Web of Science PubMed CAS Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSheldrick, G. M. (2015). Acta Cryst. C71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar
First citationSolomon, E. I., Heppner, D. E., Johnston, E. M., Ginsbach, J. W., Cirera, J., Qayyum, M., Kieber-Emmons, M. T., Kjaergaard, C. H., Hadt, R. G. & Tian, L. (2014). Chem. Rev. 114, 3659–3853.  Web of Science CrossRef CAS PubMed Google Scholar
First citationSolomon, E. I., Sundaram, U. M. & Machonkin, T. E. (1996). Chem. Rev. 96, 2563–2606.  CrossRef PubMed CAS Web of Science Google Scholar
First citationSpielberg, E. T., Gilb, A., Plaul, D., Geibig, D., Hornig, D., Schuch, D., Buchholz, A., Ardavan, A. & Plass, W. (2015). Inorg. Chem. 54, 3432–3438.  Web of Science CSD CrossRef CAS PubMed Google Scholar
First citationTsui, E. Y., Day, M. W. & Agapie, T. (2011). Angew. Chem. Int. Ed. 50, 1668–1672.  CSD CrossRef CAS Google Scholar
First citationViciano-Chumillas, M., Tanase, S., de Jongh, L. J. & Reedijk, J. (2010). Eur. J. Inorg. Chem. pp. 3403–3418.  Google Scholar
First citationZheng, L.-L., Leng, J.-D., Zheng, S.-L., Zhaxi, Y.-C., Zhang, W.-X. & Tong, M.-L. (2008). CrystEngComm, 10, 1467–1473.  Web of Science CSD CrossRef CAS Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds