research communications
Sulfate-bridged dimeric trinuclear copper(II)–pyrazolate complex with three different terminal ligands
aDepartment of Chemistry, Western Michigan University, Kalamazoo, Michigan, USA
*Correspondence e-mail: gellert.mezei@wmich.edu
The reaction of CuSO4·5H2O, 4-chloropyrazole (4-Cl-pzH) and triethylamine (Et3N) in dimethylformamide (DMF) produced crystals of diaquahexakis(μ-4-chloropyrazolato-κ2N:N′)bis(N,N-dimethylformamide)di-μ3-hydroxido-bis(μ4-sulfato-κ4O:O′:O′′:O′′)hexacopper(II) N,N-dimethylformamide tetrasolvate dihydrate, [Cu3(OH)(SO4)(C3H2ClN2)3(C3H7NO)(H2O)]2·4C3H7NO·2H2O. The centrosymmetric dimeric molecule consists of two trinuclear copper–pyrazolate units bridged by two sulfate ions. The title compound provides the first example of a trinuclear copper–pyrazolate complex with three different terminal ligands on the Cu atoms, and also the first example of such complex with a strongly binding basal sulfate ion. Within each trinuclear unit, the CuII atoms are bridged by μ-pyrazolate groups and a central μ3-OH group, and are coordinated by terminal sulfate, H2O and DMF ligands, respectively. Moreover, the sulfate O atoms coordinate at the apical position to the Cu atoms of the symmetry-related unit, providing square–pyramidal coordination geometry around each copper cation. The metal complex and solvent molecules are involved in O—H⋯O hydrogen bonds, leading to a two-dimensional network parallel to (10-1).
Keywords: crystal structure; copper; pyrazolate; trinuclear complex; terminal sulfate ligand.
CCDC reference: 1489622
1. Chemical context
Trinuclear copper(II) complexes are primarily studied for their relevance to multicopper enzymes, such as oxidases (e.g., laccase, ascorbate oxidase, ceruloplasmin), oxygenases (e.g., tyrosinase, particulate methane monooxygenase, ammonia monooxygenase) and reductases (e.g., nitrite reductase, nitrous oxide reductase) (Solomon et al., 1996, 2014). Thus, such complexes are important targets from synthesis, redox chemistry and catalysis viewpoints (Di Nicola et al., 2009; Mimmi et al., 2004; Tsui et al., 2011; Lionetti et al., 2013; Grundner et al., 2015). Trinuclear copper(II) complexes also display interesting spectroscopic and magnetic properties (Boča et al., 2003; Rivera-Carrillo et al., 2008; Spielberg et al., 2015), and have been crucial in studying concepts such as spin frustration (Fu et al., 2015). The pyrazolate anion is an excellent ligand for the construction of cyclic trinuclear and higher nuclearity metal complexes, leading to a variety of molecular architectures based on copper or other metals (Halcrow, 2009; Viciano-Chumillas et al., 2010).
A unique class of copper–pyrazolate complexes is defined by nanojars, based on a series of cyclic polymerization isomers, [cis-CuII(μ-OH)(μ-pz)]n (pz = pyrazolate anion, n = 6–14, except 11), which incarcerate anions with large hydration energies (e.g., sulfate, phosphate, carbonate) with unprecedented strength (Fernando et al., 2012; Mezei, 2015; Ahmed, Szymczyna et al., 2016) and permits the extraction of such anions from water into aliphatic solvents (Ahmed, Calco et al., 2016). Nanojars are obtained by self-assembly from a copper salt, pyrazole and a base (needed both for deprotonating pyrazole and as a hydroxide ion source) in the presence of an anion with large hydration energy, via a trinuclear intermediate, which is isolable and can be converted into nanojars by adding a base (Ahmed & Mezei, 2016). Use of a strong base, such as sodium or tetrabutylammonium hydroxide, allows the preparation of nanojar solutions in different organic solvents. In contrast, a weak base, such as triethylamine, can only be employed as hydroxide source (Et3N + H2O ↔ Et3NH+ + HO−) if the nanojar product is precipitated out of the solution by dilution with excess water, in which the nanojar is not soluble (Fernando et al., 2012). Isolation of the title compound provides further evidence that in a neat organic solvent, such as N,N-dimethylformamide, the self-assembly process using triethylamine halts at the trinuclear stage, due to the acidity of the conjugate acid (triethylammonium cation, pKa = 10.75 in H2O).
2. Structural commentary
The title metal complex molecule, located around an inversion center, consists of two symmetry-related trinuclear copper pyrazolate units (Fig. 1) connected together by sulfate ions (Fig. 2). One O atom of the sulfate moiety coordinates to one of the three independent CuII atoms as basal donor [Cu1—O2: 1.976 (2) Å], and to the corresponding symmetry-related CuII atom as apical donor [Cu1′—O2: 2.277 (2) Å]. The other two O atoms of the sulfate moiety coordinate apically to the other two Cu atoms of the symmetry-related trinuclear unit, whereas the fourth O atom accepts a hydrogen bond from the solvent water molecule (Table 1). A square–pyramidal coordination geometry around each of the CuII atoms is completed by the bridging μ-pyrazolate and μ3-OH moieties, and terminal water or dimethylformamide molecules in basal positions. The Cu3(μ-4-Cl-pz)3 core is relatively flat, with dihedral angles between the 4-chloropyrazolate mean planes and the Cu3 mean plane of 1.74 (6), 7.20 (6) and 14.10 (4)°. The μ3-OH group is located 0.5615 (15) Å above the Cu3 mean plane. Bond lengths and angles within the Cu3(μ-4-Cl-pz)3 framework are similar to the ones found in related complexes (Mezei et al., 2007; Rivera-Carrillo et al., 2008). The sulfate-bridged dimeric structure presented here is reminiscent of dimeric trinuclear copper–pyrazolate complexes with bridging carboxylates (Mezei et al., 2004; Casarin et al., 2005).
3. Supramolecular features
The dimeric metal complex participates in an intricate hydrogen-bond network with the solvent DMF and H2O molecules. Numerical details of the hydrogen bonding are given in Table 1. The μ3-OH group donates a hydrogen bond to a solvent DMF molecule [O1⋯O9: 2.711 (3) Å], whereas the coordinating water molecule donates two hydrogen bonds, one to the solvent water molecule [O7⋯O10: 2.625 (3) Å] and one to the other independent DMF solvent molecule [O7⋯O8: 2.658 (3) Å]. The solvent water molecule donates two hydrogen bonds, one to a sulfate O atom [O10⋯O3: 2.700 (3) Å] and one to a DMF solvent molecule [O10⋯O9: 2.751 (3) Å]. Within the dimeric unit, π–π interactions are identified between pairs of pyrazolate moieties along the sulfate-bridged sides of the trinuclear units [centroid–centroid distance: 3.641 (1) Å; dihedral angle: 7.5 (1)°].
4. Database survey
A search of the Cambridge Structural Database (Groom et al., 2016) reveals only three trinuclear copper pyrazolate structures that contain sulfate (Zheng et al., 2008; Di Nicola et al., 2010). In all three cases, the sulfate ion coordinates weakly at the apical position of the copper cations (Cu—O bonds lengths >2.3 Å). Thus, the complex presented here is the first example of a trinuclear copper pyrazolate with the sulfate anion strongly binding at the basal position to a pentacoordinate Cu-atom [Cu1—O2: 1.976 (2) Å].
5. Synthesis and crystallization
Copper sulfate pentahydrate (1.000 g), 4-chloropyrazole (411 mg) and Et3N (1.2 mL) were dissolved in DMF (20 mL) yielding a deep-blue solution. Dark-blue prismatic crystals of the title compound were obtained upon slow evaporation of the solvent.
6. Refinement
Crystal data, data collection and structure . C—H hydrogen atoms were placed in idealized positions and refined using the riding-model approximation. The OH hydrogen atoms were located from difference Fourier maps; their displacement parameters were fixed to be 20% larger than those of the attached O atoms. O—H distances were restrained to 0.82 (2) Å.
details are summarized in Table 2
|
Supporting information
CCDC reference: 1489622
https://doi.org/10.1107/S2056989016010719/gk2663sup1.cif
contains datablock I. DOI:Structure factors: contains datablock I. DOI: https://doi.org/10.1107/S2056989016010719/gk2663Isup2.hkl
Data collection: APEX2 (Bruker, 2014); cell
SAINT (Bruker, 2014); data reduction: SAINT (Bruker, 2014); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL2014 (Sheldrick, 2015); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008).[Cu6(OH)2(SO4)2(C3H2ClN2)6(C3H7NO)2(H2O)2]·4C3H7NO·2H2O | F(000) = 1748 |
Mr = 1727.11 | Dx = 1.740 Mg m−3 |
Monoclinic, P21/n | Mo Kα radiation, λ = 0.71073 Å |
a = 12.7038 (1) Å | Cell parameters from 6640 reflections |
b = 16.5265 (2) Å | θ = 2.6–26.9° |
c = 16.6830 (2) Å | µ = 2.29 mm−1 |
β = 109.774 (1)° | T = 100 K |
V = 3296.05 (6) Å3 | Prism, blue |
Z = 2 | 0.24 × 0.10 × 0.05 mm |
Bruker APEXII CCD diffractometer | 6351 reflections with I > 2σ(I) |
φ and ω scans | Rint = 0.061 |
Absorption correction: multi-scan (SADABS; Bruker, 2014) | θmax = 28.7°, θmin = 1.8° |
Tmin = 0.610, Tmax = 0.894 | h = −17→17 |
39853 measured reflections | k = −20→22 |
8504 independent reflections | l = −22→22 |
Refinement on F2 | 5 restraints |
Least-squares matrix: full | Hydrogen site location: mixed |
R[F2 > 2σ(F2)] = 0.035 | H atoms treated by a mixture of independent and constrained refinement |
wR(F2) = 0.075 | w = 1/[σ2(Fo2) + (0.0294P)2 + 1.238P] where P = (Fo2 + 2Fc2)/3 |
S = 1.01 | (Δ/σ)max = 0.001 |
8504 reflections | Δρmax = 0.59 e Å−3 |
418 parameters | Δρmin = −0.52 e Å−3 |
Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes. |
x | y | z | Uiso*/Ueq | ||
Cu1 | 0.88533 (2) | 0.98432 (2) | 0.92266 (2) | 0.01205 (7) | |
Cu2 | 0.84732 (2) | 0.78607 (2) | 0.89552 (2) | 0.01339 (8) | |
Cu3 | 0.71256 (3) | 0.89070 (2) | 1.00006 (2) | 0.01415 (8) | |
S1 | 1.02182 (5) | 1.14500 (4) | 0.90916 (4) | 0.01287 (13) | |
Cl1 | 1.14671 (7) | 0.88248 (5) | 0.71858 (6) | 0.0362 (2) | |
Cl2 | 0.50045 (6) | 0.57973 (5) | 0.93424 (6) | 0.0375 (2) | |
Cl3 | 0.69134 (6) | 1.23152 (4) | 1.07089 (5) | 0.02872 (17) | |
O1 | 0.78020 (14) | 0.89300 (10) | 0.90866 (11) | 0.0124 (4) | |
H1O | 0.7316 (19) | 0.8995 (17) | 0.8661 (13) | 0.015* | |
O2 | 1.00215 (13) | 1.06890 (10) | 0.95164 (11) | 0.0137 (4) | |
O3 | 0.92608 (14) | 1.15827 (11) | 0.83199 (12) | 0.0181 (4) | |
O4 | 1.12603 (14) | 1.13455 (11) | 0.89049 (12) | 0.0162 (4) | |
O5 | 1.03357 (14) | 1.21179 (10) | 0.96983 (11) | 0.0156 (4) | |
O6 | 0.62509 (15) | 0.88937 (11) | 1.07932 (12) | 0.0193 (4) | |
O7 | 0.89793 (15) | 0.68175 (11) | 0.86138 (13) | 0.0191 (4) | |
H7A | 0.855 (2) | 0.6528 (16) | 0.8274 (16) | 0.023* | |
H7B | 0.9493 (19) | 0.6535 (16) | 0.8930 (17) | 0.023* | |
O8 | 0.07007 (16) | 0.59491 (12) | −0.04174 (13) | 0.0265 (5) | |
O9 | −0.13195 (15) | 0.43846 (12) | 0.74393 (13) | 0.0264 (5) | |
O10 | 0.24177 (18) | 0.42323 (14) | 0.23718 (17) | 0.0412 (7) | |
H10A | 0.293 (2) | 0.401 (2) | 0.2728 (19) | 0.049* | |
H10B | 0.219 (3) | 0.4655 (15) | 0.251 (2) | 0.049* | |
N1 | 0.95307 (17) | 0.92644 (13) | 0.85102 (14) | 0.0147 (5) | |
N2 | 0.94773 (17) | 0.84403 (13) | 0.84797 (14) | 0.0149 (5) | |
N3 | 0.72096 (17) | 0.73695 (13) | 0.92013 (14) | 0.0155 (5) | |
N4 | 0.67343 (17) | 0.77874 (13) | 0.96960 (14) | 0.0154 (5) | |
N5 | 0.72004 (17) | 1.00879 (13) | 1.00420 (14) | 0.0156 (5) | |
N6 | 0.79401 (16) | 1.04688 (13) | 0.97334 (14) | 0.0142 (5) | |
N7 | 0.61860 (18) | 0.90095 (14) | 1.21195 (15) | 0.0201 (5) | |
N8 | 0.21667 (19) | 0.62870 (14) | 0.07710 (15) | 0.0218 (5) | |
N9 | 0.03464 (18) | 0.37758 (13) | 0.81585 (15) | 0.0195 (5) | |
C1 | 1.0125 (2) | 0.81766 (16) | 0.80436 (17) | 0.0175 (6) | |
H1 | 1.0244 | 0.7638 | 0.7937 | 0.021* | |
C2 | 1.0585 (2) | 0.88365 (17) | 0.77797 (18) | 0.0196 (6) | |
C3 | 1.0202 (2) | 0.95107 (17) | 0.80841 (17) | 0.0183 (6) | |
H3 | 1.0378 | 1.0045 | 0.8008 | 0.022* | |
C4 | 0.5943 (2) | 0.73193 (16) | 0.98217 (18) | 0.0185 (6) | |
H4A | 0.5498 | 0.7459 | 1.0143 | 0.022* | |
C5 | 0.5894 (2) | 0.65981 (16) | 0.93968 (19) | 0.0207 (6) | |
C6 | 0.6705 (2) | 0.66438 (16) | 0.90177 (19) | 0.0201 (6) | |
H6 | 0.6874 | 0.6241 | 0.8691 | 0.024* | |
C7 | 0.7943 (2) | 1.12579 (16) | 0.99150 (18) | 0.0175 (6) | |
H7 | 0.8377 | 1.1651 | 0.9777 | 0.021* | |
C8 | 0.7200 (2) | 1.13943 (16) | 1.03396 (18) | 0.0192 (6) | |
C9 | 0.6751 (2) | 1.06498 (16) | 1.04087 (18) | 0.0187 (6) | |
H9 | 0.6221 | 1.0552 | 1.0668 | 0.022* | |
C10 | 0.6727 (2) | 0.89642 (16) | 1.15752 (19) | 0.0199 (6) | |
H10 | 0.7504 | 0.8986 | 1.1785 | 0.024* | |
C11 | 0.4967 (2) | 0.8972 (2) | 1.1816 (2) | 0.0321 (8) | |
H11A | 0.4714 | 0.8602 | 1.1347 | 0.048* | |
H11B | 0.4667 | 0.9500 | 1.1634 | 0.048* | |
H11C | 0.4719 | 0.8790 | 1.2269 | 0.048* | |
C12 | 0.6772 (3) | 0.9130 (2) | 1.30266 (19) | 0.0300 (7) | |
H12A | 0.6561 | 0.9643 | 1.3197 | 0.045* | |
H12B | 0.7565 | 0.9124 | 1.3138 | 0.045* | |
H12C | 0.6578 | 0.8705 | 1.3342 | 0.045* | |
C13 | 0.1149 (2) | 0.63767 (17) | 0.02161 (19) | 0.0216 (6) | |
H13 | 0.0728 | 0.6803 | 0.0310 | 0.026* | |
C14 | 0.2914 (3) | 0.5656 (2) | 0.0675 (2) | 0.0379 (8) | |
H14A | 0.2527 | 0.5324 | 0.0193 | 0.057* | |
H14B | 0.3153 | 0.5328 | 0.1180 | 0.057* | |
H14C | 0.3554 | 0.5899 | 0.0589 | 0.057* | |
C15 | 0.2608 (3) | 0.6836 (2) | 0.1482 (2) | 0.0341 (8) | |
H15A | 0.2041 | 0.7218 | 0.1485 | 0.051* | |
H15B | 0.3241 | 0.7119 | 0.1428 | 0.051* | |
H15C | 0.2836 | 0.6534 | 0.2005 | 0.051* | |
C16 | −0.0465 (2) | 0.43014 (17) | 0.80778 (19) | 0.0225 (6) | |
H16 | −0.0392 | 0.4640 | 0.8539 | 0.027* | |
C17 | 0.1313 (2) | 0.37298 (19) | 0.89417 (19) | 0.0273 (7) | |
H17A | 0.1206 | 0.4090 | 0.9359 | 0.041* | |
H17B | 0.1975 | 0.3884 | 0.8824 | 0.041* | |
H17C | 0.1394 | 0.3186 | 0.9156 | 0.041* | |
C18 | 0.0309 (2) | 0.32090 (18) | 0.7482 (2) | 0.0278 (7) | |
H18A | −0.0347 | 0.3310 | 0.6997 | 0.042* | |
H18B | 0.0286 | 0.2666 | 0.7679 | 0.042* | |
H18C | 0.0963 | 0.3277 | 0.7324 | 0.042* |
U11 | U22 | U33 | U12 | U13 | U23 | |
Cu1 | 0.00914 (14) | 0.01448 (16) | 0.01225 (16) | −0.00096 (12) | 0.00324 (12) | −0.00052 (13) |
Cu2 | 0.01008 (14) | 0.01517 (16) | 0.01420 (17) | −0.00047 (12) | 0.00315 (12) | −0.00099 (13) |
Cu3 | 0.01137 (15) | 0.01748 (17) | 0.01439 (17) | −0.00170 (12) | 0.00540 (13) | −0.00102 (13) |
S1 | 0.0095 (3) | 0.0152 (3) | 0.0120 (3) | −0.0015 (2) | 0.0013 (2) | 0.0007 (2) |
Cl1 | 0.0364 (4) | 0.0423 (5) | 0.0444 (5) | 0.0025 (4) | 0.0326 (4) | −0.0004 (4) |
Cl2 | 0.0273 (4) | 0.0200 (4) | 0.0715 (7) | −0.0091 (3) | 0.0247 (4) | −0.0017 (4) |
Cl3 | 0.0227 (3) | 0.0219 (4) | 0.0440 (5) | 0.0035 (3) | 0.0146 (3) | −0.0092 (3) |
O1 | 0.0079 (8) | 0.0164 (9) | 0.0111 (10) | −0.0004 (7) | 0.0010 (7) | −0.0014 (8) |
O2 | 0.0103 (8) | 0.0159 (9) | 0.0139 (10) | −0.0013 (7) | 0.0025 (7) | 0.0031 (7) |
O3 | 0.0127 (9) | 0.0206 (10) | 0.0144 (10) | −0.0021 (7) | −0.0039 (8) | 0.0042 (8) |
O4 | 0.0118 (8) | 0.0215 (10) | 0.0156 (10) | −0.0023 (7) | 0.0052 (8) | −0.0007 (8) |
O5 | 0.0130 (8) | 0.0163 (9) | 0.0156 (10) | −0.0003 (7) | 0.0024 (7) | −0.0019 (8) |
O6 | 0.0172 (9) | 0.0256 (11) | 0.0172 (11) | −0.0035 (8) | 0.0088 (8) | −0.0015 (8) |
O7 | 0.0145 (9) | 0.0183 (10) | 0.0205 (11) | 0.0018 (7) | 0.0006 (8) | −0.0050 (8) |
O8 | 0.0224 (10) | 0.0286 (11) | 0.0237 (12) | 0.0038 (9) | 0.0014 (9) | −0.0041 (9) |
O9 | 0.0201 (10) | 0.0254 (11) | 0.0236 (12) | 0.0033 (8) | −0.0059 (9) | −0.0051 (9) |
O10 | 0.0244 (12) | 0.0337 (14) | 0.0449 (16) | 0.0136 (10) | −0.0152 (11) | −0.0228 (12) |
N1 | 0.0117 (10) | 0.0180 (11) | 0.0149 (12) | −0.0020 (8) | 0.0053 (9) | −0.0007 (9) |
N2 | 0.0133 (10) | 0.0160 (11) | 0.0149 (12) | 0.0002 (8) | 0.0043 (9) | −0.0030 (9) |
N3 | 0.0117 (10) | 0.0182 (12) | 0.0145 (12) | −0.0015 (8) | 0.0015 (9) | 0.0001 (9) |
N4 | 0.0115 (10) | 0.0198 (12) | 0.0159 (12) | 0.0005 (9) | 0.0060 (9) | 0.0016 (9) |
N5 | 0.0115 (10) | 0.0185 (12) | 0.0172 (12) | −0.0012 (8) | 0.0054 (9) | −0.0005 (9) |
N6 | 0.0102 (10) | 0.0181 (11) | 0.0142 (12) | −0.0011 (8) | 0.0040 (9) | 0.0005 (9) |
N7 | 0.0206 (12) | 0.0241 (13) | 0.0179 (13) | 0.0045 (10) | 0.0094 (10) | 0.0009 (10) |
N8 | 0.0191 (12) | 0.0230 (13) | 0.0195 (13) | 0.0034 (10) | 0.0015 (10) | 0.0023 (10) |
N9 | 0.0155 (11) | 0.0210 (12) | 0.0177 (13) | −0.0006 (9) | −0.0002 (10) | 0.0024 (10) |
C1 | 0.0143 (12) | 0.0209 (14) | 0.0164 (14) | 0.0012 (10) | 0.0039 (11) | −0.0029 (11) |
C2 | 0.0148 (13) | 0.0284 (15) | 0.0189 (15) | 0.0016 (11) | 0.0101 (12) | −0.0021 (12) |
C3 | 0.0155 (13) | 0.0226 (14) | 0.0188 (15) | −0.0024 (11) | 0.0084 (11) | 0.0005 (11) |
C4 | 0.0122 (12) | 0.0206 (14) | 0.0238 (16) | −0.0019 (10) | 0.0075 (11) | 0.0015 (11) |
C5 | 0.0135 (12) | 0.0168 (14) | 0.0310 (17) | −0.0026 (10) | 0.0065 (12) | 0.0027 (12) |
C6 | 0.0163 (13) | 0.0164 (14) | 0.0254 (16) | 0.0002 (10) | 0.0040 (12) | 0.0000 (12) |
C7 | 0.0131 (12) | 0.0157 (13) | 0.0219 (15) | 0.0007 (10) | 0.0036 (11) | −0.0001 (11) |
C8 | 0.0138 (12) | 0.0187 (14) | 0.0248 (16) | 0.0031 (10) | 0.0061 (12) | −0.0033 (12) |
C9 | 0.0150 (13) | 0.0237 (15) | 0.0191 (15) | 0.0034 (11) | 0.0077 (11) | −0.0014 (12) |
C10 | 0.0197 (14) | 0.0207 (14) | 0.0226 (16) | −0.0017 (11) | 0.0114 (12) | −0.0013 (12) |
C11 | 0.0202 (15) | 0.052 (2) | 0.0276 (18) | 0.0047 (14) | 0.0125 (14) | 0.0045 (15) |
C12 | 0.0308 (16) | 0.0405 (19) | 0.0193 (16) | 0.0059 (14) | 0.0093 (13) | −0.0009 (14) |
C13 | 0.0174 (13) | 0.0245 (15) | 0.0217 (16) | 0.0035 (11) | 0.0051 (12) | 0.0018 (12) |
C14 | 0.0251 (16) | 0.039 (2) | 0.043 (2) | 0.0143 (14) | 0.0026 (15) | 0.0005 (16) |
C15 | 0.0299 (17) | 0.0330 (18) | 0.0291 (19) | −0.0012 (14) | −0.0036 (14) | −0.0036 (15) |
C16 | 0.0213 (14) | 0.0230 (15) | 0.0206 (16) | −0.0041 (11) | 0.0035 (12) | −0.0012 (12) |
C17 | 0.0187 (14) | 0.0349 (18) | 0.0221 (17) | −0.0027 (12) | −0.0013 (12) | 0.0097 (13) |
C18 | 0.0240 (15) | 0.0244 (16) | 0.0324 (19) | 0.0040 (12) | 0.0063 (14) | 0.0025 (13) |
Cu1—N1 | 1.944 (2) | N7—C10 | 1.313 (3) |
Cu1—N6 | 1.948 (2) | N7—C12 | 1.457 (4) |
Cu1—O2 | 1.9760 (17) | N7—C11 | 1.458 (3) |
Cu1—O1 | 1.9761 (17) | N8—C13 | 1.319 (3) |
Cu1—O2i | 2.2773 (17) | N8—C15 | 1.447 (4) |
Cu2—N3 | 1.962 (2) | N8—C14 | 1.455 (4) |
Cu2—N2 | 1.964 (2) | N9—C16 | 1.320 (3) |
Cu2—O7 | 1.9895 (19) | N9—C18 | 1.455 (4) |
Cu2—O1 | 2.0061 (17) | N9—C17 | 1.461 (3) |
Cu2—O5i | 2.2444 (18) | C1—C2 | 1.378 (4) |
Cu3—N4 | 1.939 (2) | C1—H1 | 0.9300 |
Cu3—N5 | 1.954 (2) | C2—C3 | 1.380 (4) |
Cu3—O1 | 1.9879 (18) | C3—H3 | 0.9300 |
Cu3—O6 | 1.9945 (18) | C4—C5 | 1.377 (4) |
Cu3—O4i | 2.2759 (18) | C4—H4A | 0.9300 |
S1—O3 | 1.4579 (18) | C5—C6 | 1.382 (4) |
S1—O4 | 1.4691 (18) | C6—H6 | 0.9300 |
S1—O5 | 1.4708 (18) | C7—C8 | 1.377 (4) |
S1—O2 | 1.5055 (18) | C7—H7 | 0.9300 |
Cl1—C2 | 1.729 (3) | C8—C9 | 1.377 (4) |
Cl2—C5 | 1.723 (3) | C9—H9 | 0.9300 |
Cl3—C8 | 1.726 (3) | C10—H10 | 0.9300 |
O1—H1O | 0.775 (17) | C11—H11A | 0.9600 |
O2—Cu1i | 2.2774 (17) | C11—H11B | 0.9600 |
O4—Cu3i | 2.2759 (18) | C11—H11C | 0.9600 |
O5—Cu2i | 2.2444 (18) | C12—H12A | 0.9600 |
O6—C10 | 1.244 (3) | C12—H12B | 0.9600 |
O7—H7A | 0.801 (17) | C12—H12C | 0.9600 |
O7—H7B | 0.831 (17) | C13—H13 | 0.9300 |
O8—C13 | 1.238 (3) | C14—H14A | 0.9600 |
O9—C16 | 1.245 (3) | C14—H14B | 0.9600 |
O10—H10A | 0.808 (18) | C14—H14C | 0.9600 |
O10—H10B | 0.814 (18) | C15—H15A | 0.9600 |
N1—C3 | 1.345 (3) | C15—H15B | 0.9600 |
N1—N2 | 1.364 (3) | C15—H15C | 0.9600 |
N2—C1 | 1.342 (3) | C16—H16 | 0.9300 |
N3—C6 | 1.345 (3) | C17—H17A | 0.9600 |
N3—N4 | 1.364 (3) | C17—H17B | 0.9600 |
N4—C4 | 1.340 (3) | C17—H17C | 0.9600 |
N5—C9 | 1.341 (3) | C18—H18A | 0.9600 |
N5—N6 | 1.368 (3) | C18—H18B | 0.9600 |
N6—C7 | 1.339 (3) | C18—H18C | 0.9600 |
N1—Cu1—N6 | 168.69 (9) | C16—N9—C18 | 121.7 (2) |
N1—Cu1—O2 | 92.66 (8) | C16—N9—C17 | 121.1 (3) |
N6—Cu1—O2 | 91.53 (8) | C18—N9—C17 | 117.2 (2) |
N1—Cu1—O1 | 88.49 (8) | N2—C1—C2 | 108.7 (2) |
N6—Cu1—O1 | 88.78 (8) | N2—C1—H1 | 125.7 |
O2—Cu1—O1 | 172.22 (7) | C2—C1—H1 | 125.7 |
N1—Cu1—O2i | 96.06 (8) | C1—C2—C3 | 106.3 (2) |
N6—Cu1—O2i | 94.92 (8) | C1—C2—Cl1 | 127.0 (2) |
O2—Cu1—O2i | 82.09 (7) | C3—C2—Cl1 | 126.7 (2) |
O1—Cu1—O2i | 90.14 (7) | N1—C3—C2 | 108.4 (2) |
N3—Cu2—N2 | 167.22 (9) | N1—C3—H3 | 125.8 |
N3—Cu2—O7 | 93.89 (8) | C2—C3—H3 | 125.8 |
N2—Cu2—O7 | 89.43 (8) | N4—C4—C5 | 108.9 (2) |
N3—Cu2—O1 | 86.18 (8) | N4—C4—H4A | 125.5 |
N2—Cu2—O1 | 88.44 (8) | C5—C4—H4A | 125.5 |
O7—Cu2—O1 | 170.11 (8) | C4—C5—C6 | 106.1 (2) |
N3—Cu2—O5i | 96.85 (8) | C4—C5—Cl2 | 127.3 (2) |
N2—Cu2—O5i | 94.96 (8) | C6—C5—Cl2 | 126.6 (2) |
O7—Cu2—O5i | 97.26 (7) | N3—C6—C5 | 108.4 (2) |
O1—Cu2—O5i | 92.54 (7) | N3—C6—H6 | 125.8 |
N4—Cu3—N5 | 165.39 (9) | C5—C6—H6 | 125.8 |
N4—Cu3—O1 | 87.49 (8) | N6—C7—C8 | 109.0 (2) |
N5—Cu3—O1 | 88.83 (8) | N6—C7—H7 | 125.5 |
N4—Cu3—O6 | 90.70 (8) | C8—C7—H7 | 125.5 |
N5—Cu3—O6 | 91.08 (8) | C7—C8—C9 | 105.8 (2) |
O1—Cu3—O6 | 172.37 (7) | C7—C8—Cl3 | 126.3 (2) |
N4—Cu3—O4i | 96.70 (8) | C9—C8—Cl3 | 127.9 (2) |
N5—Cu3—O4i | 97.76 (8) | N5—C9—C8 | 109.2 (2) |
O1—Cu3—O4i | 96.49 (7) | N5—C9—H9 | 125.4 |
O6—Cu3—O4i | 91.08 (7) | C8—C9—H9 | 125.4 |
O3—S1—O4 | 111.90 (11) | O6—C10—N7 | 123.2 (3) |
O3—S1—O5 | 110.78 (11) | O6—C10—H10 | 118.4 |
O4—S1—O5 | 110.20 (10) | N7—C10—H10 | 118.4 |
O3—S1—O2 | 108.64 (10) | N7—C11—H11A | 109.5 |
O4—S1—O2 | 107.86 (10) | N7—C11—H11B | 109.5 |
O5—S1—O2 | 107.30 (10) | H11A—C11—H11B | 109.5 |
Cu1—O1—Cu3 | 111.97 (8) | N7—C11—H11C | 109.5 |
Cu1—O1—Cu2 | 112.98 (8) | H11A—C11—H11C | 109.5 |
Cu3—O1—Cu2 | 112.15 (8) | H11B—C11—H11C | 109.5 |
Cu1—O1—H1O | 107 (2) | N7—C12—H12A | 109.5 |
Cu3—O1—H1O | 107 (2) | N7—C12—H12B | 109.5 |
Cu2—O1—H1O | 105 (2) | H12A—C12—H12B | 109.5 |
S1—O2—Cu1 | 134.93 (11) | N7—C12—H12C | 109.5 |
S1—O2—Cu1i | 127.14 (10) | H12A—C12—H12C | 109.5 |
Cu1—O2—Cu1i | 97.91 (7) | H12B—C12—H12C | 109.5 |
S1—O4—Cu3i | 118.91 (11) | O8—C13—N8 | 126.4 (3) |
S1—O5—Cu2i | 125.29 (10) | O8—C13—H13 | 116.8 |
C10—O6—Cu3 | 120.80 (17) | N8—C13—H13 | 116.8 |
Cu2—O7—H7A | 121 (2) | N8—C14—H14A | 109.5 |
Cu2—O7—H7B | 125 (2) | N8—C14—H14B | 109.5 |
H7A—O7—H7B | 108 (3) | H14A—C14—H14B | 109.5 |
H10A—O10—H10B | 118 (4) | N8—C14—H14C | 109.5 |
C3—N1—N2 | 108.4 (2) | H14A—C14—H14C | 109.5 |
C3—N1—Cu1 | 131.89 (19) | H14B—C14—H14C | 109.5 |
N2—N1—Cu1 | 119.18 (16) | N8—C15—H15A | 109.5 |
C1—N2—N1 | 108.2 (2) | N8—C15—H15B | 109.5 |
C1—N2—Cu2 | 131.42 (18) | H15A—C15—H15B | 109.5 |
N1—N2—Cu2 | 120.19 (15) | N8—C15—H15C | 109.5 |
C6—N3—N4 | 108.4 (2) | H15A—C15—H15C | 109.5 |
C6—N3—Cu2 | 132.94 (19) | H15B—C15—H15C | 109.5 |
N4—N3—Cu2 | 118.57 (16) | O9—C16—N9 | 125.8 (3) |
C4—N4—N3 | 108.2 (2) | O9—C16—H16 | 117.1 |
C4—N4—Cu3 | 130.49 (18) | N9—C16—H16 | 117.1 |
N3—N4—Cu3 | 121.01 (15) | N9—C17—H17A | 109.5 |
C9—N5—N6 | 107.8 (2) | N9—C17—H17B | 109.5 |
C9—N5—Cu3 | 133.20 (18) | H17A—C17—H17B | 109.5 |
N6—N5—Cu3 | 118.53 (16) | N9—C17—H17C | 109.5 |
C7—N6—N5 | 108.2 (2) | H17A—C17—H17C | 109.5 |
C7—N6—Cu1 | 131.22 (18) | H17B—C17—H17C | 109.5 |
N5—N6—Cu1 | 120.33 (16) | N9—C18—H18A | 109.5 |
C10—N7—C12 | 121.5 (2) | N9—C18—H18B | 109.5 |
C10—N7—C11 | 120.0 (2) | H18A—C18—H18B | 109.5 |
C12—N7—C11 | 118.4 (2) | N9—C18—H18C | 109.5 |
C13—N8—C15 | 121.4 (2) | H18A—C18—H18C | 109.5 |
C13—N8—C14 | 121.6 (3) | H18B—C18—H18C | 109.5 |
C15—N8—C14 | 116.9 (2) |
Symmetry code: (i) −x+2, −y+2, −z+2. |
D—H···A | D—H | H···A | D···A | D—H···A |
C18—H18B···O3ii | 0.96 | 2.64 | 3.494 (4) | 148 |
C17—H17C···O5ii | 0.96 | 2.56 | 3.360 (3) | 141 |
C15—H15C···N2iii | 0.96 | 2.63 | 3.406 (4) | 138 |
C13—H13···O5iv | 0.93 | 2.23 | 3.155 (3) | 170 |
C10—H10···O4i | 0.93 | 2.30 | 2.971 (3) | 128 |
C7—H7···O5 | 0.93 | 2.65 | 3.483 (3) | 149 |
C7—H7···S1 | 0.93 | 2.95 | 3.610 (3) | 129 |
C6—H6···O10v | 0.93 | 2.38 | 3.234 (4) | 153 |
C4—H4A···Cl3vi | 0.93 | 2.93 | 3.484 (3) | 119 |
C3—H3···O4 | 0.93 | 2.64 | 3.411 (3) | 140 |
C3—H3···S1 | 0.93 | 2.99 | 3.616 (3) | 126 |
O10—H10B···O9vii | 0.81 (2) | 1.96 (2) | 2.751 (3) | 165 (4) |
O10—H10A···O3iii | 0.81 (2) | 1.91 (2) | 2.700 (3) | 165 (4) |
O7—H7B···O8viii | 0.83 (2) | 1.83 (2) | 2.658 (3) | 175 (3) |
O7—H7A···O10v | 0.80 (2) | 1.83 (2) | 2.625 (3) | 172 (3) |
O1—H1O···O9ix | 0.78 (2) | 1.95 (2) | 2.711 (3) | 166 (3) |
O1—H1O···O9ix | 0.78 (2) | 1.95 (2) | 2.711 (3) | 166 (3) |
O7—H7A···O10v | 0.80 (2) | 1.83 (2) | 2.625 (3) | 172 (3) |
O7—H7B···O8viii | 0.83 (2) | 1.83 (2) | 2.658 (3) | 175 (3) |
O10—H10A···O3iii | 0.81 (2) | 1.91 (2) | 2.700 (3) | 165 (4) |
O10—H10B···O9vii | 0.81 (2) | 1.96 (2) | 2.751 (3) | 165 (4) |
C3—H3···S1 | 0.93 | 2.99 | 3.616 (3) | 126 |
C3—H3···O4 | 0.93 | 2.64 | 3.411 (3) | 140 |
C4—H4A···Cl3vi | 0.93 | 2.93 | 3.484 (3) | 119 |
C6—H6···O10v | 0.93 | 2.38 | 3.234 (4) | 153 |
C7—H7···S1 | 0.93 | 2.95 | 3.610 (3) | 129 |
C7—H7···O5 | 0.93 | 2.65 | 3.483 (3) | 149 |
C10—H10···O4i | 0.93 | 2.30 | 2.971 (3) | 128 |
C13—H13···O5iv | 0.93 | 2.23 | 3.155 (3) | 170 |
C15—H15C···N2iii | 0.96 | 2.63 | 3.406 (4) | 138 |
C17—H17C···O5ii | 0.96 | 2.56 | 3.360 (3) | 141 |
C18—H18B···O3ii | 0.96 | 2.64 | 3.494 (4) | 148 |
Symmetry codes: (i) −x+2, −y+2, −z+2; (ii) x−1, y−1, z; (iii) x−1/2, −y+3/2, z−1/2; (iv) −x+1, −y+2, −z+1; (v) −x+1, −y+1, −z+1; (vi) −x+1, −y+2, −z+2; (vii) −x, −y+1, −z+1; (viii) x+1, y, z+1; (ix) −x+1/2, y+1/2, −z+3/2. |
Acknowledgements
This material is based upon work supported by the National Science Foundation under grant No. CHE-1404730.
References
Ahmed, B. M., Calco, B. & Mezei, G. (2016). Dalton Trans. 45, 8327–8339. Web of Science CSD CrossRef CAS PubMed Google Scholar
Ahmed, B. M. & Mezei, G. (2016). Inorg. Chem. Submitted. Google Scholar
Ahmed, B. M., Szymczyna, B. R., Jianrattanasawat, S., Surmann, S. A. & Mezei, G. (2016). Chem. Eur. J. 22, 5499–5503. Web of Science CSD CrossRef CAS PubMed Google Scholar
Boča, R., Dlháň, L., Mezei, G., Ortiz-Pérez, T., Raptis, R. G. & Telser, J. (2003). Inorg. Chem. 42, 5801–5803. Web of Science PubMed Google Scholar
Bruker (2014). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA. Google Scholar
Casarin, M., Corvaja, C., Di Nicola, C., Falcomer, D., Franco, L., Monari, M., Pandolfo, L., Pettinari, C. & Piccinelli, F. (2005). Inorg. Chem. 44, 6265–6276. Web of Science CSD CrossRef PubMed CAS Google Scholar
Di Nicola, C., Garau, F., Gazzano, M., Monari, M., Pandolfo, L., Pettinari, C. & Pettinari, R. (2010). Cryst. Growth Des. 10, 3120–3131. Web of Science CSD CrossRef CAS Google Scholar
Di Nicola, C., Garau, F., Karabach, Y. Y., Martins, L. M. D. R. S., Monari, M., Pandolfo, L., Pettinari, C. & Pombeiro, A. J. L. (2009). Eur. J. Inorg. Chem. pp. 666–676. Web of Science CSD CrossRef Google Scholar
Fernando, I. R., Surmann, S. A., Urech, A. A., Poulsen, A. M. & Mezei, G. (2012). Chem. Commun. 48, 6860–6862. Web of Science CSD CrossRef CAS Google Scholar
Fu, M., Imai, T., Han, T.-H. & Lee, Y. S. (2015). Science, 350, 655–658. Web of Science CrossRef CAS PubMed Google Scholar
Groom, C. R., Bruno, I. J., Lightfoot, M. P. & Ward, S. C. (2016). Acta Cryst. B72, 171–179. Web of Science CSD CrossRef IUCr Journals Google Scholar
Grundner, S., Markovits, M. A. C., Li, G., Tromp, M., Pidko, E. A., Hensen, E. J. M., Jentys, A., Sanchez-Sanchez, M. & Lercher, J. A. (2015). Nat. Commun. 6, 7546. CrossRef PubMed Google Scholar
Halcrow, M. A. (2009). Dalton Trans. pp. 2059–2073. Web of Science CrossRef Google Scholar
Lionetti, D., Day, M. W. & Agapie, T. (2013). Chem. Sci. 4, 785–790. Web of Science CSD CrossRef CAS PubMed Google Scholar
Mezei, G. (2015). Chem. Commun. 51, 10341–10344. Web of Science CSD CrossRef CAS Google Scholar
Mezei, G., Rivera-Carrillo, M. & Raptis, R. G. (2004). Inorg. Chim. Acta, 357, 3721–3732. Web of Science CSD CrossRef CAS Google Scholar
Mezei, G., Rivera-Carrillo, M. & Raptis, R. G. (2007). Dalton Trans. pp. 37–40. Web of Science CSD CrossRef Google Scholar
Mimmi, M. C., Gullotti, M., Santagostini, L., Battaini, G., Monzani, E., Pagliarin, R., Zoppellaro, G. & Casella, L. (2004). Dalton Trans. pp. 2192–2201. Web of Science CrossRef PubMed Google Scholar
Rivera-Carrillo, M., Chakraborty, I., Mezei, G., Webster, R. D. & Raptis, R. G. (2008). Inorg. Chem. 47, 7644–7650. Web of Science PubMed CAS Google Scholar
Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. Web of Science CrossRef CAS IUCr Journals Google Scholar
Sheldrick, G. M. (2015). Acta Cryst. C71, 3–8. Web of Science CrossRef IUCr Journals Google Scholar
Solomon, E. I., Heppner, D. E., Johnston, E. M., Ginsbach, J. W., Cirera, J., Qayyum, M., Kieber-Emmons, M. T., Kjaergaard, C. H., Hadt, R. G. & Tian, L. (2014). Chem. Rev. 114, 3659–3853. Web of Science CrossRef CAS PubMed Google Scholar
Solomon, E. I., Sundaram, U. M. & Machonkin, T. E. (1996). Chem. Rev. 96, 2563–2606. CrossRef PubMed CAS Web of Science Google Scholar
Spielberg, E. T., Gilb, A., Plaul, D., Geibig, D., Hornig, D., Schuch, D., Buchholz, A., Ardavan, A. & Plass, W. (2015). Inorg. Chem. 54, 3432–3438. Web of Science CSD CrossRef CAS PubMed Google Scholar
Tsui, E. Y., Day, M. W. & Agapie, T. (2011). Angew. Chem. Int. Ed. 50, 1668–1672. CSD CrossRef CAS Google Scholar
Viciano-Chumillas, M., Tanase, S., de Jongh, L. J. & Reedijk, J. (2010). Eur. J. Inorg. Chem. pp. 3403–3418. Google Scholar
Zheng, L.-L., Leng, J.-D., Zheng, S.-L., Zhaxi, Y.-C., Zhang, W.-X. & Tong, M.-L. (2008). CrystEngComm, 10, 1467–1473. Web of Science CSD CrossRef CAS Google Scholar
This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.